
COBOL developments

pone the implementation of these elements in order to
get a COBOL system "on the air." The elements of
required COBOL thus define the minimum language
acceptable in order to consider a system as a COBOL
compiler.

Some users tend to want every elective feature changed
in status, to become a required feature. Others realize
that the inclusion of more features in a compiler auto-
matically make the compiler larger, which has the
tendency to make it compile more slowly. It is, of
course, much easier to implement the most elaborate
forms of COBOL on machines of large capacity and
high speed. It is probably not reasonable to implement
some of the elective features on the smallest computers for
which COBOL will be provided. It is anticipated, there-
fore, that certain electives will change status, but not neces-
sarily all of them, and that the changes of status will come
slowly. Clearly any statement of this form represents the
author's opinion which may not be shared by others.

Honeywell COBOL

Honeywell is hard at work implementing COBOL for
the 400. The complement of equipment which it
specifies is one Card Reader, four Magnetic Tapes,
2,048 words of Core Memory, and one Printer; the
Compiler will take advantage of additional tape and
memory. Initially the compiler will implement all
required and many elective features of COBOL, and
will eventually implement the extensions discussed in
this paper. Honeywell is about to begin the imple-
mentation of COBOL for the 800 and 1,800. Since it
is doing COBOL for three machines, it has chosen an
implementation technique rather different from that
used for FACT—a technique with which we expect to
shorten delivery time and reduce cost to us for the
compiler development. We prefer to wait until the
compilers are working before we discuss these
techniques.

Information algebra

By R. F. Clippinger

COBOL was developed by the COBOL Committee,
which is a subcommittee of a larger committee called
the "Conference on Data System Languages" which
has an Executive Committee and, in addition to the
COBOL Committee, a Development Committee. Within
the Development Committee are two working groups
called the Language Structure Group (whose members
are Roy Goldfinger of IBM, Robert Bosak of SDC,
Carey Dobbs of Sperry Rand, Renee Jasper of Navy
Management Office, William Keating of National Cash
Register, George Kendrick of General Electric, and
Jack Porter of Mitre Corporation), and the Systems
Group. Both of these groups are interested in going
beyond COBOL to further simplify the work of problem
preparation. The Systems Group has concentrated on
an approach which represents a generalization of
TABSOL in GE's GECOM. The driving force behind
this effort is Burt Grad.

The Language Structure Group has taken a different
approach. It notes that FACT, COBOL, and other
current data-processing compilers are "procedure-
oriented," that is, they require a solution to the data-
processing problem to be worked out in detail, and they
are geared to the magnetic-tape computer and assume
that information is available in files on magnetic tape,
sorted according to some keys. The Language Structure
Group felt that an information algebra could be defined
which would permit the definition of a data-processing
problem without postulating a solution. It felt that if

this point were reached, then certain classes of problems
could be handled by compilers that would, in effect,
invent the necessary procedures for the problem solution.
One sees a trend in this direction in FLOW-MATIC,
COBOL, Commercial Translator, and FACT, if one
notes that a sort can be specified in terms of the input
file and the output file, with no discussion of the tech-
nique required to create strings of ordered items and
merge these strings. Similarly, a report writer specifies
where the information is to come from and how it is to
be arranged on the printed page, and the compiler
generates a program which accomplishes the purpose
without the programmer having to supply the details.
The FACT update verb specifies a couple of input files
and criteria for matching, and FACT generates a pro-
gram which does the housekeeping of reading records
from both files, matching them and going to appropriate
routines depending on where there is a match, an extra
item, a missing item, etc. A careful study of existing
compilers will reveal many areas where the compiler
supplies a substantial program as a result of having
been given some information about data and inter-
relationships between the data. The Language Structure
Group has, by no means, provided a technique of
solving problems once they are stated in abstract form.
Indeed, it is clear that this problem is not soluble in
this much generality. All the Language Structure Group
claims is to provide an information algebra which may
serve as a stimulus to the development of compilers

180

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/180/424335 by guest on 19 April 2024

Information algebra

with somewhat larger abilities to invent solutions in
restricted cases. The work of the Language Structure
Group will be described in detail in a papier which will
appear shortly in the Communications of the ACM.

Basic concepts
The algebra is built on three undefined concepts:

ENTITY, PROPERTY and VALUE. These concepts
are related by the following two rules which are used
as the basis of two specific postulates:

(a) Each PROPERTY has a set of VALUES asso-
ciated with it.

(b) There is one and only one VALUE associated
with each PROPERTY of each ENTITY.

The data of data processing are collections of VALUES
of certain selected PROPERTIES of certain selected
ENTITIES. For example, in a payroll application, one
class of ENTITIES are the employees. Some of the
PROPERTIES which may be selected for inclusion are
EMPLOYEE NUMBER, NAME, SEX, PAY RATE,
and a payroll file which contain a set of VALUES of
these PROPERTIES for each ENTITY.

Property spaces
Following the practice of modern algebra, the Infor-

mation Algebra deals with sets of points in a space. The
set of VALUES is assigned to a PROPERTY that is
called the PROPERTY VALUE SET. Each PRO-
PERTY VALUE SET contains at least two VALUES U
(undefined, not relevant) and 0 (missing, relevant, but
not known). For example, the draft status of a female
employee would be undefined and not relevant, whereas
if its value were missing for a male employee it would
be relevant but not known. Several definitions are
introduced:

(1) A co-ordinate set (Q) is a finite set of distinct
properties.

(2) The null co-ordinate set contains no properties.
(3) Two co-ordinate sets are equivalent if they contain

exactly the same properties.
(4) The property space (P) of a co-ordinate set (0 is

the cartesian product P = F, x V2 X V3x ... xVn

where F,- is the property value set assigned to the
ith property of Q.
Each point (p) of the property space will be repre-
sented by an n-tuple p = (a,, a2, a3,..., an), where
a-, is some value from V,. The ordering of properties
in the set is for convenience only. If n = 1, then
P = K,. If n = 0, then P is the Null Space.

(5) The datum point (d) of an entity (e) in a
property space (P) is a point of P such that if
d = (a,, a2, a3, . . ., an), then a,- is the value
assigned to e from the /th property value set of P
for / = 1, 2, 3 , . . ., n. (d) is the representation of
(e) in (P). Thus, only a small subset of the points
in a property space are datum points. Every
entity has exactly one datum point in a given
property space.

Lines and functions of lines
A line (L) is an ordered set of points chosen from P.

The span («) of the line is the number of points com-
prising the line. A line L of span n is written as:
L = (pu p2,---,Pn)- The term line is introduced to
provide a generic term for a set of points which are
related. In a payroll application the datum points might
be individual records for each person for five working
days of the week. These five records plotted in the
property space would represent a line of span five.

A function of lines (FOL) is a mapping that assigns
one and only one value to each line in P. The set of
distinct values assigned by an FOL is the value set of
the FOL. It is convenient to write an FOL in the
functional form f(X), where / is the FOL and X is the
line. In the example of the five points representing work
records for five days work, a FOL for s ich a line might
be the weekly gross pay of an individual, which would
be the hours worked times payrate summed over the
five days of the week. An Ordinal FOL (OFOL) is an
FOL whose value set is contained within some denning
set for which there exists a relational operator ^ which
is irreflexive, asymetric, and transitive. Such an operator
is "less than" on the set of real numbers.

Areas and functions of areas
An area is any subset of the property space P; thus

the representation of a file in the property space is an
area. A function of an area (FOA) is a mapping that
assigns one and only one value to each area. The set
of distinct values assigned by an FOA is defined to be
the value set of the FOA. It is convenient to write an
FOA in the functional form f[X), where / is the FOA
and X is the area.

Bundles and functions of bundles
In data-processing applications, related data from

several sources must be grouped. Various types of
functions can be applied to these data to define new
information. For example, files are merged to create a
new file. An area set /A of order n is an ordered «-tuple
of areas (Au A2,. . ., An = I A). Area set is a generic
term for a collection of areas in which the order is
significant. It consists of one or more areas which are
considered simultaneously; for example, a transaction
file and master file from an area set of order 2. Definition:
The Bundle B = B(b, /A) of an area set /A for a selection
OFOL b is the set of all lines L such that if

(a) /A = (AuA2,...,An)and
(b) L = (/>,, p2,..., pn), where p-, is a point of At for

i = 1,2,. . ., n,

then b(L) = True.
A bundle thus consists of a set of lines each of order n

where n is the order of the area set. Each line in the
bundle contains one, and only one, point from each
area. The concept of bundles gives us a method of
conceptually linking points from different areas so that
they may be considered jointly. As an example, consider

181

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/180/424335 by guest on 19 April 2024

Information algebra

two areas whose names are "Master File" and "Trans-
action File," each containing points with the property
Part Number. The bundling function is the Part
Number. The lines of the bundle are the pairs of points
representing one Master File record and one Trans-
action File record with the same partner. A function
of a bundle (FOB) is a mapping that assigns an area to
a bundle such that

(a) there is a many-to-one correspondence between
the lines in the bundle and the points in the area;

(b) the value of each property of each point in the
area is defined by an FOL of the corresponding
line of the bundle;

(c) the value set of such an FOL must be a subset of
the corresponding property value set.

The function of a bundle assigns a point to each line
of the bundle; thus a new Master File record must be
assigned to an old master file record and a matching
transaction file record.

An FOB may be expressed in three equivalent ways:

(a) F = (/ i , / 2 > . . . , / * , . . . , / „)
(b) F=(q[= / , , . . ., q'k = fk, . . ., qm = / J
(c)

Qm Jm<

where F is the FOB, q'k is the kth property for points
in the area assigned by the FOB, m is the number of
properties, andj^ is a function of the q,j for / = 1, 2 .. ., n
and/ = 1, 2 . . ., m, where qu is the/th property of the
rth area of the area set: n is the span of the lines com-
prising the bundle. In form (a) the / corresponding to
every q' must be specified. In forms (b) and (c) any
expression q'k= fk may be missing, in which case q'k = qnk
will be understood, where qnk denotes the value of the
property qk for points in the «th area, i.e. the area
which contains the last point of each line. If none of
the / ' s is specified, i.e. F == (), then q'k = qnk for
k = 1, 2, . . ., m. The area A assigned by an FOB F
to the bundle B may be expressed as either:

A = F(B)
A = F(b, I A)
A = F(b,AuA2, . . .,An).

In summary then, bundles and functions of bundles
permit the grouping together of one record from each
of several files, and the computation of some new record
as a function of the grouping records.

dumps and functions of glumps

If A is an area and g is an FOL defined over lines of
span 1 in A, then a Glump G = G(g, A) of an area A
for an FOL g is a partition of A by g such that an ele-
ment of this partition consists of all points of A that
have identical values / or g. The function g will be

called the Glumping Function for G. The concept of a
glump does not imply an ordering either of points
within an element, or of elements within a glump. As
an example, let a back order consist of points with the
three non-null properties: Part Number, Quantity
Ordered, and Date. Define a glumping function to be
Part Number. Each element of this glump consists of
all orders for the same part. Different glump elements
may contain different numbers of points. A function
of a glump (FOG) is a mapping that assigns an area to
a glump such that

(a) there is a many-to-one correspondence between
the elements of the glump and the points of the
area;

(b) the value of each property of a point in the
assigned area is defined by an FOA of the corre-
sponding element in the glump;

(c) the value set of the FOA must be a subset of the
corresponding property value set.

Consider again the back order file and include unit
price with each part number. We can now define an
area that is an FOG of the back order file in which each
point has three non-null properties: Part Number,
total back order quantity for each part, and total cost
of this quantity. An FOG may be expressed in three
equivalent ways

(b) H = {q[=f*qi=L ...,qk = fk)

[9k=fk
where H is the FOG

fi is an FOA
q[is the /th property for points in the area
k is the number of properties.

In form (a), the / corresponding to every q' must be
specified. In forms (Z>) and (c), any expression q\ = / ,
may be missing, in which case q\ = U will be understood.

Ordering of areas
Introducing area gave us a concept analagbus to that

of files. Bundling gave us functions similar to matching.
Glumping gave us a way of handling operations such as
summarizing within one file. In all three of these
concepts, the notion of "order" was ignored. However,
in some applications order is required. An Ordering
O(f, A) of an area A by an OFOL / of span 1 is a set
of points (j>i, p2, . . -,pn) chosen from A such that the
set exhausts A and either

AP>) <AP,+ i) or/O,) =fiPi+i)-

Operations of FOL's
For convenience, a series of operations are defined,

namely concatenation, addition, multiplication, division,

182

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/180/424335 by guest on 19 April 2024

Information algebra

negation, or/and, not, equals, less than, if—otherwise.
For example, concatenation is defined as follows:
Concatenation (o) is a binary operator with properties
that:

(a) If/, 0/2 =fi, then, for any L,/3(L) is the couple
/,(L),/2(L).

(b) If / , o (/> o /,) = /», then / ,(£) is the triple

(c) / , o (/2 0/3) = (/, o/2) 0/3 = / , 0/2 0/3.
(J) In general/, 0/2 # / ; 0/1.

The concatenation function is used for adjoining values
of distinct properties, such as considering several sort
keys side by side as one larger sort key. The Language
Structure Group has used the Information Algebra in

its present form to state several simplified data-pro-
cessing problems, such as a payroll problem, and has
also used the Algebra to define the concept of updating
a file by several other files. It has noted that the infor-
mation contained in a file may be represented in a
property space in different ways depending on the
choice of entities, and has shown that in certain cases
functions of glumps and functions of bundles may be
used to represent one area set in terms of another, and
vice versa. The Language Structure Group plans to
search for classes of problems which can be stated in
terms of the Information Algebra, for which it can
visualize automatic programs which could invent solu-
tions to the problem and generate machine codes to
influence the solution.

Discussion

Session 4: 18 April 1962

The Chairman (Dr. M. V. Wilkes, University Mathematical
Laboratory, Cambridge): 1 have been asked to report briefly
on the International Symposium on Symbolic Languages for
Data Processing which was held recently in Rome (26-31
March 1962). This Symposium was organized by the Inter-
national Computation Centre, which has just come into
official existence after existing for some years in provisional
form. The treaty establishing the centre was negotiated some
years ago, but it has only recently been ratified by the mini-
mum of ten Governments necessary for it to come into force.

The general situation in programming languages reminds
me very strongly of the situation in computers themselves
just ten years ago. At that time a few digital computers were
working and others were in course of construction. Many
people were fascinated by the new ideas behind the logical
design of computers. It sometimes seemed that there was
more talk than progress. So it is now with programming
languages. A number of pioneering systems are in operation,
but work on really sophisticated systems is only beginning
and it will be some years before they are fully developed.

The Symposium was much dominated by ALGOL—perhaps
too much so—and there was plenty of that type of arguing
that one has come to associate with gatherings of ALGOL
enthusiasts. The result was a background of controversy
which resulted in there being, I thought, surprisingly little
free discussion of programming languages in general, what
features they should have, and what they are going to be like
in the future.

It was clear that in one respect some advance in thinking
had taken place since the ALGOL report was written, namely
in regard to how a language should be specified. This
morning Mr. Glennie referred to the fact that when FOR-
TRAN existed for one machine only, the compiler constituted
in effect the definition of the language, but that more formal
treatment was necessary when the language came to be
implemented for a number of machines. This brings out
what I think has not always been clearly realized, that the
defining of a language and the writing of a compiler are, in
a way, similar operations. Thus, while the definition of a
language should not be a compiler for any actual machine,
there is much to be said for the view that a definition should

be constructed along the same lines as a compiler. In
ALGOL this was not done, and a sharp distinction was made
between syntax and semantics. Many people now feel that
there should not be two separate procedures, one for finding
out whether a given piece of discourse is legal, and the other
for finding out what it means, but that there should be one
procedure only; this would either lead to the statement that
the discourse means nothing, or would yield its meaning.

The discussions about ALGOL brought out two things
quite clearly. In the first place ALGOL is incomplete in a
number of respects. It lacks input and output facilities, and
is not sufficiently rich in means for data description; one
cannot, for example, declare double-length numbers, or
manipulate sets. This need for extension is, I think, generally
recognized. The other point relates to the efficiency of the
object program, and here there is much controversy. Com-
pared with other automatic-programming systems, object
programs generated from ALGOL turn out to be rather long,
and in view of certain features of the language, there is little
that the writer of a compiler can do about this. A number
of people, including myself, believe that some changes will
have to be made in the language before it is acceptable for
general use in a busy computing centre.

Unfortunately, when the ALGOL Committee finished
their work in 1960, they did not set up any organization for
performing the routine maintenance necessary with any
programming language, or for developing and extending the
language. For some time there has been in existence a
movement to rectify this omission, and the matter had been
considered in the week before the Symposium by the Council
of the International Federation for Information Processing
(IFIP), of which The British Computer Society is a member.
The Council agreed that it would offer to set up a .vorking
party under IFIP auspices to take charge of the fi ture of
ALGOL. This offer was subject to the agreement of the
original ALGOL Committee, and it so happened that quite
a number of members of this Committee were present in
Rome and able to meet together. I am glad to say that the
IFIP proposal found acceptance, and the working party has
now been set up. It includes the original ALGOL Com-
mittee, or as many of them as are still active in the subject.

183

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/180/424335 by guest on 19 April 2024

