
Information algebra

negation, or/and, not, equals, less than, if—otherwise.
For example, concatenation is defined as follows:
Concatenation (o) is a binary operator with properties
that:

(a) If/, 0/2 =fi, then, for any L,/3(L) is the couple
/,(L),/2(L).

(b) If / , o (/> o /,) = /», then / ,(£) is the triple

(c) / , o (/2 0/3) = (/, o/2) 0/3 = / , 0/2 0/3.
(J) In general/, 0/2 # / ; 0/1.

The concatenation function is used for adjoining values
of distinct properties, such as considering several sort
keys side by side as one larger sort key. The Language
Structure Group has used the Information Algebra in

its present form to state several simplified data-pro-
cessing problems, such as a payroll problem, and has
also used the Algebra to define the concept of updating
a file by several other files. It has noted that the infor-
mation contained in a file may be represented in a
property space in different ways depending on the
choice of entities, and has shown that in certain cases
functions of glumps and functions of bundles may be
used to represent one area set in terms of another, and
vice versa. The Language Structure Group plans to
search for classes of problems which can be stated in
terms of the Information Algebra, for which it can
visualize automatic programs which could invent solu-
tions to the problem and generate machine codes to
influence the solution.

Discussion

Session 4: 18 April 1962

The Chairman (Dr. M. V. Wilkes, University Mathematical
Laboratory, Cambridge): 1 have been asked to report briefly
on the International Symposium on Symbolic Languages for
Data Processing which was held recently in Rome (26-31
March 1962). This Symposium was organized by the Inter-
national Computation Centre, which has just come into
official existence after existing for some years in provisional
form. The treaty establishing the centre was negotiated some
years ago, but it has only recently been ratified by the mini-
mum of ten Governments necessary for it to come into force.

The general situation in programming languages reminds
me very strongly of the situation in computers themselves
just ten years ago. At that time a few digital computers were
working and others were in course of construction. Many
people were fascinated by the new ideas behind the logical
design of computers. It sometimes seemed that there was
more talk than progress. So it is now with programming
languages. A number of pioneering systems are in operation,
but work on really sophisticated systems is only beginning
and it will be some years before they are fully developed.

The Symposium was much dominated by ALGOL—perhaps
too much so—and there was plenty of that type of arguing
that one has come to associate with gatherings of ALGOL
enthusiasts. The result was a background of controversy
which resulted in there being, I thought, surprisingly little
free discussion of programming languages in general, what
features they should have, and what they are going to be like
in the future.

It was clear that in one respect some advance in thinking
had taken place since the ALGOL report was written, namely
in regard to how a language should be specified. This
morning Mr. Glennie referred to the fact that when FOR-
TRAN existed for one machine only, the compiler constituted
in effect the definition of the language, but that more formal
treatment was necessary when the language came to be
implemented for a number of machines. This brings out
what I think has not always been clearly realized, that the
defining of a language and the writing of a compiler are, in
a way, similar operations. Thus, while the definition of a
language should not be a compiler for any actual machine,
there is much to be said for the view that a definition should

be constructed along the same lines as a compiler. In
ALGOL this was not done, and a sharp distinction was made
between syntax and semantics. Many people now feel that
there should not be two separate procedures, one for finding
out whether a given piece of discourse is legal, and the other
for finding out what it means, but that there should be one
procedure only; this would either lead to the statement that
the discourse means nothing, or would yield its meaning.

The discussions about ALGOL brought out two things
quite clearly. In the first place ALGOL is incomplete in a
number of respects. It lacks input and output facilities, and
is not sufficiently rich in means for data description; one
cannot, for example, declare double-length numbers, or
manipulate sets. This need for extension is, I think, generally
recognized. The other point relates to the efficiency of the
object program, and here there is much controversy. Com-
pared with other automatic-programming systems, object
programs generated from ALGOL turn out to be rather long,
and in view of certain features of the language, there is little
that the writer of a compiler can do about this. A number
of people, including myself, believe that some changes will
have to be made in the language before it is acceptable for
general use in a busy computing centre.

Unfortunately, when the ALGOL Committee finished
their work in 1960, they did not set up any organization for
performing the routine maintenance necessary with any
programming language, or for developing and extending the
language. For some time there has been in existence a
movement to rectify this omission, and the matter had been
considered in the week before the Symposium by the Council
of the International Federation for Information Processing
(IFIP), of which The British Computer Society is a member.
The Council agreed that it would offer to set up a .vorking
party under IFIP auspices to take charge of the fi ture of
ALGOL. This offer was subject to the agreement of the
original ALGOL Committee, and it so happened that quite
a number of members of this Committee were present in
Rome and able to meet together. I am glad to say that the
IFIP proposal found acceptance, and the working party has
now been set up. It includes the original ALGOL Com-
mittee, or as many of them as are still active in the subject.

183

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion {Session 4)

From the point of view of international organization, the
setting up of this working party represents a distinct step
forward.

In the meanwhile, a problem faces those who like the idea
of ALGOL, but find that it does not fully meet their require-
ments in its present form. We had an interesting lecture
from Dr. Schwartz (System Development Corporation), who
told us that his group was originally in very much this position.
They decided that they would themselves modify and extend
ALGOL, and in this way they created the language JOVIAL.
A JOVIAL program looks very much like an ALGOL
program, but the language is much richer, particularly in
data description. To go ahead independently in this way
is one means of achieving progress, and I would say to
people who are at the present time considering the imple-
mentation of ALGOL, that it would be a mistake to adhere
slavishly to a language as laid down in the report; it would
be quite proper to extend and adapt it as seemed necessary,
and a language so created might well prove to be a more
valuable commodity than the original.

One thing that ALGOL has done for us all is to provide
a means of communication between programmers. I find
that I can now talk about programming to, and even exchange
programs with, people who have machines very different
from the one we have in Cambridge. This is a decided
advance, and one that is not likely to be lost by the changes
that may now take place officially in ALGOL, or even by
changes that are introduced unofficially to meet local
requirements.

I would like to mention two things not connected with
ALGOL that were spoken about at the Symposium. One
was a new system of list processing described by Dr. Weizen-
baum (G.E.). A paper on this system has just appeared in
the Communications of the A.C.M. It has a number of
interesting features, including an original method of "garbage
collection."

Dr. Harry Huskey of the University of California, Berkeley,
spoke about machine independence in the writing of com-
pilers, and described his experience in transferring NELIAC,
a fairly large system of automatic programming, from one
computer to another. I would like to try the experiment of
transferring NELIAC to EDSAC 2, and I had a number of
private discussions with Dr. Huskey about the possibility of
doing this.

My overriding general impression of the symposium is that
we have in computer languages a field of increasing techni-
cality and increasing abstraction. Subtle ideas are called for,
and one must be able to think on several levels at once.
Discussions about meta-languages and meta-symbols, and as
to whether a given symbol stands for itself or for something
else—all these show that the subject is no longer quite the
same plain, matter-of-fact one that it used to be. (Applause.)

(Dr. R. D. Clippinger then read his papers.)

Mrs. M. M. Barritt (Royal Aircraft Establishment, Farn-
borough): Dr. Clippinger, could I ask you to go on from
where you just left off. You mentioned that you have this
small group of people whose "supervisors" do not know what
they are doing. This seemed to be the very thing that we
were lacking yesterday. In commercial programming we
have this set of manufacturers working extremely hard, under
pressure, to produce compilers for a specific range of cus-
tomers, but there was no mention of any University groups
or Government Research Establishments "squandering" their
time on a purely experimental approach to a good com-

mercial language, possibly allied to a scientific language with
prospects of amalgamation. Now, in the United States, have
you found that Universities are, as it were, putting on one .side
all the commercial work and leaving it to the manufacturers ?

Dr. R. D. Clippinger: Broadly speaking, I would say that
is the situation. There are universities that are getting into
data processing from many different angles. Economics
Departments are getting interested in the use of computers
for a variety of ideas, and Industrial Management Depart-
ments are getting interested in computers from the point of
view of dyanmic programming of the systems work of a
company. Business schools are starting to think about the
use of computers. They are starting to talk about linear
programming and instituting courses on linear programming,
and giving case studies in the use of linear programming.
I do not think you would find a university in the United
States that is not in data processing in one way or another.
On the other hand, I do not know any university in the
United States that directs its attention to the notion of
designing a good language for data processing. There are
universities working on the problems of language translation,
an entirely different kind of thing. It is related, but it is not
the same problem.

I guess that is about all I can say, but, of course, the
universities are also involved in teaching people to program.
This is another way for universities to be involved and it is
an important way for the universities to be involved; there is
not as much of that as we in business would like to see. In
other words, there is not anywhere near as much as there
shortly will be, because this is growing very rapidly. Some
universities have had computers a long time, and the teaching
staffs are teaching the latest techniques of programming;
these are growing, but this obtains only in a few universities.

Mr. K. W. Lawrence (General Post Office): I have been
listening with a great deal of interest during the last two days,
trying to discover where we are going. As a user of com-
puters, my reaction is, "what do we want from these lan-
guages?" This was stated earlier on as being some form of
compatibility of programs between one installation and
another, and easier program writing. I do not find us
getting anywhere near these. There does not seem to be any
encouragement from the speakers that we shall ever get
compatibility between installations, or even between the
machines of the same manufacturer, unless he does the same
as Honeywell have done and builds subsequent machines
round the common language already written for the earlier
machines.

With regard to easier programming, I was sorry to hear
Dr. Clippinger say that in the future COBOL is going to be
extended. He has already told us that it is more difficult to
learn assembly languages than machine languages, and still
more difficult to learn COBOL, although it is easier to use.
I have looked through COBOL 60 and in the procedure
section alone there are approximately 23 verbs, 68 key words,
and 17 reserve words; and most of these are qualified with
five different ^otes of some form or another. To hear that
we are now going to have Report Writing and other aspects
added to COBOL suggests to me that we will soon have
longer compilers, longer compiling runs, and possibly even
more inefficient object programs.

This may be acceptable for service centres where the con-
sumer pays for the additional running time caused by
inefficient object programs, but what about the person who
is buying a computer for his own use? He also pays for the
inefficient use of his machine.

184

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion (Session 4)

I feel that we should go a little bit farther back in this
problem and try to see if we cannot get some rationalization
at the source. Instead of trying to produce a language to
give us some commonality between the diverse monsters
which we ourselves have produced, could we not make the
machines and the assembly languages more compatible?
Then a commercial user operating his own machine and
hoping to produce economies may achieve compatibility one
installation with another, with relatively simple program
writing. This is more than he is ever likely to get with
COBOL and the present multiplicity of machines. (Applause.)

Dr. R. D. Clippinger: You have expressed a lot of views
and I do not have to comment on any of them, but I feel
the urge to.

I agree with much of what you have said. I would point
out that during the past day you have heard a description of
several languages, several COBOLS amongst others. It is
my contention that these more elaborate languages, albeit
more difficult to learn, are more useful, and I should like to
put this in a different form. During the next year or two,
you are going to see us manufacturers locked in mortal
combat, with salesmen out telling prospects that they can do
their work using a compiler and that it is easy if a compiler
is working. "Why do you not take an example and you do
it yourself, in the language of machine A, or machine B, or
machine C, and draw your own conclusions as to how hard
it is and what is the efficiency of the object code? . . . And
there will be a lot of complementary equipment you want to
use, and we will help you to do it."

Now this is going to be a very different sales atmosphere!
The prospective customer is going to be able to draw con-
clusions, which are valid conclusions, no longer based merely
on hopes and distortions of salesmen. Now he will shake
down and find out that it is not really so hard to use a complex
compiler—or is it easy? He will find out whether the loss
in efficiency is something he can support, or whether it is not.
He will find out whether you can get enough programs to
get the job done with primitive languages—or whether in
fact he wants to get the job done ? (Laughter.) I think it is
going to be very interesting what is going to happen during
the next few years, after which all this discussion is going to
be academic!

Talking once more on the question of learning just a little
bit, I think the experience of ALGOL has been very interest-
ing. People take a look at ALGOL and they say that it is
impossible to learn it. It is first class, but it is very formal
and frightening; but you go through a course with a man
who understands it, and you do a few exercises, and pretty
quickly you begin to see that there is not anything that you
cannot understand; pretty soon you are writing programs
and you think that you know all about it, which is not true.
Your learning process has just begun, but you have now been
stimulated to learn, and you learn very fast; it takes hold,
and once you have learned, you persuade yourself that it
was no trouble at all to learn! What does it matter how
hard it was to learn, if you reach this point and are now
successfully using it ?

Now, Mr. Lawrence talked about machines being more
compatible. This is something that frightens the manu-
facturers and it frightens the users, because they are afraid
that it is going to get rid of all diversity, all ingenuity; that
it is going to shake down to one machine design, and whoever
can produce that most efficiently will win the battle, and we
shall all be using that machine. This would be a horrible
result. I would hate to see this happen; I do not think it

will happen. I do think that machines need to be made more
compatible, and will be made more compatible, without the
loss of ingenuity on the part of the manufacturers.

Mr. Thompson spoke yesterday* about the ideal language
which was concise and extremely easy to use, and the com-
piler had many lovely properties. I criticized him a little bit,
and yet I would have thought that we could move in the
direction he has talked about, if we were to simplify our
machines a little bit and make them more compatible, and
standardize a little bit on how we use them.

For example, one gentleman yesterday spoke of five
different conventions of using a card which he had to provide
for, and I told you about FACT having 30,000 instructions
in the input editor; you were all shocked and horrified,
probably partly because with its many different conventions,
which we provide, you are being" enabled to live with it,
because we are in process of adjusting to a world that is, and
not a dream world. But we can move a bit towards this
dream world by adopting these conventions, and by stan-
dardization, and then we shall all benefit very substantially
in simplified compilers, more efficient object codes, more
useful work done per dollar unit, or however you want to
look at it, with a little more discipline and reason brought in
regarding the way we do things.

Mr. J. P. Hough (Robson, Morrow & Co.): I should like to
ask Dr. Clippinger, assuming 70 to 80% of the computers in
the United Kingdom are of a power not greater than that
represented by a four-tape 1401 or 301, is COBOL a suitable
language for such a system?

Dr. R. D. Clippinger: I think that I have already hinted
that I do not think so. In my opinion COBOL is much too
complex for the smallest machines, and a new language is
called for. That is why I spoke in the way I did about
Language H, although Language H may not be it. I have
not studied Language H, but I think there are more appro-
priate languages that can be developed for a machine of that
level. I am a heretic, however, so this is a heretic's personal
view.

Mr. J. P. Hough: Thank you, Sir. Is such a generalized
system likely to yield efficient programs on machines of such
limited powers?

Dr. R. D. Clippinger: Definitely not. That is why I hold
this view that it is almost impossible to achieve e'ficient
programs on a small machine for elaborate languages.

Mr. J. P. Hough: Is commonality in any degree possible
on a machine of such limited power?

Dr. R. D. Clippinger: Yes, it is very possible but you
presumably mean, is it possible keeping the machines as
much different as possible, and in that environment I would
say it is very difficult, but I think something can be done in
that direction.

Mr. J. P. Hough: In your view, is commonality of practical
interest to the majority of commercial E.D.P. users, as opposed
to the scientific users?

Dr. R. D. Clippinger: I consider that a very good question.
There are many different aspects to the question of com-
monality. In the United States there are some users of equip-
ment that are gigantic, I think, from your point of view.
I am thinking, for example, of the Air Force Logistics Com-
mand that has thirty computers of three different makes,
and there are other systems where they have several different
computers doing the same job. Clearly, commonality is
important to them to the extent that it can be achieved,

* See page 164.

185

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion (Session 4)

delivering the efficiency that is also important to them, and
they are some of the prime movers towards commonality.

There is another reason—there are several other reasons—
why commonality can be useful, but can be overrated. You
program your application because you have a job to be done,
and let us say you only have one computer, but some day it
becomes obsolete. Then you get another computer and you
can then choose let us say from half a dozen computers, each
one of which could do that same job much more quickly if
you only have that much money, if you could have it pro-
grammed for that machine. At this point, if you were to use
the same language, and if it ran efficiently on one of those
machines and you selected that machine, you now have the
job running for less money than you had before, and the
change-over did not cost you anything. This is somewhat of
a dream, because at the same time machines are changing,
the languages are evolving, and the appropriate language of
the latter day may not be the one in which the program was
originally written, even if you tried to use a language which
provides commonality.

Furthermore, the amount of work in taking over a problem
that is well defined in one of these compiler languages, and
putting it into another language is very much less than the
amount of work in taking the series of object programs,
writing them in assembly language, and doing them in a new
assembly language for another machine. In such a case you
may have, for example, with a job which took ten man-years
to program in the assembly language used originally, the
possibility to reprogram it in the assembly language for
another machine in a couple of man-years, because the job
is so much better defined than it was originally. It might
also be possible to reprogram in compiler language in six man-
months, if it were in a compiler language. You could then
probably reprogram in a different compiler language in
one man-month, so I do not think you should put too much
faith in commonality.

Mr. J. P. Hough: Finally, you have talked about program
maintenance from the point of view of clarifying definitions.
Would you like to speak as a manufacturer on the problem
where the traditional pattern seems to be that you put a
machine on the market for five to seven years, and to keep it
competitive you announce new options which make it more
efficient as time goes on ?

My experience on one machine is that the languages never
caught up with the options, so by the time you got floating-
point or indexing registers on a first-generation machine, the
language did not give you the facility to make the maximum
use of these new options.

Dr. R. D. Clippinger: This is another very good point.
The more complex the language is, the more difficult it is to
modify it, to adapt it to the different situations. For example,
discs are available on Honeywell equipment. We could
re-do the FACT compiler to take advantage of discs in such
a way that segmentation would be automatic. We have used
parallel processing to call in the next segment to the extent
of predicting which one is next, and it is segmented auto-
matically, so that the programmer did not know anything
about this segmentation. This appeared to remove the
restriction of program size to an extent that would open the
door to a new way of using computers. If we can do this,
in theory it is a tough job, and we are now just about to try
to do it. It would be very much tougher for a language as
complex as FACT than it would be for a much simpler
language, but this is a kind of revolutionary change due to a
change in hardware specification which is particularly trouble-

some. It is so troublesome, that nobody is using discs in
my opinion with the flexibility and the power that they could
be used, because they have not wanted the trouble to think
this out, and because it is a tough job.

But minor changes are added, such as communication
equipment or paper tape instead of punched cards, or vice
versa, and there is a steady stream of these little things. Some-
times, adjustments to the language can be made which make
it convenient and relatively easy to use the additional items
without big revolutionary program adjustments. We have
been adding on more memories to make the compiler work
well. With a small memory, it is a greater effort to make
the compiler work than it is with a larger memory.

All of these things cost you human effort, and you have to
choose between all the things you could do and pick out
those which you feel you and the customers can pay for;
it is a real problem.

The Chairman: I should like on your behalf to thank
Dr. Clippinger very much for his talk which has led to a most
interesting discussion.

We continue our program with two contributions and
some discussion. I propose that we hear these two contri-
butions first and then have a discussion on all of them at the
end. The first speaker is Dr. Brooker, University of Man-
chester, and he will speak on compiler techniques.

(Dr. R. A. Brooker, Manchester University, read his paper.)
The Chairman: We are grateful to Dr. Brooker for that

contribution; and now let us go straight to the final formal
contribution by Mr. Strachey on future prospects.

Mr. C. Strachey: Some of the remarks that I was going to
make about future prospects have already been made by
previous speakers, and one or two of the things I wanted to
say have already been said by my Chairman. He was com-
paring the present state of development of automatic-pro-
gramming languages with the state of development of com-
puters ten years ago. I should just like to expand that a
little bit. It has seemed to me that the last two days have
been very similar to one of the early conferences on computers
where people were busy describing in—if I may borrow a
word from Rapidwrite—what must be considered as talks
on a pre-printed format; they were busy describing com-
puters which would compare very favourably and would be
working soon. When pressed as to how soon, the speaker
would give an estimate (which came to be known later as a
Hartree constant) of the time' which would elapse before his
machine was working; unfortunately the Hartree constant
for any particular machine was a good deal more constant
than most physical constants. Ultimately, of course, we
had some machines, and I suppose ultimately we shall have
some commercial translators which have been written in
England.

The general development of compilers that is likely to take
place in the immediate future has been talked about by Dr.
Clippinger, and I shall spend most of my time talking about
what I think is going to happen in the more remote future,
let us say three or four years away. In this field, of course,
that is very remote.

In order to do this I want to take off from the ground
instead of from somewhere in the air, and I should like
first of all to give a slight resume of the position as I see it
at the moment. What I am going to try to do is not to give
a catalogue of the existing languages, but to give you what
seem to be the primary characteristics of the languages that
we already have, and what I think is the way in which they
are going to change.

186

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion (Session 4)

In the first place we have two sorts of language: business
languages and mathematical languages. At first sight these
seem to be totally different objects, and when you begin to
look at them at all closely you find that it is very remarkable
how they each are specialized in one field and extremely naive
in another.

Let us first consider the business languages. These are
very sophisticated in their dealing with data and the handling
of input and output, but they are very naive indeed on pro-
cedure divisions when compared with mathematical languages
like ALGOL. The sophistication of procedures involved in
ALGOL is enormous compared with what you can do with
COBOL, but, of course, the means for handling input and
output and data description in ALGOL are naive to the
extent of being non-existent.

Now there is another feature which is woefully lacking in
most realizations of ALGOL (and certainly in the early
realizations of other mathematical languages), and that is
any provision for an operating system for the computer itself.
One of the most important developments of the last few years,
in America, but, unfortunately, not yet very much over here,
is the realization that an operating system for a large com-
puter is an absolute necessity if you are going to make much
use of the computer. The reason that it has not been
developed over here is that we have very few, if any, large
computers.

There are various other characteristics that I might mention
to differentiate between business languages and mathematical
languages. The business languages are rather imprecise in
the definition of their actual language. It is difficult to make
a syntactic analysis of a business language, and its terms
tend to be somewhat imprecise. Business languages tend
to avoid, as far as they can, the use of symbols, in what I
think is the mistaken idea that symbols are so frightening
that at all costs they are to be avoided. Instead the program
sheets are filled up with noise words and ad hoc devices.
The associated translators are very large and are very much
concerned with problems of efficiency in the object pro-
gram, though not, so far as I can make out, so much con-
cerned with the efficiency of the translation process.

The mathematical languages, on the other hand, are very
sophisticated in their handling of procedures in both senses.
They are more naive in their input and output operating
systems. Their characteristic format is ALGOL, and those
likely to be developed in the future will, I am sure, show
this extreme precision of statement and definition of language,
and very high degree of symbolism in the language in which
they are expressed. They are essentially really suitable only
for the mathematician, and for mathematically trained people.
People do not like symbols. They are frightened of symbols
and will not become happy with them until they have been
educated not to be frightened by them.

The people who design the best algebraic languages and
the best mathematical programming languages tend to go
in for a great deal of abstracting and generalizing. They
resist as much as they possibly can the temptation to use
ad hoc devices. It may be that sometimes they go too far,
although some people think that they do not go far enough.
The essential thing is that they are continually looking at
the problem to find abstract mathematical ideas; that is the
kernel of the matter. When they find one they put it into the
language and then see whether they can use it more efficiently
and whether it increases the power of the language.

The translators which make use of the realization of these
languages tend to be considerably smaller than those for the

business languages. Sometimes they run to as little as 4,000
words, instead of the 220,000 words needed in FACT.
They often produce, howeveF, a rather inefficient object
program, but the designers are very much worried about the
efficiency of the translation process.

This is the picture, as I see it at the moment, of the
differences between the two types of language. What is
going to happen in future? Well, first of all, the two types of
language must each catch up in the areas where the other
type is ahead. It is quite clear, or so it seems to me, that the
mathematical languages must extend their range of data
description, and that they must be able to become part of a
program-operating system. They must also be improved
su that it is possible to extend the number of types of object
that may be handled within a program.

I think the business languages will have to extend their
use of symbols. Their designers will have to get over their
silly fright of using the plus sign, and what I can only regard
as the sales gimmick of trying to write the program in
"English." It is not, of course, English, it is a sort of
"computer-ese."

The idea of making simple universal languages which are
easy to understand and which make programming easy to
the extent that, if you are careful, the whole of programming
work becomes unnecessary, is an entirely mistaken idea. It
is rather like saying that because we are soon, perhaps, going
over to a decimal currency, we shall not then bother to have
any accountants; clearly this is complete rubbish.

The real problem about programming is deciding what you
want to do and specifying this sufficiently clearly. If you
have a good language to program in this merely removes
one of the tiresome irritations. There is nothing more
tiresome and more likely to cause a number of slips than
trying to program in a bad language; it takes a lot of time,
and it does not make the real problem any easier.

I think that if the designers of commercial languages were
not so frightened of using symbolism and abstract ideas, we
should then be developing more towards the sort of thing
that Dr. Clippinger was talking about this afternoon. This
is obviously the beginning of the process of abstracting the
data structure, and this is the interesting thing about com-
mercial languages which is essentially different from anything
in mathematical languages.

The next thing I want to suggest is that there are some
areas in which each class of language is at the moment weak.
I think that the business languages, although they are nor-
mally incorporated in operating systems, are rather weak
in the specification of operating procedures. That is to say
there is considerable confusion when giving a program to a
computer and compiling it: sometimes you will wish to load
and go, sometimes you will want to run an extra piece of
program, or to up date the program by taking in another
piece, and sometimes you will wish to put something in and
get something else out in the assembly language; all these
various stages of actually operating a program, as opposed
to sitting down and writing what you want done, are
described in very woolly fashion, and generally they are left
out of most programming manuals. They form the sort of
know-how which you pick up by spending time near the
computer and actually operating it. This can cause a great
deal of confusion and difficulty in trying to write a pro-
gramming system.

I think that one of the very important things that the
whole of the ALGOL development did, was to clarify and
make us think more clearly about what we were writing

187

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion {Session 4)

down in the computer program. I would hope to see in the
next ten years or less an equal clarification about what we
mean when we instruct a computer to do a job.

Now, on the mathematical side I think there is still a very
serious disadvantage and difficulty about ALGOL, and,
indeed, all our mathematical programming languages. They
are still machine-orientated in the sense that they all assume
the sort of machine which has a single control and does one
operation at a time, one after the other, generally very fast,
and has access to a large, or fairly large, store. It is perfectly
possible to conceive a computer with a totally different
structure. One can imagine a machine which is a hundred
yards long and has fifty processing stations with a loop of
magnetic tape circulating continuously between them. Each
processing station would be reading the tape, performing
some calculations, and putting some results back on the
tape, and they would all be operating simultaneously. You
could not program a machine like that in ALGOL.

Another feature which I always find very irritating about
ALGOL or FORTRAN or Mercury Autocode, or any
machine code for that matter, is the fact that I have to specify
a lot of wholly unnecessary information. For instance, if I
want to do matrix multiplication I have a number of multipli-
cation operations which have to be carried out. The order in
which these multiplications are done is totally irrelevant
from the mathematical point of view. However, it is not
possible to write programs for any computer, in any language
I know of, and not have to specify precisely the order in
which these multiplications are to be done. If you are faced
with translating this program on to a different sort of machine,
you may be put to considerable trouble. For example, you
may have such a program written for a machine with a large
core store, where the natural sequence is to go along a row
and down a column. If you are faced with the problem of
translating programs like this on to a machine which has
either a drum store with access to the matrices by rows, or
for which the matrices are much too big so that you have to
resort to tapes, you have then to rearrange the order in which
the multiplications are done. This has no effect on the
result of the program, but it cannot be done automatically in
any language I know, because it involves throwing away
information which is there in the source language; I think
the translator would almost certainly regard any source-
language statement as being sacrosanct, and so it is very
difficult to remove this information. It seems to me that it is
important that some improvements should be made in this
respect.

There are, of course, a lot of minor improvements which I
shall not bother to go into now, but which would make
ALGOL more sensible for operating on existing machines.
Some of the present eccentricities were included by mistake,
I think, when ALGOL was specified.

There is one other field of use of computers with automatic
programming languages which we ought to begin to think
about, which is sometimes known as the real-time use of
computers. This is another way of making a computer look
after a number of things at once. My definition of a real-
time computer is a machine which spends most of its time
doing nothing. It just waits until, at the crucial moment,
a demand arises for its attention. It satisfies that demand,
and then looks around to see if there is anything else waiting
for it to do. A real-time computer can be presented with all
sorts of logical problems, not sequentially but in random
order. I think this is another feature which will come into
programming languages.

I should now like to say something about the problems
of writing compilers. We have heard a lot about compilers,
how difficult it is to write them accurately and how horrifying
it is to find how big they are. Springing from this there is
clearly a very strong desire, on the part of people who have
to write them, to write as few as possible, to change the
languages for which they are writing as rarely as possible,
and to change the machines for which they are writing as
little as possible, at least in so far as their order codes are
concerned.

Now, 1 do not think that this is more than a temporary
state of affairs. I think the problem of how to write compilers
is going to get easier, and that we are going to learn more
about how to do it, partly perhaps because we shall have
languages for writing compilers such as Dr. Brooker was
describing, but principally because we shall understand
what a compiler does and how it works. When we begin to
understand this we shall find it very much easier to specify
the job and to do it—although this will still take a little time.
What is more, we shall be able to specify the compiler in a
language which is more or less machine-independent. You
cannot, of course, specify the parts of the compiler which
actually produce the machine-code object program inde-
pendently of the machine on which the object program is to
run; the characteristics of the machine must be embedded in
the compiler. This is a matter of putting something into the
compiler program and not the language you are writing in
the compiler program. I think there are some developments
already in sight about list-processing which make it very
likely that the problem of writing compilers will get con-
siderably easier during the next five years. Again, the
problems of changing compilers from one machine language
to another, and generally coping with the transformation of
language, will, I hope, get a little easier.

I think that perhaps at this point I might say something
about standardizing and specifying languages. Commonality
between languages and machines keeps cropping up, and I
think it is essentially a red herring. Before you can
standardize on language in the official sense of the word,
you would presumably specify it, and if we are to be able to
specify a language we have to think about it. Programming
languages are highly intellectual things, and have a very
much higher intellectual content than a data-coding system
or the specification, say, of a B.A. screw. The content is
practically co-terminous with mathematics, and it is a great
mistake to think that there is not much in specifying a pro-
gramming language; it is an extremely difficult operation
and a very sophisticated one.

In order to specify a programming language you need
informed experts' opinion on the committee which is going to
do the specification. I use the word "specification" and not
"standardization." Now, there are a number of people who
are experts in thinking in ALGOL, and a number of experts
in COBOL, but I doubt whether there is anybody who is an
expert in both, at least in the sense of being able to make a
really informed criticism about the details of each language.
I think that it is very unlikely that there is such a thing as
the programming language, although I think we shall see a
number of them. I think it is essential that a language should
be specified by people who know what they are talking about.
Of course there are experts on standardizing and they are
very good at specifying how to standardize, but committees
which are chiefly, or wholly, composed of standardizing
experts cannot deal with all the sophisticated programming
languages; they attempt to do so at their peril.

188

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion (Session 4)

Much of the pressure for standardizing languages comes
from people who have little or no understanding of the
problems of using and deciding about programming languages,
and who do. not really know what they are asking for. Their
attitude is "we shall attempt to stick to this in every detail,
and we are going to standardize and you had better
standardize yourself or get out of the way." This attitude
does not impress me very much. I call it the argument from
the lemmings—everyone is going to rush down to the sea
and drown, and as they are going to do something silly, you
had better do it too. (Laughter.)

I think it is certainly desirable that all languages which
are used should be accurately specified, and this is a very
difficult operation. All these committees trying to decide on
the programming language, are, on the whole, I believe,
wasting their time.

The evolution of programming languages will, I think,
have a considerable influence on the design of computers,
both because of the problem of writing the compilers and
also because of the nature of the object program which the
compilers produce. One of the characteristics of ALGOL is
that the object programs which are produced from it almost
invariably use stacks or communication lists between the
various procedures that are involved. This is a characteristic
of the language, and the natural way to implement it is to
use a stack in this Sort of way. It is also true, and this is
coincidental, that most of the translators for ALGOL also
use a stack. This is not the important point. The important
thing is that the run-time program uses a stack naturally. I
think very probably that this is the sort of thing which will
have to be incorporated in computers because the run-time
programs require this sort of communication method between
their various sections.

Computers will very probably be influenced by the problem
of designing compilers to the extent of having more useful
instructions for doing list-processing operations. I do not
think that this need worry anybody who does not want to
write compilers. The only difference it will make for them
is that the actual run time of compilers will be shorter.

I think, however, that the whole use of automatic-pro-
gramming languages will and must influence our attitude
towards machines, towards storage space in machines, and
to the efficiency and the operating time of machines. I think
it is absolutely right and proper to consider that a machine
is there in order to save the human beings that use it time
and trouble. That is a correct attitude to adopt in considering
the use of automatic-programming languages—that they
save you time and trouble; your time is worth more to you
than the machine's, and you have to persuade your boss
that really, in the long run, your time is worth more to him
than the machine's. It seems to me to be absolutely wrong
to insist on the last half per cent or the last five per cent of
efficiency in run time at the expense of a factor of several
times in writing these programs. Writing programs needs
genius to save the last order or the last millisecond. It is
great fun, but it is a young man's game. You start it with
great enthusiasm when you first start programming, but after
ten years you get a bit bored with it, and then you turn to
automatic-programming languages and use them because
they enable you to get to the heart of the problem that you
want to do, instead of having to concentrate on the mechanics
of getting the program going as fast as you possibly can,
which is really nothing more than doing a sort of crossword
puzzle.

Automatic programming will have some very important

influences on the design of hardware, and the most important
ones, I think, will involve the interaction between human
beings who are instructing the computer and the computer
itself. I think we shall need new methods of using the
machines. There has been a very interesting and exciting
set of experiments at M.I.T. about using very large computers
in a sort of real time-sharing method. In this every user has
a Flexowriter directly connected to the machine and can
type in his own program at whatever speed he likes. Every-
one has the impression that he has the machine all to himself.
This is a fascinating idea and when I tell you that the prospect
involves, so far as I can make out, a million words of core
storage and a machine which operates at one instruction a
microsecond, you will see that this gives scope for doing
certain things which are rather far beyond the things we are
thinking about at the moment.

I think that this is the way in which computers are going
to be used in the future, and that languages will have to be
adapted to use such methods. Another feature which I think
will certainly have to be very considerably improved is the
prosaic problem of printing, which involves choice of
character sets on printers. If we want to use a complicated
and rich language it is very difficult at the moment; some
improvement of this is very seriously overdue. I see that this
is not the only thing that is overdue; and maybe the end of my
talk is overdue, too. (Applause.)

The Chairman: Thank you, Mr. Strachey, very much.
Well now, the subjects are open for discussion.

Mr. B. Randell (Atomic Power Division, English Electric):
A question for Mr. Brooker on his phrase-structure language
compiler. Could he please tell us something about the state
of implementation of this system, and also the experience
he has had in using it—for instance, the languages he has
translated, or would like to translate, the sort of effectiveness
he hopes for with the compiler he produces, and the effective-
ness of the object program which such a compiler would
itself produce ?

Mr. R. A. Brooker (Manchester University: Revised reply
May 1962): The compiler compiler has been written, and at
the time of writing a few of its routines have been tested in
the 1,024 words of Atlas, which is all the storage that is
available at the moment. Eventually we shall have 16K
words of core storage and 96K on drums. The compiler
compiler language has been used to write a compiler for
FORTRAN II and for Mercury Autocode. It is also being
used to write an Atlas Autocode, a language which has many
of the features of ALGOL, but is rather Atlas-orientated.
Harwell have got their own FORTRAN project so we at
Manchester may not go ahead with the FORTRAN compiler.
The Mercury Autocode translator took about a month to
write, including all the facilities for matrix operations and
complex number operations.

As regards the efficiency of the compilers written in this
way, we must distinguish between the speed of compiling
and the speed of operation of the final object program. The
latter is quite independent of the former. A compiler com-
piler is simply a programming system for writing compilers,
and just as with any system one can write good programs
or bad programs, so with this system one can write good
compilers and bad compilers. Generally speaking, however,
the compilers will tend to be slower in the speed of translation
than conventional tailor-made compilers, because of the
recognition-logic employed. The efficiency of the final

189

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion (Session 4)

object program, however, is entirely dependent on the
amount of effort put into the compiler, and is not affected
in any way by the decision to use a compiler compiler. On
the contrary, the facilities of the compiler compiler enable
one to test very easily for all kinds of special cases which lend
themselves to optimization.

Mr. d'Agapeyeflf: I would like first to correct a miscon-
ception that my talk has apparently raised, namely that I had
suggested that The British Computer Society had denned a
standard programming language. In fact, my text read "that
The British Computer Society has belatedly set up a com-
mittee to consider this problem"—and hence my diatribe
against the numerous committees on the subject, since one
would have thought it necessary to know what one was
aiming at before one began.

Mr. Strachey has gone farther than this and mentioned
the dangers of having a standard at all. But in a sense this
is a red herring. Manufacturers have got to sell machines
in order to build those he wants, and if the salesmen are
certain they want and can have something called a standard,
then for good or ill that is what we are likely to get.

I should like to congratulate one of the previous speakers,
I think he was from the Post Office, because this is the first
time we have heard a general user, to my knowledge, get up
and ask a real question on automatic programming. The
point is the learnability of source language.

In ALGOL you can begin quite gently and treat it as a
very simple language. You do not know what a procedure
call by name is, so you do not use it. Later you learn a bit
more from the manual and gradually you get excited about
the language. But with COBOL this is not possible; it is
all or nothing. It is very much more difficult with a com-
mercial language to build up slowly, but it was never expected
they would get so complicated. The original idea was that
they would be simple, and it is very sad to see their current
state. Now we must think again.

Finally, I would ask Mr. Brooker what properties of data
his system would allow one to declare ?

Mn R. A. Brooker: Well, there is no limit to the types of
operations which can be included in a compiler, but as I
have already said, the operations which characterize our
compiler compiler are those to do with expressions (the
internal form of which is a tree), and ordinary red-tape
operations with integers.

Mr. G. P. Judd (English Electric Co. Ltd.): Would Mr.
Brooker consider it possible to write a compiler for ALGOL
60 using his scheme, and if not, what features of ALGOL 60
make this difficult?

Mr. R. A. Brooker. The essential features of the compiler
compiler are a means for defining, recognizing, and com-
paring classes of expressions. Any compiler could be used
to write other compilers, the point is that we have thrown
emphasis on the above-mentioned facilities in our program,
and neglected to include more conventional facilities such as
would be used in connection with numerical analysis. It
would be perfectly sensible, however, to take any general-
purpose compiler and, by including facilities for handling
expressions and symbol manipulation, to turn it into a
so-called compiler compiler. The short answer is therefore:
Yes.

Mr. E. A. Newman (National Physical Laboratory): It has
always seemed to me that one possible use of a programming
aid is as an aid to thinking. I personally find that about as
many ideas as I can manipulate at any one time is about

ten of varying complexity. Therefore, of course, some sort
of programming system is needed to manipulate a limited
number of ideas, and this would be a good thing. If the
number of ten which I give is the number which I can mani-
pulate, let us assume that most people can cope with not
more than a hundred; it would seem on this basis that one
does not want too many different sorts of things which you
can do, in a given program language, if it is intended to help
you to think; so I would say that there is a reasonable case
for having a different program language for various different
sorts of jobs, and confusion would be avoided in this way.

I wanted to ask Mr. Strachey if this were possible as an
idea. One other point I wondered about, is that it always
seemed to me that if our bosses thought our time was more
valuable than that of the machine, perhaps they would make
our salaries higher than that of the machines. I am not sure
that they do.

Mr. C. Strachey: I am all in favour of having lots and lots
of programming languages, of course. Most p... r le who
write a complicated large program for dealing with some
kind of group of problems are in fact writing the program
language. I think that when we know more about writing
compilers, more programs will look like languages instead of
multiple-purpose subroutines. I must say that the fact that
business languages started off by being ever so simple, and
then got unwieldy and complicated, does remind me of the
early computing machines which were going to be "ever so
simple" to program.

Mr. J. A. Brunt (English Electric Co. Ltd.): I want first to
take issue with Mr. Strachey, on—really—his whole approach.
For example, Mr. Strachey repeatedly uses the phrase
"programming language," though I understood this to be a
conference on "automatic-programming languages." In
other words we are in this conference concerned not with
programming as such but with the automation of pro-
gramming. This is not just a matter of making programming
machine-independent. It is a matter of using system lan-
guages or procedure-description languages instead of
programming.

System documentation is the one job that cannot be
avoided. The implicit aim of COBOL (perhaps unacknow-
ledged?) is to use the system documentation itself as the
automatic-programming input.

This—surely—is why one has all this English floating about
in COBOL: because somewhere along the line a system has
to be reported in English, and someone has to agree that
that is the system. How far one can condense—perhaps on
the lines that ICT's COBOL has taken—is a matter to be
determined; but even to consider this is an illustration that
it is problem documentation which should be at the back of
our minds, when we set out to produce an automatic-
programming language.

Another point I should like to bring up concerns a specific
item of "science fiction" that we have heard, an important
matter mentioned by Dr. Clippinger which Mr. Strachey did
not take up. I think this is something that we should like
to hear more about, and again I will try to put this rather
controversially.

What I want to say is this: that linked conditional sentences
and compound conditional sentences are Stone Age. These
very complex facilities that one has in COBOL 61 just cannot
be used, because one cannot get one's mind round them. I
would suggest that this is because they try to document, in a
sequential manner, logic which just is not sequential. Apart
from the strings of instructions which can happily run down

190

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion {Session 4)

the page, there are these other ingredients in problems: what
we may call the "decision junctions."

We have heard references to the work of a Systems Com-
mittee of CODASYL who are concerned with trying to take
this ingredient out of the flow charts and reports, and express
the decision junctions in a tabular form. I would say that
the use of decision-structure tables is more precise and con-
cise, that the tables are more readable and more readily
checked than are these conditional or compound conditional
sentences in COBOL. I do not know what other methods
may yet be devised, but I do feel that this work on decision-
structure tables, and other similar work, is a step in the right
direction. It is an acknowledgement that the ingredients in
a problem are not all sequential in nature, and cannot all be
suitably recorded by conventional flow-chart methods.

Mr. A. G. Fraser {Ferranti Ltd.): I should like to ask
Mr. Strachey for his opinion on two things. In the first
instance, he did mention that he would like to see some
information removed from the programs and he gave the
order of multiplication as an example. I have found in my
work over a very short period that there is indeed a good
deal of information which is demanded of the programmer
which could possibly be avoided. I find also that there is a
large amount of information that the compiler would like
to have about the job which it is compiling. One has to
decide whether an improvement produced in the object
program would justify the extra complexity in the source
language. In many cases I find that the compiler has to
allow for circumstances which, in the language as it stands
now, have in fact never occurred in practice.

I wonder whether he feels that a problem-orientated
language would be made simpler by removing program-
orientated features, or whether in fact the thing would
become more and more complicated because of a necessity
to describe the problem in great detail.

The second more trivial point, I think, is that the farther
removed that the source language is from the object program,
the more work the compiler must do. Compilers themselves
may become cheaper to produce but, nevertheless, the
amount of work they must do in order to compile a program
will increase with the abstraction of programs. I should like
to know whether he thinks that it is implied from past
experience that work done on a machine will inevitably
become cheaper than work done by human beings, or whether
there is not a class of work which is unlikely to be done as
cheaply by machines.

Mr. C. Strachey: Well, if I may answer the second question
first, I am all in favour of more work for computers. I think
it is quite possible that there may be types of work which,
certainly at the moment and perhaps for a long time in the
future, will be more efficiently and cheaply done by human
beings. I do not see why we should not envisage a computer
system which is a co-operative operation between the com-
piler and the program writer, so that when the compiler
reaches the stage where it wants more information, it asks
for it; or it may say that if the programmer can start off by
giving the minimum amount of information, it would ask
for more if it wanted to be given it. And then, if he cannot
be bothered to give it more, it then could make stated assump-
tions or wait. That I think deals with the first part of the
question.

On the second question: more feedback, not less, between
the people who write the programs and the computer would,
in my opinion, be a much better thing. At the moment the
system of running a machine makes it difficult if you interfere

with it or try to help it, and I think it ought to be made much
easier.

Mr. E. A. Newman: I want to come back a bit on what I
was saying before, because of something that has been said
since. I submit that human beings are queer fish as far as I
understand the concept, because there are some things with
which they are very familiar and which they understand as a
major concept, whereas they would not understand if there
were bits and pieces from which the concept was built up.
Anyone in this audience can go along and look at a hundred
and fifty women and pick out those that appear attractive.
They would understand that perfectly clearly and know
what to do, but try to make a break-down of that for a
computer program, with all the necessary instructions, and
they would not recognize it at all. There are other things
which have to be looked at simply as concepts, such as "is two
bigger than four?" Now, it seems to me that one of the
things that any sort of programming aid has to do, is to find
ways and means of making it so that human beings can
present the problems they have in some sort of unit con-
cept. If the unit concept happens to be something which
is basically very complicated, but with which they are familiar,
this has a unit conception. This is particularly true in busi-
ness languages, I should have thought, in so far as one could
make a business language which will let people give their
programs in this manner, with an assortment of complex
and simple ideas which the computer is going to sort out.
This idea for a computer is not only easy for the programmer
to use, but it is also one which makes people think in their
own programs. This is very important because a lot of us
find it very hard to think how to do a job in programming.

Mr. P. Wegner {London School of Economics): In connec-
tion with the problem posed by the last speaker, I feel that
the computer could solve this problem relatively easily if it
had a one-track mind.

My question is addressed to Mr. Strachey and is concerned
with his statement that ALGOL is machine-orientated.
Languages must inevitably be machine-orientated if they
are to run on a particular machine. However, we can
insulate the language from the machine by including within
the language some vocabulary for specifying the charac-
teristics of the computer on which a program is to be run.
Such characteristics can include memory size, types of input-
output equipment, and the degree of precision of the computer
word. Current commercial languages, such as COBOL and
NEBULA, have explicit vocabularies for machine description.
The best way to achieve machine-independent languages seems
to require explicit declarative machine-dependent statements
in part on the language, so that the rest of the language is
truly machine-independent. I wonder whether Mr. Strachey
would agree with this approach to machine-independence, or
whether he feels there is an alternative approach?

Mr. C. Strachey: I think maybe I did not make myself
quite clear when I said that I thought that ALGOL was a
machine-orientated language. I do not mean orientated to a
particular machine, or a particular type of computer
mechanism. There are languages which are not orientated
to any specific one of these, and I think one of the great
difficulties about translating languages which are machine-
orientated in the ALGOL sense is that it is very difficult to
get over more than minor variations in what COBOL calls
the environment. As Dr. Clippinger said earlier, the intro-
duction of discs into the Honeywell computer makes it very
difficult to cope with the program translator, and the trans-
lator does not in fact deal with this. This seems to me to be

191

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024



Discussion {Session 4)

all that one can say about automatic commonality across
machines of very different types, by which is generally meant
different organizations of stores. More levels of storage
present problems—not merely problems of translation but
problems of redesigning. This is usually outside the scope
of any translator.

Mr. L. R. Gre>bourne {Elliott Brothers {London) Ltd.):
There are two points I would like to raise with the speaker.
First, how is it possible to devise a non-sequential method of
use for a device which is inherently sequential in its nature?

Secondly, what you appear to require is a machine, which,
for all practical purposes, is a calculating robot with the
capacity to evaluate accurately and understand correctly the
wishes of its human user. I am sure that the manufacturers
of computing machinery would agree that such a device is
very desirable. With respect, sir, could you suggest any
practicable method of approaching the design problems
involved ?

Mr. C. Strachey: The problem is that I am not quite sure
which of my remarks you are referring to about wanting to
have machines which are much easier to use. This is clearly
an old saw, and everybody says this. So far as the problem
of irrevelant sequencing is concerned, I have in fact a way
of dealing with this. It involves using a different form of
programming language. This is nothing to do with the
manufacturer or the computer; it is simply a question of
persuading the people doing programming to do it in
suitable language.

Mr. G. A. Gibson {International Computers and Tabulators
Ltd.): I feel that Mr. Strachey and one or two of the speakers
this afternoon have been chasing a bit of a red herring. One
of my articles of faith is that a computer can only do what it
is told to do. It can do it faster and it can do it more
accurately, we hope, but it can only do what it is told, yet
some of the speakers today have seemed to me to be seeking
for problem-orientated languages. This I feel is impossible.

We can get only procedure-orientated languages. We can
phrase a procedure-orientated language so that it looks as
if it is problem-orientated. For example, in the problem of
matrix multiplication we say "multiply two matrices" and
the compiler looks at the size of the matrices and decides
which way it should be done; but I feel that we must always
have such a procedure-orientated language, and problem-
orientation is an impossibility.

Mr. C. Strachey: I do not think I ever actually said that
I wanted a language which simply stated the problem. I
should like to suspend judgement as to whether certain classes
of problem might not be stated in problem-orientated
language in your sense, and solved satisfactorily by pro-
gramming systems. All I did actually say was that I wanted
methods of describing what we wanted done, which did not
involve using a lot of unnecessary things we did not really
care about.

Mr. J. Harwell {Honeywell Controls): Mr. Strachey seemed
to support many different languages, which I think would
meet the needs of many different users, and might also meet
the case of people using very different machines. Would he
solve the standardization problem and support haying one
standard language for writing compilers ?

Mr. C. Strachey: No.
The Chairman: Time is getting on. If the comments are

as brief as the answer to that last question we could make
the best use of the remaining few minutes.

Mr. F. Duncan {English Electric Co. Ltd.): I agree that we
ought to have a lot of programming languages. The trouble
at the moment is that there just is not even one. {Laughter.)

The Chairman: I should like to bring the proceedings to a
close by thanking Mr. Strachey and Mr. Brooker for their
excellent contributions this afternoon, and all those who
have taken part in the discussion. Thank you very much.
{Applause.)

(The Conference closed at 4.58 p.m.)

Book Review
Computer Handbook, by HARRY D. HUSKEY and GRANINO A.

KORN, 1962; 1220 pages. (London: McGraw-Hill
Publishing Co. Ltd., £9 14s. Od.)

It is difficult to know how to review an encyclopaedia—
which is what the present work really is, although the articles
are arranged systematically instead of alphabetically. Half
the book deals with analogue computers and the other half
with digital computers. Evidently the former was primarily
the responsibility of Dr. Korn and the latter the responsibility
of Dr. Huskey. Neither Dr. Korn nor Dr. Huskey have been
content with exercising editorial supervision alone, but they
have themselves each contributed to a number of sections.
They have enlisted the help of some 70 authors, all of them
highly competent in their fields, many being leading figures.

The difficulty of keeping such a large quantity of material
up to date during the process of compilation must have been
a very serious one, and yet I can only say that it has been
successfully solved. Rarely does the material or treatment
strike one as being dated—nearly all the circuits, for example,
are transistorized, and little space is wasted on obsolete
techniques such as the use of mercury delay lines for storage.
Material of strictly historical interest is kept to a minimum.
All the material appears here for the first time with one or
two small exceptions: one of these is an article on ALGOL 60
by M. Woodger, which first appeared in The Computer Journal
in July 1960 and which is reproduced by permission.

I would not go quite so far as to endorse the authors' claim
in the preface that, in both the sections dealing with analogue
and digital computing, sufficient detail is presented so that
anyone competent in the field can proceed to construct a
computer, or having a computer can proceed to use it. This
may be more true of the analogue section than of the digital
section. In the latter I note, for example, that the important
subject of software is not treated at all fully. Nevertheless,
the book does contain a large amount of current and well
presented information, and its appearance is to be welcomed.

Reading this and other books that have appeared recently
one wonders why it is that publishers consider that analogue
and digital computers should be treated in the same volume.
Surely the two subjects have very little in common once one
goes below the surface. Indeed, if you put analogue and
digital people in the same room, they usually begin to quarrel,
although perhaps not quite so violently as they did a few
years ago. The present volume would have been much better
published in two separate parts. Each would have been
lighter, cheaper, and more likely to come into the personal
possession of those engineers who would really use it. There
will surely be a second and enlarged edition of this book,
and I would seriously urge the publishers to consider issuing
it in two volumes, or as two separate books.

M. V. WILKES.

192

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/183/424342 by guest on 19 April 2024


