
Conference Proceedings
On the following 36 pages are published the Proceedings of Sessions 2 and 4 of the Conference on Automatic programmin

languages for business and science, held at the Northampton College of Advanced Technology, London, on 17-18 April 196;
Proceedings of Sessions 1 and 3 were published on pp. 107-139 of the July 1962 issue.

Operating experience with COBOL in a service bureau
By M. A. Kingsbury

Introduction
COBOL has been in use at the Central Computing
Service, English Electric Co. Ltd., Kidsgrove, on a
KDP10 computer since October 1961. This has given
us experience in writing and testing programs in COBOL,
and in running the object programs. It has enabled us
to find out how long programs take to compile, and how
efficient the object programs are. We have also been
able to decide how long a course is needed in order to
teach COBOL.

Courses
COBOL courses at English Electric have been of

either three days duration or two weeks. It has been found
that people can learn—and, in fact, have had to learn
COBOL in three days. However, it is generally felt that a
two-week course is better; the first week is spent in
learning COBOL, and the second in writing and testing
a simple program under proper supervision.

Writing and testing COBOL programs
Defining a problem and producing functional flow-

charts is not accelerated by COBOL; however, once
these have been done the time taken to write a program
is greatly reduced, by, I would guess, a factor of 4 to 1.
It has been found that, after a little encouragement,
programmers write the two-dimensional functional
flow-charts in simple COBOL statements. This means
that they then have a one-to-one correspondence between
the functional flow charts and the procedure division of
the program.

One finds that, in doing this, the complete logic of the
program is checked at the functional flow-chart stage,
and writing of the procedure division consists simply of
copying the flow chart.

Basically the compiler is split into two sections. The
first section checks the COBOL program for all pro-
gramming errors such as trying to move alphabetical
information into a numeric field, moving large fields
into small ones, incorrect program format, use of non-
existent data names, etc.—it also produces an updated
edited copy of the COBOL program which includes all
corrections. The second section produces the actual
machine coded object program.

On testing a reasonably sized program of 2-500
COBOL statements one should get a compiled program
after two or three runs on the computer. This is not
because people don't make mistakes when programming
in COBOL, but because the Compiler prints out most of

the COBOL programming errors—it doesn't stop at the
first error but lists them all. Some of the most common
ones detected during compilation are:

Data names not defined in the data division.
Sizes of data fields incompatible.
Data names mis-spelt.

When a program has been compiled a complete
description of it is printed out. This includes the
locations in the high-speed memory of all work areas
and file areas, and a list of all the machine instructions
produced for each COBOL statement. This complete
program-description is chiefly used when testing the
program, or when changing or correcting it some time
after it has been written.

We have found that testing object programs is fairly
simple. This is because the only errors which should
exist in programs are systems errors. Thus one finds
that object programs nearly always produce output—
not necessary correct output, but, nevertheless, output
which can be analysed.

The accepted way of testing object programs has been
to run them on test data and to examine the results.
If this is not sufficient to determine the cause of error
one can stop the object program at any designated point
and take a print-out from the high-speed memory.
Using this, together with the Compiler listings, one can
examine the contents of all input and output areas,
work areas, etc. In order to correct an object program,
and to retain it as a COBOL-produced program, all
corrections must be applied by recompilation. How-
ever, it has been found worthwhile (i.e. it saves computer
time) to make corrections to the source program in
COBOL and to the object program in machine code.
When the object program works the source program is
recompiled in order to produce a correct object program.

One of the side benefits of COBOL is that it provides
most of the housekeeping required for commercial pro-
gramming; this covers tape interchanging, tape labelling
re-run procedures, etc.

Efficiency
The best machine coded program should always be

more efficient than the best COBOL program.
In general, on file processing jobs, COBOL produced

programs compare very favourably with m/c coded
programs. The difference between COBOL and m/c
coded programs on other problems really depends on
the nature of the problem.

157

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/157/424289 by guest on 13 M
arch 2024



COBOL in a service bureau

Handling of Sterling
Being of American origin COBOL, of course, makes

no provision for the handling of Sterling quantities.
Moreover, the addition of such facilities to the scheme
cannot efficiently be carried out using the COBOL
language. At English Electric we have therefore provided
subroutines written in an assembly language (own code)
for conversion to and from Sterling.

Conclusions
COBOL has been found to be fairly easy to learn, but

the old rule of "the better the programmer the better
the program" still applies.

COBOL produces first-class program documentation.
This is very important and normally quite difficult to
obtain from programmers.

Whatever the limitations of COBOL (and it has a few),

and however much people decry it, the following facts
stand out.

It exists.
It is better for commercial programming than most

machine codes.
It is easy to use.
It has been implemented.
It is a big step towards a real Common Business

Language.
In a bureau where many different programs are run

daily the standardization of operating and re-run
instructions has proved to be extremely useful.

Acknowledgement
This paper is published by kind permission of The

Manager, Data Processing and Control Systems Division,
The English Electric Co. Ltd., Kidsgrove.

Early operating experience with Language H
By A. S. Cormack

This paper assumes a basic knowledge of the fundamental principles of automatic programming
languages, and is intended to show some of the practical advantages that have been obtained by
using such a language. A brief description of Language H and the factors which influenced its
development is included, but the main emphasis lies on the actual operation of the system as a whole.

Introduction
With the current emphasis on COBOL as a Common
Universal Business Language, and the considerable effort
that is being made to get COBOL accepted by all manu-
facturers, it is not surprising that a certain amount of
criticism is levelled at those manufacturers who have
taken the decision to design and implement their own
languages.

In answer to this criticism most manufacturers have
agreed to offer COBOL as well as their own language.
The choice is then up to the user to decide which one is
the more suitable for his particular purpose.

The major factor which influenced the decision to
proceed with the development of Language H stemmed
from a consideration for the smaller machine user.
Most of the effort so far has been directed towards
comprehensive languages for large installations, and
although it is obviously possible to write compilers for
this type of language for a small machine, the number of
runs and the time needed for translation do not make this
a practical proposition.

The suggested method of taking a subset of the com-
plete language is, at best, only a partial solution. The
difficulty of extracting an effective subset without in
some way destroying the logical completeness of the
language is almost as great as designing an entirely new
language.

Basic philosophy
The main aim behind the development of Language H

was one of simplicity. It was hoped that the version
currently running would prove to be the minimum
effective system, and to achieve this a greater part of the
work was directed towards deciding, not what to include,
but what to exclude. This version, although complete
in itself, is intended to be a foundation upon which the
language will be allowed to grow naturally. It is
envisaged that expansion will depend as much upon field
trials and suggestions from users as upon the compiler
writers themselves. In this way it is hoped to achieve
eventually a multi-level language which can be truncated
at natural logical stages to suit the particular require-
ments of different installations, without in any way
affecting the structure of the language.

Brief description
Language H is a simple, single level, procedural

language allowing one level of subscripting, in which
many data-processing problems may be expressed. No
separate description of the data being handled is required
of the user—sufficient information is obtained by impli-
cation, from the way phrases are written, to provide a
range of checks on validity and to enable appropriate
machine-code to be produced.

158

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/157/424289 by guest on 13 M
arch 2024


