
A progress report on NEBULA

By A. R. Rousell

It is now close on two years since Ferranti came to the
conclusion that implementation of NEBULA should
proceed, and that COBOL should be ignored, at least
for the time being. The NEBULA compiler for Orion
is nearing completion and good progress has been made
with NEBULA for Atlas. It therefore seems an oppor-
tune moment to go back and examine the reasons for
reaching this decision, and to see how far the situation
has changed in this period.

The first report of the CODASYL Committee was
made available in mid-1960. At about this time it was
necessary to decide first whether Orion business users
should be provided with an autocode, secondly to what
extent an autocode should remove the need for using
conventional machine orders, and lastly the extent to
which object-program efficiency was important.

In view of the magnitude of the programming effort
which the early Orion customers were expected to expend
on the very large applications planned for their machines,
it was considered essential that a good comprehensive
autocode should be provided. It was further considered
that the aim should be to eliminate completely the need
for machine orders, or at least to reduce their use to an
absolute minimum.

COBOL 60 was examined with this object in view,
but it was found to lack a number of facilities required
by Orion users. It could, nevertheless, have been
implemented together with additional facilities defined
by the manufacturer, and this is in fact what has hap-
pened in some cases. Ferranti's view, however, was
that the object of a common language was to some extent
defeated by such an approach, and we preferred to
implement a language, which, although similar in many
respects to COBOL, was in no way bound by decisions
taken in the light of business requirements in the U.S.A.,
requirements which do not in many cases reflect the
state of data processing in this country. It was in our
view essential that, if customers were to have any con-
fidence in the ability of the language to meet their
requirements, the specification should be as near as
possible to completion before programming started.
There appeared to be little or no chance of achieving this
object owing to the delay which inevitably must arise
when decisions depend on a committee sitting many
thousands of miles away. It seemed far more useful to
get on with the task of specifying the language and writing
the compiler. To return to COBOL as specified at that
time, it was fairly obvious after only a cursory study
that it was orientated towards a character rather than a
binary machine. It is of course perfectly feasible to write
a COBOL compiler for a binary machine, but it is
extremely difficult to make the compiler really efficient.

Since the Ferranti machines for which a business language
is required are binary machines, it seemed unreasonable
to penalize users for the sake of conformity with a
language over which we have little influence.

The chief difficulties for the user arise when the
physical appearance of data on external media such as
cards or paper tape is considered. COBOL starts at the
point where data is read from magnetic tape and ends
with the writing of an updated magnetic-tape file and
results file. This is a perfectly feasible proposition for
those installations which handle input and output on
off-line equipment, or use small "pup" computers for
these operations, but it is hardly satisfactory when the
complete application is carried out on one large machine.
Manufacturers' additions to COBOL have overcome
this difficulty in some cases, but a complete plain-
language program is still only possible if rather rigid
rules are adhered to. NEBULA attempts to give not
only a complete freedom of choice of data media, but
also freedom of format on the chosen media.

In NEBULA the data description is divided into two
parts—the Logical and Physical Descriptions. The
Logical Description is similar and equivalent to the Data
Description in COBOL, that is it deals with the appear-
ance and chaiacteristics of data within the computer
store. The physical description, however, includes
sufficient facilities co enable data held according to a
variety of external conventions to be read and converted
automatically. Thus the standard input and output
verbs READ and WRITE are completely machine and
data-medium independent. To take punched cards as
an example, it is possible to read and convert cards
punched to any of the four different Hollerith conven-
tions, two Powers (ICT) conventions, and the Bull and
IBM conventions.

This spotlights one of the major difficulties in providing
comprehensive facilities at this particular point in time.
Many users are at the point where they wish to supple-
ment existing punched-card equipment with a computer.
They naturally wish to avoid the cost and upheaval
involved in any major repunching of existing card files,
or the alteration of practices with which the organization
is thoroughly familiar. Many of these practices originated
many years ago and might be considered non-standard
nowadays. Old Powers cards in particular have given
rise to many tricky problems. The block overpunching
technique, that is the use of overpunch positions to
provide additional columns rather than to extend the
value of a column, is used quite often. Similarly, one
finds many examples where a column has been used to
provide 12 Yes/No answers rather than to hold a quantity
of any sort. In market-survey work, practically the

162

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/162/424300 by guest on 19 April 2024



NEBULA

entire card is sometimes punched in this way. Cards
like this can be read and processed by a NEBULA-
compiled program.

This is not to say that we have satisfied all our cus-
tomers' demands. There are at present ten Orion
commercial customers who are attempting to write all
their programs in NEBULA. It requires an act of faith
to order a machine from the drawing board. It requires
a similar act of faith to write programs in a language for
which no compiler exists. We are delighted that so
many of our customers have chosen to indulge in both.
As program writing has progressed, situations have
inevitably arisen which could not be handled easily
within the framework of NEBULA as it was originally
specified. The feedback of difficulties of this sort has
fortunately been prompt, and it has therefore been
possible to provide further facilities to cope with these
situations. This is something which is only possible
where close liaison exists between the customer and the
compiler team. However, it would be foolish to pretend
that we have been completely successful in this respect.

We have sometimes found it possible to provide a
facility to meet one particular customer's problem but
have refrained from doing so because it is impossible to
make the facility general enough to avoid other cus-
tomers misusing it. There is one case where it has been
completely impossible to meet a customer's requirements
due to the time-scale involved. This particular case
involved the reading of cards containing fields used in
a variety of ways. Some followed more or less con-
ventional patterns, but others were punched in a sort
of binary-coded decimal, that is, a three-digit number
was contained in one column of a card. It has been
necessary to revert completely to machine orders to read
and convert these cards.

There are other cases where users have chosen to take
advantage of the facility to include machine orders in
otherwise plain-language programs. For example, there
is often a requirement to represent a number of Yes/No
answers by individual bits within the store. As I have
mentioned, the reading of this type of data from cards
can be handled quite reasonably by NEBULA, but the
Procedure Description which handles reference to the

Reference

BRAUNHOLTZ, T. G. H., ERASER, A. G., and HUNT, P. M. (1961).
The Computer Journal, Vol. 4, p. 197.

individual bits tends to be rather clumsy and somewhat
inefficient. It is, however, true to say that users are
adopting this course only on very rare occasions. Well
over 95 % of all programs are being written completely
in autocode. Although the facility to use machine orders
has been included, we feel that it is not a solution which
should be encouraged. Mercury autocode has demon-
strated this point fairly conclusively. Many Mercury
autocode users have at some stage used machine orders.
They are running into difficulties now that their machines
are being replaced or supplemented by more modern
machines.

Another unforeseen difficulty has arisen over the size
of object programs. The advent of the daily updating
run, in Insurance work for example, has meant that
facilities which might have been spread over several
programs, run on different days, have now been crammed
into one large program. The provisions for packing
data into variable-length records have also encouraged
users to hold data on files which might otherwise have
been discarded as being uneconomic. In one case a
program length of between 50,000 and 75,000 instructions
seemed likely to result. A program of this size is well
outside the scope of the NEBULA compiler, and for the
time being some changes in systems have been necessary.
However, this restriction, and others affecting the size
and efficiency of the object program, will be removed
by a new version of the compiler which is currently being
planned.

Our experience in advising customers who are using
NEBULA leads us to believe that we have been working
along the right lines. One result of attempting to meet
all customers' requirements has been that the language
has become more complicated than we at first hoped.
We would certainly no longer claim that it would be
learnt overnight. It has nevertheless been possible to
avoid the division of labour between systems and
programming teams which has been a feature of earlier
installations.

In conclusion I would say that our experience in
advising customers who are using NEBULA has brought
to light many problems, but these have only served to
confirm that we appear to be working on the right lines.

"NEBULA: A Programming Language for Data Processing,"

163

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/162/424300 by guest on 19 April 2024


