
COBOL
By R. F. Clippinger

The description of COBOL as of late 1960 is well
handled by an article by Jean Sammet in the Annual
Review in Automatic Programming, Volume 2. This
discussion will, therefore, stress developments since that
time. The period from March 1960 to May 1961 was
used by the COBOL Committee to clarify COBOL 60
and remove ambiguities as far as possible. This
resulted in the publication of the second COBOL report
entitled: "COBOL Report to Conference on Data
Systems Languages, including Revised Specifications
for a Common Business Oriented Language (COBOL)
for Programming Electronic Digital Computers, Depart-
ment of Defense 1961," and is available from the
Superintendent of Documents, US Government Printing
Office, Washington 25, DC, price SI.25.

By December 1961 there were twelve manufacturers
in the United States and three foreign manufacturers
committed to prepare compilers for thirty-five makes
and models of computers. These compilers vary in
regard to the faithfulness with which they have attempted
to implement the required features, and in the extent
to which they have proceeded to implement certain
elective features. A few of these compilers are in
systems test (RCA, Sperry Rand, Air Force Logistics
Command, National Cash Register, IBM 1410), others
are in various stages of development. The total volume
of completely checked-out applications running today
in COBOL language is negligible, representing less than
1 % of the great volume of data processing going on in
the United States today. A fairly significant number
of computer users are committed to the use of COBOL,
many of them in blind acceptance of all the advantages
of compilers without any understanding of the limita-
tions upon these advantages. There has already been a

certain amount of vivid disappointment on the part of
some of the earliest users, because they were expecting
too much, and the compilers they were working with
were not working well yet and had not been improved
to the extent possible. Only heavy-volume usage of
COBOL, with compilers that have been tuned up to a
much higher level of efficiency, will produce the per-
spective which will enable us to evaluate with certainty
its success. This heavy volume will not be available
before the end of 1963.

Meanwhile, assuming the ultimate success of COBOL,
the COBOL Committee has proceeded, in the period
from May 1961 to April 1962, to work on various
extensions to COBOL, three of which have now been
adopted, and are in final editing, getting ready for
publication in July 1962 as "COBOL 61 extended."
The present paper makes no attempt to provide an
authoritative description of these extensions, which
will be defined by the July official publication. The
only purpose here is to give general information about
the nature of these changes.

Generalized arithmetic verbs
The five arithmetic verbs, ADD, SUBTRACT,

MULTIPLY, DIVIDE and COMPUTE, have all been
expanded to permit the specification of two or more
result fields, each with its own ROUNDED option.
This expansion applies to both result fields used as
operands, and to result fields not used as operands (i.e.
following the word GIVING).

The expanded formats of the ADD, MULTIPLY,
and COMPUTE verbs with multiple result fields not
used as operands, are as follows:

ADD
fliteral-1 riiteral-2 literal-3

data-name-!
GIVING

MULTIPLY (f r a M ,1 57^data-name-lj GIVING data-name-m

\data-name-l/ '\data-name-2J |_'

data-name-m [ROUNDED] [, data-name-« [ROUNDED]. . .]

[; ON SIZE ERROR any imperative statement]

(literal-1
a-name-2j

[ROUNDED] [, data-name-« [ROUNDED]. . .] [; ON SIZE ERROR any imperative statement]

f FROM]
C O M P U T E data-name-w [ROUNDED] [, data-name-« [R O U N D E D] . . .] \ = \

f data-name-A: 1
•j literal-1 Y [; O N SIZE ERROR any imperative statement]
I formula J

{EQUALS}

177

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/177/424329 by guest on 19 April 2024

COBOL
The SUBTRACT format differs from the ADD

format only in that a "FROM data-name-/:" appears
in front on the word "GIVING" and the DIVIDE
format differs from the MULTIPLY format only in
using the word "INTO" instead of "BY." In each case
the expansion lies in allowing "data-name-w . . ." along
with "data-name-w" as a result field.

The expanded formats of the ADD and MULTIPLY
verbs with multiple result fields used as operands are as
follows:

developments

(INPUT PROCEDURE IS section-name-1
I THRU section-name-2
{USING file-name-1

(OUTPUT PROCEDURE IS section-namer3"
< THRU section-name-4
[GIVING file-name-2

ADD
Hiteral-l \ f Jliteral-2 ^ "1
\data-name-lj [_' \data-name-2J ' ' ' J TO data-name-w

[ROUNDED] [, data-name-/j [ROUNDED]. ..] [; ON SIZE ERROR any imperative statement]

MULTIPLY {date^name-lf B Y data-name-w [ROUNDED] [, data-name-«]

[ROUNDED] . . .] [; ON SIZE ERROR any imperative statement]

The SUBTRACT format differs from the ADD
format in the above case only in using the word "FROM"
instead of "TO." The DIVIDE format differs from the
MULTIPLY format in the above case only in using the
word "INTO" instead of "BY." Again the expansion
lies in allowing "data-name-n . . ." along with "data-
name-m" as the final operand and result field.

A further extension to COBOL in the arithmetic area
involves the use of the CORRESPONDING concept
in ADD and SUBTRACT statements. The format is as
follows:

ADD CORRESPONDING data-name-1 TO data-
name-2 [ROUNDED]
[; ON SIZE ERROR any imperative statement]

Data-name-2 is a result field used as an operand. In
the SUBTRACT format, "TO" is replaced by "FROM."
The meaning of the "CORRESPONDING" is that an
individual ADD statement is performed for each pair
of numeric fields, subordinate to data-name-1 and
data-name-2, which have matching names. Two
vectors, therefore, can be added by one ADD
CORRESPONDING statement.

Sorting

Influenced to a considerable extent by FACT and
by Honeywell, the COBOL Committee has extended
COBOL 61 to include sorting. The changes required
to incorporate sorting affect the data division and the
procedure division. The form of a sort statement in a
COBOL program will be:

SORT file-name ON
/DESCENDING!
{ASCENDING j

data-name-1 [, data-name-2 . . .]
(DESCENDING]
{ASCENDING J

KEY

The KEY clauses permit the specification of any
number of sort keys, and each key can be sorted from
low to high value (ASCENDING) or from high to
low value (DESCENDING).

The USING and GIVING options allow different
names to be assigned to a file before and after sorting.
The INPUT PROCEDURE allows any amount of
modification, selection or creation of records during
the initial pass of the sort operation, and the OUTPUT
PROCEDURE allows similar modification and selection
during the final merge pass of the sort operation. The
inclusion of the sort verb in COBOL eliminates the
necessity to leave the COBOL language and enter some
local language, and thus constitutes a giant step further
towards commonality.

Report writer

Report writing is another extension of COBOL which
was heavily influenced by FACT, though FACT was
not the only influence since SURGE and other pro-
gramming systems have incorporated report writers.
The report writer is a major extension of COBOL which
will greatly facilitate for the programmer the job of
creating reports. There are approximately fifty pages
of new material that will be inserted in the new July 62
COBOL Specifications manual to define the report writer.
The Report Section constitutes a fourth section in the
Data Division. Three new verbs are provided in the Pro-
cedure Division: INITIATE, GENERATE, TER-
MINATE. These verbs are to report writing as OPEN,
WRITE, CLOSE are to file processing. Thirty-seven
new reserved words are introduced by the report writer
—such words as COLUMN, CONTROLS, DETAIL,
FINAL, FOOTING, GROUP, HEADING, LINE
COUNTER, PAGE, PAGE COUNTER, REPORT,
are suggestive. Reports are named in the file descrip-
tion entries or described in the Report Section. Cross-

178

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/177/424329 by guest on 19 April 2024

COBOL developments

referencing between the description of the report,
description entry and the associated file description
entry is handled by a clause of the form:

REPORT{S) \ * data-name-1 [; data-name-2 . . .]

[; LINE NUMBER . . .]
[; POINT LOCATION]
[; SIGNED]
\; SOURCE.. .)
i ; SUM...
I; VALUE...

[; PICTURE]
[; RESET.. .]
[•SIZE...]
[: USAGE...]

placed in the file description entry. The approach
taken by the COBOL report writer is to separate the
physical aspects of the report format from the con-
ceptual characteristics of the data to be included in the
report. The former are described by RD entries
(Report Name Description Entry) of the form:

Option 1:
RD data-name-1 [WITH CODE mnemonic-name-1]

COPy library-name

Option 2:
RD data-name-1 [WITH CODE mnemonic-name-1]
[; CONTROL (S) . . .] [; PAGE LIMIT (S) . . .]

which name the report and determine the structure of
the page, giving the number of physical lines per page
and the limitations for presenting specified headings,
footings, and details within a page structure. Data
items which act as control features during presentation of
the report are specified. The form of the CONTROL(S)
clause is:

A report group may be an elementary item, a line of
print, or a series of lines, hence the use of a level number
and a TYPE description which clarifies whether the
report group is a report heading, page heading, over-
flow heading, control heading, detail line, control
footing line, overflow footing, page footing, or report
footing. The Ic^el number gives the depth of the group;
the TYPE description defines the type of group. Any
groups belonging to other groups have the same TYPE
description. Report groups are created in object time
as a result of the use of the verb GENERATE in the
Procedure Division. Many of the expressions used in
the report group description entry are sufficiently sug-
gestive that one can guess their use. Space does not
permit elaboration at this point. Suffice it to say that
everything needed to create a report of considerable
flexibility, including the generation of lines and tables,
tabulated fields, headings, footings, etc., is available.

It is expected that users of COBOL 61 will be pleased
that COBOL 61 extended now includes the SORT
Verb and the Report Writer.

; CONTROL(S) | A R E | I data-name-1 [, data-name-2 . . .] [, data-name-/*] |

I FINAL , data-name-1 [, data-name-2 . . .]
[[, data-name-n]

and the form of the PAGE LIMITS clause is:

; PAGE LIMIT(S) | A R E } integer-1

, [HEADING integer-2] [, FIRST DETAIL integer-3]
[, LAST DETAIL integer-4] [, FOOTING integer-5]^

LINES

The report group description entries have the following
format:

Option 1:
nn [data-name-1] COPY data-name-2

[FROM LIBRARY]

Option 2:
nn [data-name-1]

[;LINE NUMBER...]
[•SIZE...]
[; USAGE . . .]

[; CLASS . ..]
[; NEXT GROUP]
; TYPE.. .

Option 3:
nn [data-name-1] [; CLASS . ..]

[; COLUMN NUMBER...] [; editing clauses]
[; GROUP INDICATE] [; JUSTIFIED]

Next stage of COBOL development
The COBOL Committee has determined that there

will not be a publication of the language specifications
called COBOL 62. During the rest of 1962, part of the
committee will turn its attention back on COBOL 61
extended, and revise, polish, remove ambiguities, and
clarify questions of interpretation. This mair.ienance
review will lead to what will be called COBOL 63,
which should be basically compatible with COBOL 61
extended. Meanwhile, a few more extensions will be
worked on, notably table handling and possibly
provision for the use of bulk files.

Elective features
In the COBOL 61 Manual, some features of the

language are designated "elective" (as opposed to
"required") meaning that an implementator can post-

179

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/177/424329 by guest on 19 April 2024

COBOL developments

pone the implementation of these elements in order to
get a COBOL system "on the air." The elements of
required COBOL thus define the minimum language
acceptable in order to consider a system as a COBOL
compiler.

Some users tend to want every elective feature changed
in status, to become a required feature. Others realize
that the inclusion of more features in a compiler auto-
matically make the compiler larger, which has the
tendency to make it compile more slowly. It is, of
course, much easier to implement the most elaborate
forms of COBOL on machines of large capacity and
high speed. It is probably not reasonable to implement
some of the elective features on the smallest computers for
which COBOL will be provided. It is anticipated, there-
fore, that certain electives will change status, but not neces-
sarily all of them, and that the changes of status will come
slowly. Clearly any statement of this form represents the
author's opinion which may not be shared by others.

Honeywell COBOL

Honeywell is hard at work implementing COBOL for
the 400. The complement of equipment which it
specifies is one Card Reader, four Magnetic Tapes,
2,048 words of Core Memory, and one Printer; the
Compiler will take advantage of additional tape and
memory. Initially the compiler will implement all
required and many elective features of COBOL, and
will eventually implement the extensions discussed in
this paper. Honeywell is about to begin the imple-
mentation of COBOL for the 800 and 1,800. Since it
is doing COBOL for three machines, it has chosen an
implementation technique rather different from that
used for FACT—a technique with which we expect to
shorten delivery time and reduce cost to us for the
compiler development. We prefer to wait until the
compilers are working before we discuss these
techniques.

Information algebra

By R. F. Clippinger

COBOL was developed by the COBOL Committee,
which is a subcommittee of a larger committee called
the "Conference on Data System Languages" which
has an Executive Committee and, in addition to the
COBOL Committee, a Development Committee. Within
the Development Committee are two working groups
called the Language Structure Group (whose members
are Roy Goldfinger of IBM, Robert Bosak of SDC,
Carey Dobbs of Sperry Rand, Renee Jasper of Navy
Management Office, William Keating of National Cash
Register, George Kendrick of General Electric, and
Jack Porter of Mitre Corporation), and the Systems
Group. Both of these groups are interested in going
beyond COBOL to further simplify the work of problem
preparation. The Systems Group has concentrated on
an approach which represents a generalization of
TABSOL in GE's GECOM. The driving force behind
this effort is Burt Grad.

The Language Structure Group has taken a different
approach. It notes that FACT, COBOL, and other
current data-processing compilers are "procedure-
oriented," that is, they require a solution to the data-
processing problem to be worked out in detail, and they
are geared to the magnetic-tape computer and assume
that information is available in files on magnetic tape,
sorted according to some keys. The Language Structure
Group felt that an information algebra could be defined
which would permit the definition of a data-processing
problem without postulating a solution. It felt that if

this point were reached, then certain classes of problems
could be handled by compilers that would, in effect,
invent the necessary procedures for the problem solution.
One sees a trend in this direction in FLOW-MATIC,
COBOL, Commercial Translator, and FACT, if one
notes that a sort can be specified in terms of the input
file and the output file, with no discussion of the tech-
nique required to create strings of ordered items and
merge these strings. Similarly, a report writer specifies
where the information is to come from and how it is to
be arranged on the printed page, and the compiler
generates a program which accomplishes the purpose
without the programmer having to supply the details.
The FACT update verb specifies a couple of input files
and criteria for matching, and FACT generates a pro-
gram which does the housekeeping of reading records
from both files, matching them and going to appropriate
routines depending on where there is a match, an extra
item, a missing item, etc. A careful study of existing
compilers will reveal many areas where the compiler
supplies a substantial program as a result of having
been given some information about data and inter-
relationships between the data. The Language Structure
Group has, by no means, provided a technique of
solving problems once they are stated in abstract form.
Indeed, it is clear that this problem is not soluble in
this much generality. All the Language Structure Group
claims is to provide an information algebra which may
serve as a stimulus to the development of compilers

180

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/177/424329 by guest on 19 April 2024

