
Fundamental principles of expressing a procedure for a
computer application

By T. R. Thompson

An examination is made of the fundamental needs of a language to be used for expressing pro-
cedures for all types of computer applications. An outline is given of the commands needed for
doing calculations, controlling the sequence of steps, obtaining the information required, and
presenting the results in the desired format. Further, the particulars that must be provided about
data and results are indicated. The main features of the CLEO language are described in an
Appendix.

1. Purpose of paper
It is sometimes contended that the main reason for
developing programming languages is to enable a
person not versed in computer techniques to set down
the procedure he wants carried out in such a way that
this can automatically be translated into a computer
program. The professional training of the person who
may want to do this varies enormously; he may be a
scientist, a mathematician, a statistician, an actuary, an
accountant, or an office manager. For some reason it
has always been assumed that the only language an
office manager could use is ordinary English. However
this may be, one would certainly suppose that the basic
need is for a simple language. Yet the published state-
ments on most programming languages are very difficult
to follow, even by people with long experience of com-
puters; perhaps this arises from an attempt to avoid
possible ambiguities which is, of course, important
because the language must be precise. The aim of this
paper is to express in simple terms what seem to be the
fundamentals of a language which is to express the
procedure to be carried out for all types of applications.
It seems clear that, if the attempts in Europe and else-
where to devise a common language for computer users
are to be successful, the fundamentals must be agreed
first, and each feature agreed then considered in turn to
decide the best way of giving effect to it. At the same
time the way must be left open to expand the language
as experience reveals the need for further facilities.

It will be seen, therefore, that this paper is solely con-
cerned with devising a suitable language, not with the
preparation of the compiler, though naturally the
language devised must be one that lends itself to trans-
lation by a compiler.

2. Basic types of commands to carry out procedures
Any procedure consists of a series of denned steps

which may conveniently be referred to as commands.
These commands are of three main types.

(a) Those required to calculate one value in terms of
others.

(b) Those required to control the sequence of steps in
the procedure according to circumstances.

(c) Those required to obtain information provided as
data and to present results in the desired format.

3. Information used in procedures
Since almost all commands are concerned with infor-

mation of one kind or another, it is important that the
language should provide a means of identifying and
describing information as well as giving commands.
The three main types of information to be used are as
follows.

(a) Data which is provided for the purpose of carrying
out the procedure, including fixed data such as
constants and tables of information.

(Z>) Results which are to be formed by the procedure
and recorded for the use of people,

(c) Intermediate results, i.e. those which are formed
by the procedure solely for use at later stages of
the computation.

It is convenient to regard any associated pieces of infor-
mation as a file containing a series of records, whether
these records are on punched paper tape, punched cards,
magnetic tape, a series of printed forms, or in compart-
ments of a computer store.

The plan for the application must give a complete
description of the data and results (but not necessarily
of intermediate results). The language, to be complete,
must provide formal means for describing the file, and
the description for each file must include the following.

(i) The layout of the file must be given, breaking it
down to records, subrecords, groups of items,
and individual items of information; that is of all
levels in which the information is arranged.

(ii) Each item, group, record, etc., must be identified
by name, number, or other symbol as convenient
to the circumstances.

(iii) The form in which each item of information is to
be represented must be specified precisely; for
instance, whether it is to be alphabetic, numeric,
or a combination of them, and if numeric, in what
unit and notation the number is to be expressed.
Usually the maximum size will need to be speci-
fied, and for result numbers in particular it will
be necessary to specify the layout and punctua-
tion, the decimal point, blank spaces between
digits, suppressed zeros, and a place for the
+ or — sign.

164

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

Principles for a procedure language—CLEO

(iv) The medium on which the information is to be
presented must be given and, if an item is to be
identified by its location on a punched card or
printed statement, the line and position on the
line in which the item is to appear.

(v) Where several entries may appear for any item,
any group of items, or any record, a means will
be needed of showing the number of entries
which will appear or, alternatively, a maximum
number.

(vi) Where alternative entries may appear, e.g. a
receipt or an issue of goods, there must be a
means of showing this.

The extent to which data descriptions need to be explicit
or implicit is a matter for discussion in the light of
experience. It may be, for instance, that "sterling" can
be taken to imply a definite layout and punctuation
arrangement and, provided this will suffice, no further
description is necessary. Essentially the extent of this
formal description of the information must be such that,
once the procedure has been written purely in terms of
the commands and the identifiers of the pieces of infor-
mation on which the commands are to be applied, a
compiler can, by reference to the description, produce a
suitable computer program. Thus if consistency checks
on the data are required to be put in the program by the
compiler, the data description must indicate the nature
of consistency to be expected.

4. Commands for doing calculations
As indicated in the descriptions given of several

languages, only one command is needed to calculate
the value of any item from the value of others. The
command will, in general, incorporate a formula speci-
fying the calculations. How the formula is expressed
on paper may be varied, but the essential is to link a
series of operands by appropriate operators. The range
of operators required depends on the variety of applica-
tions to be covered.

The simple arithmetic operators are essential, together
with the means of getting a remainder from the division
process. Mathematical operators, such as sine, log, may
be needed, as well as scaling, floating-point operators,
etc. If actuarial applications are to be considered, there
may be need for an operator to calculate "amounts" in
terms of "principle" and "interest" according to specific
formulae.

Rounding off, up, or down, are likely to be needed,
and it is convenient to be able to include a conditional
expression in a formula.

Essentially therefore the single command to "calculate"
needs the facility to include a variety of operators, which
may be added to as experience shows this to be necessary.

5. Sequence of steps in procedures
Commands are needed
(a) to control jumps, conditional or otherwise;
(b) to determine repetitions of one or more steps.

The jump command must indicate to which next step
the jump must be made and under what conditions.
Where the jump is conditional it is convenient to preface
the command by the condition, expressed in terms of
equality or inequality of values or expressions. For
this purpose an expression may be set down as a formula
in the same way as for doing calculations.

There must be provision for multiple and for alter-
native conditions, and also for combinations of them.
Another need is to be able to jump to one point in the
sequence of steps if a condition is satisfied and to another
point if not. This need can be extended to provide for
a "switch" which permits jumps to one or other of a
series of points according to different possibilities.

For repetitions the command must indicate the step
or steps to be repeated and either

(i) how many times they are to be repeated;
(ii) until some condition is satisfied;
(iii) for values of some "identifier" over a given range.

6. Obtaining data and presenting results
Commands are required that will get data
(a) from the next record from a file;
(b) from the next record of a specified type;
(c) from a particular record, i.e. one with a given key

number or name.
A command is also required to put away a given

record in a file.
Other useful facilities in dealing with files are
(i) to copy from a data file to a result file;
(ii) to sort or merge information on files;
(iii) to extract a particular item of information from

each of the records of a file in turn, as, for instance,
the ledger balances of customers' accounts to
check the control total.

7. Features and configuration of a particular computer
It will be noticed that, in outlining the fundamentals

of a language for expressing a procedure, no reference
has been made to the features of the particular computer
which is to do the job. Clearly it is desirable that the
language shall be capable of expressing the procedure
whichever computer is to do it. On the other hand, the
plan for the procedure must have regard to these features:
the types of peripheral equipment, the capacity of the
store, and whether an auxiliary store is attached or not.
The effectiveness of the plan will clearly depend on
making the best use of these features. It is, however,
in the compiling stage that these features must be taken
into account. The compiler will of necessity be designed
to cope with types of computer within a given range of
store capacity and peripheral equipment, and when
translating, the parameters for the particular computer
must be fed in before the program which is to be trans-
lated, so that the resulting object program is one that
can most conveniently do the job on this computer.

165

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

Principles for a procedure language—CLEO

8. Summary of principles to be observed in devising the
language

The language must

(a) be one which is simple enough for people to learn
and use quickly and easily;

(6) be as concise as possible, but use no symbolism
which is not convenient for people without special
training;

(c) use as few words as possible in a special sense;
(d) provide adequate means for describing in a natural

way the different aspects of procedures and
associated information;

(e) be completely precise;
(/) avoid any complications that are not absolutely

essential to providing the required facilities, so as
to keep the compiler as simple as possible.

9. CLEO
CLEO was devised in accordance with these principles,

which were set down after a study of COBOL and other
languages in the light of our own experience.

As requested at the British Computer Society North-
ampton College meeting at which this paper was first
presented, a summary of the main features of CLEO
are given in the following Appendix. It assumes an
understanding of the technical terms normally used in
connection with this subject. A word (or abbreviation)
in block capitals indicates that this word is reserved for
the special sense in which it is used literally in the
language. On the other hand, words in italics indicate
the nature of the expression, word, number or symbol
to be used. In writing the language the actual expression,
words, etc., appropriate to the application would be
substituted.

Appendix

The CLEO Language

1. The types of Command.
2. Data and Result Descriptions.
3. Overlaying of Information.

1. Types of command
Commands may be either imperative or conditional.

Conditional commands are executed or not according to
some condition incorporated in the command after the
words "IF" or "WHEN." In what follows the word
"Command" is used without qualification to mean a command
that is either imperative or conditional.

1.1. Commands for doing calculations

SET followed by

"Identifier of the result = Arithmetic expres-
sion"

NOTE. The arithmetic expression consists of
operators and operands (or functions of
operands) combined together according to
the rules of algebra. Matching brackets may
be inserted to group terms together.
The operands may be literals or identifiers of
data or intermediate results. The functions
may be exp, log, sin, cos, etc. The operators
may be addition, subtraction, multiplication,
division, exponentiation. After division,
rounding off or up may be specified by
"(RO)" or "(RU)" after "SET." The
remainder after division may be obtained by
an additional clause, following the SET
command, of the form

"AND Identifier = REMAINDER"

1.2. Commands for controlling the sequence of steps in
procedure

GO TO followed by
"Procedure label"

for the step to be carried out next,
or, to denote a switch, by

"S : />,, P2, etc."

where S is an identifier which takes integer
values 1 to N and where Pn denotes the pro-
cedure label for the step to be carried out
next when the switch is set at n.
NOTE. The procedure label may be numeric
or alphanumeric.

DO followed by
"Subroutine label"

to execute a subroutine.
NOTE. The subroutine label may be numeric
or alphanumeric. After the subroutine has
been executed, the next step is normally to
execute the command following the DO
command, but a GO TO command may be
obeyed within the subroutine leading to some
other step outside the subroutine.
In carrying out the subroutine, however, the
same subroutine may not be re-entered either
directly or indirectly until the execution of the
subroutine has been completed.

166

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

Principles for a procedure language—CLEO

HALT

IF

FOR

followed by

"PROGRAM"

to terminate the program

or, where it is desired to allow the console
operator to choose one among several possible
continuations from a particular point in the
program, by

"I"

immediately followed by another command

'GOTO Pi,P2, etc."

where / is a reference number which is dis-
played to the console operator on an indicator
to indicate the nature of the stoppage. The
operator may then choose to continue the
program with any one of the procedures
Pu P2,. .., Pn,. .., PN when n is the integer
set up by the operator on the controls.

followed by

" Conditional expression Imperative command'"

or, by

"Conditional expression Imperative cor, 1

ELSE Command"

where some special course of action is desired
if the condition is not fulfilled.

NOTE. A conditional expression consists of a
relationship or several relationships joined in
pairs by the words "AND" or "OR."
"AND" takes precedence over "OR," but
where "OR" is to take precedence brackets
are needed. The relationship may consist of
two arithmetical expressions separated by

<̂> »̂> —, ^>, »#> ^- m
particular "one or other or both of the arith-
metic expressions may be simply an identifier,
and one could be a literal.
Other conditions may relate to identifiers of
records of input files (see under OBTAIN)
Another form of conditional expression is

"END File identifier"

to deal with the case when the end record of
a given file has been reached.

followed by

"Identifier = Control expression
command"

Imperative

to cause repeated execution of an imperative
command.

The control expression may take one or other
of the following alternative forms:

(i) "Au A2, A3, etc." to give a series of
values for the identifier determined by
these arithmetic expressions

(ii) "At : A2 : A3" for values from A{ by
steps of A2 to A3

WHEN

(iii) "/I, : A2 UNTIL Conditional expression"
for values from At by steps of A2 until
the condition is satisfied

(iv) "/4i UNTIL Conditional expression" for
values of Ax until the condition is
satisfied.

Any succession of control expressions are
permissible consisting of

(a) repetitions of one form
and/or (b) different forms.

NOTE. The command to be carried out may
in fact be a series of commands preceded "by

"BEGIN" and terminated by "END."

Used in conjunction with "SKIP" and
"COPY" (see later).

1.3. Commands for obtaining data and presenting results
OPEN INPUT followed by

"Input file identifiers"

to enable the procedure for checking the file
headings to be provided by the compiler.

OPEN OUTPUT followed by

"Output file identifiers"

to enable the procedure for loading the files
to be provided by the compiler.

CLOSE INPUT followed by
or

OUTPUT "File identifier"

to enable the procedure for closing the files
to be provided by the compiler.
For a magnetic-tape file "NO REWIND"
may follow a file identifier to indicate that
the tape is not automatically to be rewound.

OBTAIN followed by

"Input file identifier"

which is used to obtain the next record from
a file which is set out in some standard format,
as on magnetic-tape files,

or, when it is desired to obtain the next record
only if it is of a specific type, by

"Record identifier"

If the next record is not of the specific type
no record is obtained.

NOTE. In either case, if action is required
only when the record is of a given type, a
conditional command may follow with a
condition as follows.

"IF Record identifier"

READ followed by

"File identifier"

which is used to obtain the next record from

167

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

Principles for a procedure language—CLEO

a file where the format varies according to
the application, such as on paper tape or
punched cards,

or, when it is known the next record is of a
specific type, by

"Record identifier"

which ensures the record is treated as being
of this type.
NOTE. In the former case a subsequent
command may be made conditional on the
record being of the type required.

SKIP followed by

"File identifier

WHEN Conditional expression Command"

This enables types of records on which no
action is required to be skipped, and appro-
priate action to be taken on those where it is
required.
The conditional expression may be of any
form, multiple or compound, including

"WHEN Record identifier"

to ensure appropriate action when the record
obtained is of the type shown,

"WHEN Identifier = / "

where / is a literal
to ensure appropriate action when a specific
record is reached.
A list of "WHEN" clauses may also be used.
Any type of command may be used in the

"WHEN" clause, including a further "SKIP"
in order to find a lower-level identifier.

NOTE. Where there are more "WHEN"
clauses than one, then it is understood that
when any condition reached in the list is
satisfied, the command corresponding to this
is executed irrespective of later conditions
that might be satisfied.

COPY followed by

"File identifier TO File identifier"

Again as in the case of "SKIP" this may be
followed by conditional clauses to arrange an
alternative course of action when one or
more conditions are satisfied.

NOTE. The same arrangement of multiple
"WHEN" clauses applies.

FILE followed by

"Output file identifier:

List of output identifiers FROM List of input
and internal identifiers"

which is used to assemble and record infor-
mation on a file which is set out in some

standard format, as for instance on magnetic-
tape files.

There may in fact be more than one pair of
lists in which case the second and subsequent
pairs are each prefaced by "AND."

In order to cope with the case where an inde-
terminate number of items has to be filed,
the command may be limited by a clause
"UNTIL Conditional expression"

where the condition indicates that no further
items are to be filed when the condition is
satisfied, e.g. if the end marker of a list of
items has been reached.

If it is desired that the final item when the
condition is satisfied is also to be filed, the
clause
"UNTIL Conditional expression
INCLUSIVE"

is used.
NOTE. The lists of identifiers may be of
items, groups of items, records, etc. One
identifier on the output list may be related
either to one on the input or internal list or
to several of these.

WRITE followed by
"Identifier of output file:

List of identifiers FROM List of identifiers"

which is used to assemble and record infor-
mation on a file where the format varies
according to the application, such as on paper
tape or punched cards. The arrangements
for this are exactly as for FILE.

PRINT followed by

"Identifier of printer file:

List of identifiers FROM List of identifiers"

which is used to assemble and print infor-
mation.

The arrangements for this are the same as for
FILE except that a paper throw may be
indicated by the insertion of " : " after the
last item to be assembled for any line.

MOVE followed by

"List ofidentifiers TO List of identifiers"

which is used to move information from one
set of input or internal items to an internal
set.
The same arrangements apply as for FILE.

CLEAR followed by
"Identifier."

This is used in order to assign zero to numeric
items and blank to alphabetical items of the
identifier.

168

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

Principles for a procedure language—CLEO

2. Data and result descriptions

2.1. File heading sheets

For each file the programmer completes a heading sheet
to give basic information about the file.

(a) For magnetic-tape files (and for internal records)

(i) Whether input or output
(ii) Block size
(iii) List of records in the file
(iv) List of control totals to be kept for reconciliation

purposes.

(b) For a paper-tape file
The same as for magnetic tape and, in addition, whether
there is to be a fixed or variable field format.

(c) For a punched-card file
The same as for paper tape except that the block size
is not required.

(d) For a line printer
(i) list of records in the file;
(ii) number of lines in the record;

(iii) type of printer to be used.

2.2. File description sheets
For each file there is a description sheet that sets out in

columns for each identifier to be found in the file particulars
appropriate to that identifier. These particulars for magnetic
tape, paper tape, punched cards and line printer are given
below.

(a) For magnetic-tape file (and for internal records)

(i) the "identifier" by which items and groups of
items are referred to in the commands;

(ii) an integer representing the "level" down to which
the file must be broken to read this identifier; the
main subdivisions of the file have the level 1
and as the information is broken down to smaller
pieces the level numbers increase until the "items"
that relate to the lowest entity of information are
reached;

(iii) extent of a record, to show how much information
is to be obtained in response to an OBTAIN
command. "R" is put in this column for the
highest level identifier of the record, so that all
information that follows is obtained up to the
point when an identifier of equal or higher level
is reached;

(iv) occurrence, to indicate the actual or maximum
number of times this item, or group of items, may
occur;

(v) representation, to indicate the manner in which an
item of information is expressed: numeric, alpha
or alphanumeric; decimal, sterling or binary;
floating point;

(vi) position of integer point for each numeric item;
(vii) size of each item, indicating the actual or maximum

number of digits or characters;
(viii) any rounding required;
(ix) whether any group of items is identical in descrip-

tion with some other group already described.

(b) For a paper-tape file

The same as for magnetic tape and, in addition:

(i) radix pattern for each numeric item in a notatiou
other than decimal, sterling, or binary;

(ii) whether an item may be signedj and the form of
representation of sign if this is special;

(iii) criteria by which particular types of record may
be recognized;

(iv) if the information is to be in fixed field form and
is to be printed off-line, e.g. on a teleprinter, the
editing information as under (v) and (vi) for a line
printer.

(c) For a punched-card file

As for paper-tape file and, in addition:

(i) column position on card of last character of each
item;

(ii) spacing between repeated items or groups.

(d) For a line printer

As for magnetic tape but, in addition:

(i) radix pattern, as for paper tape;
(ii) indication of signed items, as for paper tape;

(iii) column position on paper of last character of each
item;

(iv) line position for each group of items that con-
stitute a line, or spacing from previous line;

(v) whether non-significant zeros are to be suppressed;
(vi) special editing arrangements, e.g. insertion of

integer points, £, s, d, and other symbols, spaces,
etc.

3. Overlaying of information
To provide for cases where the job does not require particular
steps in the procedure or pieces of information after given
points in the procedure have been reached, an Overlay State-
ment is prepared to provide the means for overlaying in the
computer store. This statement also details pieces of infor-
mation which are alternates to each other in that one and
only one of the pieces may be present at any time. On the
Overlay Statement are shown:

(i) details of those steps and records which are grouped
into segments which may overlay each other, together
with the point in the procedure at which the overlaying
may take place;

(ii) identifiers of the sets of items, of groups, and of
records which are alternates to each other.

169

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/164/424305 by guest on 13 M
arch 2024

