
COBOL in a service bureau

Handling of Sterling
Being of American origin COBOL, of course, makes

no provision for the handling of Sterling quantities.
Moreover, the addition of such facilities to the scheme
cannot efficiently be carried out using the COBOL
language. At English Electric we have therefore provided
subroutines written in an assembly language (own code)
for conversion to and from Sterling.

Conclusions
COBOL has been found to be fairly easy to learn, but

the old rule of "the better the programmer the better
the program" still applies.

COBOL produces first-class program documentation.
This is very important and normally quite difficult to
obtain from programmers.

Whatever the limitations of COBOL (and it has a few),

and however much people decry it, the following facts
stand out.

It exists.
It is better for commercial programming than most

machine codes.
It is easy to use.
It has been implemented.
It is a big step towards a real Common Business

Language.
In a bureau where many different programs are run

daily the standardization of operating and re-run
instructions has proved to be extremely useful.

Acknowledgement
This paper is published by kind permission of The

Manager, Data Processing and Control Systems Division,
The English Electric Co. Ltd., Kidsgrove.

Early operating experience with Language H
By A. S. Cormack

This paper assumes a basic knowledge of the fundamental principles of automatic programming
languages, and is intended to show some of the practical advantages that have been obtained by
using such a language. A brief description of Language H and the factors which influenced its
development is included, but the main emphasis lies on the actual operation of the system as a whole.

Introduction
With the current emphasis on COBOL as a Common
Universal Business Language, and the considerable effort
that is being made to get COBOL accepted by all manu-
facturers, it is not surprising that a certain amount of
criticism is levelled at those manufacturers who have
taken the decision to design and implement their own
languages.

In answer to this criticism most manufacturers have
agreed to offer COBOL as well as their own language.
The choice is then up to the user to decide which one is
the more suitable for his particular purpose.

The major factor which influenced the decision to
proceed with the development of Language H stemmed
from a consideration for the smaller machine user.
Most of the effort so far has been directed towards
comprehensive languages for large installations, and
although it is obviously possible to write compilers for
this type of language for a small machine, the number of
runs and the time needed for translation do not make this
a practical proposition.

The suggested method of taking a subset of the com-
plete language is, at best, only a partial solution. The
difficulty of extracting an effective subset without in
some way destroying the logical completeness of the
language is almost as great as designing an entirely new
language.

Basic philosophy
The main aim behind the development of Language H

was one of simplicity. It was hoped that the version
currently running would prove to be the minimum
effective system, and to achieve this a greater part of the
work was directed towards deciding, not what to include,
but what to exclude. This version, although complete
in itself, is intended to be a foundation upon which the
language will be allowed to grow naturally. It is
envisaged that expansion will depend as much upon field
trials and suggestions from users as upon the compiler
writers themselves. In this way it is hoped to achieve
eventually a multi-level language which can be truncated
at natural logical stages to suit the particular require-
ments of different installations, without in any way
affecting the structure of the language.

Brief description
Language H is a simple, single level, procedural

language allowing one level of subscripting, in which
many data-processing problems may be expressed. No
separate description of the data being handled is required
of the user—sufficient information is obtained by impli-
cation, from the way phrases are written, to provide a
range of checks on validity and to enable appropriate
machine-code to be produced.

158

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/158/424294 by guest on 19 April 2024



Language H

The conventions required to meet the needs of filing
and input and output specifications are simple and
straightforward.

Some of the requirements borne in mind in developing
this approach have been the following:

(1) The smallest possible number of effective phrases
should be provided.

(2) The load on the memory of the user should be kept
as small as possible.

(3) Any program should be unambiguous.
(4) The structure of the language should be inde-

pendent of any particular computer.
(5) The unit of information handled should be of the

size of a number, a name, or a short comment;
only exceptionally is it, on the one hand, a single
character or, on the other, a record.

In spite of the simplicity of the language it is not as
naive as perhaps it may appear from the description.
It has most of the facilities which people have been led
to expect from autocoding languages, such as:

(a) nested repeat loops;
(b) conditional branch commands;
(c) provision for segmentation;
(d) a perform command to permit sections of program

to be obeyed out of sequence;
(e) one level of subscripting for list work.

Some of the proposals for the next version include
provisions for sorting, random access, the increase of
levels for subscripting, and the extension of the file
commands.

The example in Fig. 1 is an extract from the Language
H Payroll program mentioned later in the paper. It is
not a complete section and is, by itself, meaningless, but
it is intended to illustrate the way in which the language
is used to handle data-processing problems, and to give
an indication of the effect of some of the commands.

It will be noticed that punctuation is used merely to
increase readability and does not have the syntactic
meaning which some other languages assign to it. In
other words, it is not necessary to remember that, say,
a full stop terminates an imperative sentence and that
a comma terminates a conditional expression or that an
imperative statement is terminated by a semi-colon.
The syntax of Language H is defined mainly by the way
in which the commands are written.

Operation of the compiler
The compiler, which contains some 20,000 instructions,

has been designed to run with minimum operator inter-
vention. After loading the compiler on one of the
magnetic film units, a short entry tape, which is read in
under the initial instructions, initiates the compiling run,
and thereafter the operation is entirely automatic.

During translation extensive checks are carried out to
test the validity of the source program, and comments
are printed to indicate the nature of the error found, if
any. These comments are prefaced by the number of

the command in which the error has been found and the
chapter in which it has occurred. At the end of the
translation additional checks are carried out to test that
every jump command has a destination and vice versa,
and additional information is printed indicating the
number of chapters, operands and flags used by the
source program.

The second part of the compiler, which generates the
object program is then read down and compiling
continues.

During this section of the operation all the labels are
printed out with their associated addresses, to act as a
guide during the testing of the object program. At the
end, further comments are printed indicating the start
and end of the program, which film it is held on, and
which key to press for a post-mortem of the object
program, output of the object program for use on
another machine, or optional load and go.

If the program is required to run on another machine
a self-triggering binary tape is produced headed by a
short "boot-strap" program which enables it to be read
in under the initial instructions of the object machine.

Various diagnostic routines are provided for examining
the operand, literal or destination lists, and it is intended
to produce an abbreviated version of the source program
during translation to shorten the time of any recompila-
tion that may be necessary.

Correction of the source program
At the moment any faults that are detected during the

translation run due to punching or syntatic errors may
be corrected either by recopying the tape, or by over-
punching a control symbol at the place where the fault
occurs and repunching a short piece of tape carrying
the correct information.

It is debatable whether there is any advantage to be
gained by increasing the key-word list by the addition
of compiler directives to enable corrections to be read in
before compiling begins and inserted during translation,
but provision has been made for this should it be found
to be necessary.

Testing the object program
On the assumption that the compiler is correct and

that no source-program errors have escaped detection
during compilation, the object tape will be a valid machine
program. If it does not produce the expected results
this will be due either to logical errors on the part of the
programmer, or to an incomplete understanding of the
effect of the commands described in the manual, or to
an inadequacy of the manual itself.

There are two methods which have been found in
practice to be the most helpful in debugging object
programs. The first is simply to use the label addresses
printed out during generation of the program to set up
selected stops and thus trace the course of the program
step by step from start to finish. The second is used
where a lot of internal calculation is involved, and

159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/158/424294 by guest on 19 April 2024



Entry.

Block error.
Type minus four.
Type.
Out.
Output film error.
During payroll.

Error ref. no.
Error ref.
Back entry.
Test leaver.

NCR Graduated.
NCR

Graduated.

Released refund.
Pensions.

Nothing.
None.
Normal.
NHI Code.

Total ded.

Language H

Get block no. A, type A, ref. no. A (and up to 57 cells) from channel 1.
Add 4 to type A.
Branch to entry, output film error, block error, during payroll, before payroll, leaver,
summary or output film error according to type A.
Print "100."
Subtract 4 from type A.
Load something with type A.
Print number (max. 999) being something and go to stop.
Print "101," and go to type minus four.
Get block no. B, type B, ref. no. B (and up to 15 cells), and code (and up to 41 cells) from
channel 1. Turn on A flag if ref. no. A is equal to ref. no. B. Go to test leaver if A flag
is on. Print "102."
Print number (max. 999999) being ref. no. A and load reference with ref. no. B.
Print number (max. 999999) being reference.
Wait. Go to entry if switch 24 is off. Go to stop.
Go to leaver adj. if leaver flag is on.
Go to salary if output flag is on.
Go to ref. if input flag is on.
Go. to input if ref. flag is on.
Turn on A flag.
Load NCR pension with taxable pay for-month and subtract £21 : 0 : 0 from NCR
pension.
Go to nothing if NCR pension is negative.
Divide NCR pension by 20 and go to normal if A flag is off.
Load grad. pension with taxable pay for-month and subtract £30 : 0 : 5 from grad. pension.
Go to none if grad. pension is negative.
Calculate grad. pension (function 51) from grad. pension.
Turn on A flag if grad. pension is greater than £1 : 2 : 1.
Go to normal if A flag is off.
Load grad. pension with £ 1 : 2 : 1 and go to normal.
Subtract suppressed tax refund from tax for-month.
Go to nothing if superannuation code is zero.
Turn off A flag and branch to NCR, graduated or NCR graduated according to super-
annuation code. Print "111."
Perform error ref. no. Perform error name.
Load something with superannuation code and perform out: wait.
Go to stop if switch 24 is on.
Load NCR pension with 0.
Load grad. pension with 0.
Go to usual if normal stamps are negative.
Turn on A flag if nhi stampvalue code is equal to numeral for pay. Go to nhi if A flag is on.
Repeat 21 times from nhi code counting in pay.
Print "112," perform error ref. no. and perform error name.
Load something with nhi stamp value code and perform out: wait.
Go to stop if switch 24 is on.
Calculate total ded. (function 1) from hsa ded., sports club ded., endow, ded., special ded.,
tax for-month, NCR pension, grad. pension, and NCR vol. contrib.
Add national insurance to total ded.
Calculate gross (function 1) from overtime, bonus, and salary for-month; calculate net
salary (function 3) from gross, expenses, total ded., and float repayment.

Fig. 1.—Part of a payroll program written in Language H

consists of inserting commands to print out inter-
mediate results at various stages. These commands can
be deleted and the program recompiled when testing
has been completed.

Operating experience
The first compiler was written for the National-

Elliott 405M with the primary object of testing the
soundness of the language, and was completed by
August 1961. It was checked out and found to be

effective by December 1961. During this time one or
two small production jobs had been run, together with a
rather more sophisticated program to play noughts and
crosses. This had no particular value as a commercial
program but proved to be useful in checking the multiple
branch, repeat, and perform commands in conjunction
with the subscripting facility.

Work was begun in January 1962 on a compiler to run
on the National-Elliott 405M and produce object
programs to run on the National-Elliott 803B. At the

160

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/158/424294 by guest on 19 April 2024



Language H

same time it was decided to run a full-scale production
job using Language H at the beginning of May 1962.
For this purpose a monthly pay-roll for 550 people,
divided into two categories, was chosen and the specifica-
tion was received at the end of January.

The major portion of the program was written by
a person with no previous machine programming
experience, and the first drafts were ready by the
middle of March 1962. Checking, testing and revision
of the program occupied a few days, and the program
was completed and compiled by the end of the month.
Two versions of the source program were written, one
to run on a National-Elliott 803B with 4,096 words of
core store and three films, and one to run on the same
type of machine with 8,192 words of core store.

Very little trouble occurred during the testing of the
object programs, and they were all working by the third
week in April. This time would have been considerably
shortened had it not been for the delay caused by the
checking out of the compiler.

Table 1 was drawn up during the preparation of the
payroll to give an indication of the time taken to compile
source programs in Language H.

Table 1

Language H payroll program: source program timings

Permanent amendment run:
Number of commands: 1,000
Time taken to compile (in minutes): 27
Number of machine code instructions

produced: 9,000

Calculation and pay slip output run:
Number of commands: 560
Time taken to compile (in minutes): 19

Number of machine code instructions
produced: 7,000

Credit transfers, bank lists, leavers records,
summaries and tax refund output run:

Number of commands: 365
Time taken to compile (in minutes): 17
Number of machine code instructions

produced: 5,000

Efficiency
Comparisons drawn from trivial problems programmed

in both source language and machine code are clearly of
little value, and the time and effort necessary to prepare
a wide variety of complex problems in both forms
precludes this method for estimating the efficiency of
object programs generated by Language H. However,
work is in progress at the moment on the preparation of
a source program in Language H for a production job
currently running on the National-Elliott 8O3B. It is
hoped, therefore, to have some figures on the relative
efficiency of both these programs by the end of May 1962.

It is perhaps worth mentioning at this stage two of
the techniques that have been used in an effort to increase
the efficiency of the object programs. No claim is laid
to originality in these techniques, and they are included
merely to indicate the lines on which work is proceeding
in this field.

In the first place, care has been taken to ensure that
the generation of the object program is purely dynamic,
that is, at no stage is a macro command included that
has not been specifically called for by the source program.
In other words, as far as is possible there is no super-
fluous information in the object machine at run-time.
This is clearly of primary importance when dealing with
smaller machines.

The second point is directed towards achieving a
balance between space and speed. Clearly, the way that
this is done depends to a great extent on the type of
machine that is being considered. In the case of the
National-Elliott 8O3B, which has a comparatively large
core store, it was decided that more emphasis should be
placed on speed than space. Since, however, optimum
timing tends to produce lengthy macro generation, a

facility has been included to ensure that any of the
longer macros are only put in once however many times
they may be called for subsequently. This facility which
is, in fact, automatic subroutining, has been extended
across any number of levels so that macros may use parts
of other macros which may, in turn, use parts of other
macros and so on. In this way it is possible to ensure
that there is a minimum of repetition in the object
program.

Conclusions
Practical results have indicated that Language H is a

useful tool for solving a wide number of data-processing
problems. In common with other autocoding languages
it is only a tool and as such must be handled with care
and precision. Any assumption that it can be used
carelessly to solve any problem (as a sort of problem-
solving panacea) should be strongly discouraged, as this
approach can only lead to disaster.

Finally, one interesting feature emerged from operating
experience with Language H. That is that people with
no previous experience of machine-code programming
appear to be more readily able to grasp the essentials of
autocoding languages than experienced programmers.
This may be due to the programmer's reluctance to wade
through a manual step by step until he has thoroughly
mastered it, or possibly to misunderstandings caused by
assumptions made in the light of previous programming
experience.

Bibliography
"COBOL 60." US Department of Defence (April 1960).

161

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/158/424294 by guest on 19 April 2024


