Control and simulation language

By J. N. Buxton and J. G. Laski

CSL is a programming language designed for use in the field of complex logical problems,

The

basic approach adopted is that groups of items or objects sharing similar qualities can best be
represented intensively, by recording the names of these items in predicative groups or sets, rather
than by listing them extensively and coding their qualities numerically.

The first application of the language has been in the field of Monte Carlo simulation work,
for which special facilities are provided.

An unusual compilation approach has been followed, involving translation into FORTRAN

as an intermediate stage.

Introduction

CSL is a programming language designed to aid in the
solution of complex logical and decision-making
problems. The language is experimental in type; it
derives from the observation that thinking on real-life
decision-making problems is based on the use of sets,
and it is designed to test the applicability of this thesis.
The manipulation of sets is formally described by the
predicate calculus; therefore the basic approach in CSL
is that of the predicate calculus.

There is considerable redundancy in the facilities pro-
vided in the language; the less useful of these will be
dropped in the light of practical experience rather than
by arbitrary decisions in the design stage. No attempt
is made in this paper to describe CSL completely as
some sixty statement types are available. This experi-
mental approach to language design has led to a corre-
sponding approach in design of the compiler, where
rapid preparation and ease of subsequent modification
has been emphasized.

The first part of this paper describes in more detail the
basic ideas of the language. A representative selection
of the available types of statement is given, and the paper
concludes with some comments on the compilation
approach which has been adopted.

A syntactic description of CSL tests is given in Appendix
1, and a short program is given as an example in
Appendix 2.

Terminology

In the examples given in the text, the following
terminological conventions have been used.

1. Structural CSL words are printed in bold type in
this paper; in handwritten programs it is good
practice to underline them to increase transparency.

. SETA, SETB, — — - are names of sets.

. ENTITY. P is a typical entity.

. E, F, G, are single valued arithmetic expressions.

1; and 1, are statement labels,

I, J, K are cell names.

P is an integer, a cell name or an expression in

parentheses.

NoUuAwN

Basic ideas

CSL (Control and Simulation Language) is designed
as a tool for the formulation of complex decision-
making problems such as those which arise in the control

. a factory to various distribution points.

194

of industrial and commercial undertakings. It may
help in the validation of suggested control procedures
by constructing Monte Carlo simulation programs to
model the system under study, or be used in the imple-
mentation of such procedures in a computer-controlled
system.

To provide some point of contact between the dis-
cussion in this paper and the real world, we will take
as an example the problem of distributing goods from
The problem
to be solved is roughly that of finding a scheduling
procedure to decide which goods should be sent by
which truck to which series of unloading points.

In describing such a situation in a computer program,
it is necessary to talk about complex objects, such as
trucks and loading bays, and to describe their inter-
actions. These objects, which we will call entities, have
qualities or attributes which may for example, be
described by holding numerically coded information in
arrays of storage cells. Each truck is a complex object
and associated with it are various attributes, such as its
capacity, total mileage and average fuel consumption.
This data could be stored in arrays in two ways: by
associating one attribute array with each truck, or by
using the truck serial number to index data arrays which
hold data for the entire fleet.

Traditionally the interactions of these entities have
been described by the manipulation of queues. The
central theme in CSL is that such queues are, in fact,
ordered sets, and as such are amenable to treatment by
operations on sets similar to those described by pre-
dicate logic. Scheduling decisions in the despatching
problem will involve discussion of sets of trucks, such
as the set of all trucks at present in the factory, or the
set of all trucks in the factory, with capacities above
3 tons and with mileage to next scheduled overhaul
greater than 1,000 miles.

A set is a storage device which records the names of
entities. It may be used to record the names of those
entities which are in a specific state or possess a specific
range of qualities, and thus it provides a way of recording
the attributes of entities which is a third alternative to the
holding of numerically coded information in data or
attribute arrays as described above. The order in which
entity names are placed on a set is preserved, and so a
set can be used to provide the facilities of a queue.

The subgroup of entities whose names appear on a
given set may be referred to intensively by use of the

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Control and simulation language

name of the set, rather than extensively by listing the
subgroup. Computing statements can now be designed
to operate in various ways on the members of a set,
or to use the membership of a set to control their
operation. The principal computing technique in CSL
is the use of the membership of sets to control computing
operations.

Variable storage

CSL names are strings of letters of any length. They
may not be CSL structural words. Four basic types of
storage are used; cells, arrays, entities, and sets. The
first three types are known as variable storage. A cell
provides space for a single variable, and is addressed
by a name. An array of storage locations resembles a
subscripted variable as used in FORTRAN and other
standard computing languages, and a specific member
of the array is addressed by a subscript list thus,

DATA (E, F, G)

Entities of similar size and shape, and used for the
same purpose, are regarded as grouped into a class and
are given similar names; in the despatching problem
trucks are known as

TRUCK. 1, TRUCK.2, TRUCK.P,...

A specific truck of the class is referenced by use of a
class subscript separated from the class name, as above,
by a dot. This class subscript may be an integer or it
may be specified indirectly by giving a cell name or
using an expression in parentheses. An expression is
any single-valued arithmetic expression, as in
FORTRAN.

If an attribute array is associated with each member
of the class, then the attribute cells are referenced by a
subscript list, thus

TRUCK. P (E, F)

The subscripts used to reference data-array or attribute-
array cells may be expressions, and as expressions may
involve other reference to subscripted storage, this
permits indirect reference or subscripting to any level.

Sets are devices for recording names of entities as
described above; more precisely, a set is an ordered list
of class subscripts. Though a given entity may have its
name recorded on many sets, any given set may only
hold the names of entities of a specific class. The reason
for this restriction is given in the notes on compilation,
but semantic considerations cause this, in fact, to be no
limitation.

As an example of the three alternative ways of recording
information on the qualities or attributes of entities,
consider the jth attribute of the ith truck, which might
be its present location. If each truck has associated
with it a one-dimensional attribute array, then the
location is expressed by a numerical code in cell
TRUCK. I (J). If a one-dimensional data array named
LOCATION is used to hold the locations of all trucks,
then the coded information is in cell LOCATION (D).
The third way of holding the information is by the

195

presence or absence of the name TRUCK. I on a
descriptive set, such as a set called GLASGOW. As
most computing statements in CSL are controlled by
reference to membership of sets in general this latter
alternative is preferable.

Simple manipulative statements and tests

The customary facilities for performing arithmetic
operations on variable storage are available, and are
not further described as they resemble those in
FORTRAN and similar languages.

Any statement may be labelled with an unsigned
integer below 25,000.

The simple control statement is of the form

E¢F L &1,

E and F are expressions, ¢ is one of the six relational
operators >, >, =, 7%, <, < expressed in two-letter
form as GT, GE, EQ, NE, LT, LE, and 1; and 1, are
labels. If the result of the test is successful, control is
transferred to the statement labelled 1;, and if the test
fails control goes to that labelled 1,. A CSL program
may be divided into sectors, and either or both of the
destination labels may be omitted. If the success destina-
tion is not specified, the compiler assumes it to be the
next statement, and an unspecified failure destination is
assumed to be the first statement in the next sector.

This form of destination is used in all CSL tests. It
reverses the customary approach to control transfers in
computing languages, in that when specific destinations
are not given, transfer takes place on a test failure and
not on a success. In a program which consists mainly
of logical analysis this approach gives a much easier
logical flow, and in most CSL programs explicit
destination labels rarely need to be used.

Entity names may be placed on or off sets by state-
ments of the form

ENTITY. P HEAD SETA |, &1,
ENTITY. P TAIL SETA |, &1,
ENTITY. P FROM SETA 1, &1,

These statements will add the specified entity to the
set at the head or tail of the queue respectively, or will
remove it from the set. Note that each of these state-
ments implies that a test is carried out to determine
whether the entity is on the set, and so a destination is
given. For the first two statements, location of the
entity already on the set is a failure, and for the third it
is a success. Subsequent detection of the names of the
entities currently at the head or tail of the queue is
carried out by the FIND FIRST and FIND LAST
statements which are described in a later section of the
paper.

The statements

ZERO SETA
ENTITY LOAD SETA

will cause the set to be emptied or to be filled with all
members of its class.

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Control and simulation language

The statements

ENTITY. P IN
ENTITY. P NOTIN

SETA
SETA

L &1,
1 &1,

carry out simple tests on the occupancy of sets.

Repetition of a group of statements is carried out by
the use of a FOR statement which can exist in two forms.
The repetition instruction may be given as in a
FORTRAN DO statement;

FOR 1 =nl, n2,n3

nl, n2 and n3 may be positive integers or cell names,
and I will be advanced from n; to n, in steps of n3.
The alternative form is

FOR 1 SETA

and in this case I is made equal in turn to all the class
subscripts at present recorded on the set.

The range of statements over which a FOR operates
is given by the fact of their indentation to more places
from the left-hand side of the source program than the
indentation of the controlling FOR statement. Repeti-
tion statements may be nested within each other to any
depth.

DUMMY

This is a dummy statement which may be used, for
example, to place a statement label at the end of a FOR
loop.

Complex tests

The basic unit in the complex tests and compound
statements is the test chain; this is a truth functional
chain of tests in what is described by logicians as dis-
junctive normal form; for example

test | group 1
test
OR test } group 2
OR test
test [group 3
etc.

The extent of the test chain is defined by the equal
indentation of all tests in the chain, omitting the OR’s
from consideration in the indentation. The result of
the consideration of such a chain is a success if all the
tests in one or more of the groups between successive
OR'’s are successful; the meaning of the above chain is
(test and test) or (test) or (test and test), etc.

Statements other than tests may be interspersed in a
chain; they will be carried out if the previous test is
encountered successfully. By this means one can set
markers to indicate which path through a chain was
followed during execution.

An example of a complex test is the ALL test;

ALL I SETA 1, &1,
test chain (I)

This is a test to determine whether the following test

196

chain, which contains mention of cell I, is satisfied with
I such that ENTITY. I is in SETA, for all the present
members of the set.

EXISTS (E) 1
test chain (I)

SETA &1,

This test determines whether the test chain condition is
satisfied by at least as many members of SETA as the
present numerical value of (E).

UNIQUE (E) I
test chain (I)

SETA L &1,

This test requires that the test chain be satisfied for
precisely as many members of the set as the present
numerical value of (E).

In the EXISTS and UNIQUE statements, the test
chain may be omitted as the result is a meaningful test
on the set population, and the expression (E) may be
omitted when the value unity is assumed.

Search statements

There are five variants of the search or FIND state-
ment, of which one example is

FIND I SETA MAX (E)
test chain (I)

This statement locates that member of SETA which
satisfies the test chain and which maximizes the expres-
sion (E). On exit from the statement, the class subscript
of the successful member is set in 1.

In the other variants of this statement, the criterion
MAX(E) is replaced by one of the criteria MIN(E),
FIRST, LAST or ANY. The test chain may be omitted
in all variants, as for the EXISTS and UNIQUE complex
tests. The FIRST and LAST options will select the
first or last member satisfying the test chain condition,
regarding the set as a queue, and the ANY option
makes a random choice from the members who satisfy
the condition.

A destination is specified in a search statement; the
fail transfer will be used if it is not possible to select a
member of the set who satisfies all the conditions.

L &1,

Nested tests

In the description of the test chain given above, no
definition was given of the type of test which may be
used as a member of the chain. In fact, any test defined
in CSL may be a member of any chain, including complex
tests and search tests. A complex test or search test
which is a member of a chain may itself involve a sub-
chain, including other complex tests, and so on to any
depth. This ability to use complex tests.nested to any
depth gives the language considerable analytical power
and flexibility.

As an example in the despatching problem, for a
particular long night haul, we might wish to locate the
first truck (X) in the waiting queue, of capacity 3 tons
or more and with more than 1,000 miles to next over-

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Control and simulation language

haul, provided that we can also locate any driver (Y)
who is a union member, is prepared to drive overnight
and is permitted to drive trucks of the tonnage of truck
(X). 1If a truck and driver are available, take the next
statement, otherwise transfer control to the statement
labelled 105. The following statement paragraph per-
forms the entire operation, assuming suitable storage
allocations:

FIND X IDLETRUCKS
TRUCK. X (1) GE 3
TRUCK. X (2) GE 1,000
FIND Y IDLEDRIVERS ANY

DRIVER. Y IN UNION
DRIVER. Y NOTIN DAYWORKONLY
DRIVER. Y(I) GE TRUCK. X (1)

FIRST & 105

Program testing

Trace statements are provided to facilitate recording
of the contents of specified cells during execution. The
resulting output gives the cell contents and their source-
language names, so that program testing can be under-
taken without recourse to lower levels of language.

At the time of writing an index checkmode compila-
tion facility is being added to the compiler. In sections
of program between the words START and FINISH,
extra orders will be inserted to provide dynamic checks,
during execution, on the contents of all index values, to
ensure that any subscript value used to access any
array cell or attribute is within its allowed range. In a
language which permits indirect reference to any level,
this facility should be available.

Monte Carlo simulation facilities

The language contains several facilities, such as the
provision of cells for holding time values associated with
each entity, which are useful in writing simulation pro-
grams, and in providing a conceptal framework for the
expression of such problems. The facilities are based
on those in the General Simulation Program (Tocher
and Owen, 1960) and in Montecode (Buxton and Kelley,
1962). No further description is given here as in this
paper the authors wish to emphasize the nature of CSL
as a general programming language.

Compilation techniques

CSL was produced as an experiment, to study the
practical utility of some suggested language facilities
based on a combination of queuing techniques with
predicate logic in the solution of decision-making
problems. The language is rather extensive, and in
designing the compiler, emphasis was placed on speed
of preparation of the compiler and ease of subsequent
alteration, rather than on efficient compilation.

The CSL object computer is an IBM 7090, a machine
of suitable size and power for large and complex
problems: (it has core storage size of 32,768 words and
a cycle time of 2-18 usec.). A FORTRAN compiler

197

is in wide use on the 7090, and it was decided to take
advantage of its existence by compiling CSL into
FORTRAN as a lower-level language. Sets are trans-
lated into one-dimensional FORTRAN arrays and
handled as push-down lists, and a class of entities
becomes a single array with one more dimension than
its constituent entities. The price paid for this approach
is the introduction of some source-language restrictions,
of which the most obvious are the inability of a set to
hold names of entities other than those of a specific
class, and the inability to address sets indirectly.

The 7090 is a magnetic-tape oriented system, and for
off-line work in almost all installations, 1401 computers
are used. The translation of CSL into FORTRAN is
done on the 1401, as this is a variable word-length
machine handling alphanumeric characters, and so is
ideally fitted for the string manipulations which arise in
compiler work.

Translation is done as a four-stage process. The
first stage translates CSL names into FORTRAN names,
detects CSL syntatic words and replaces them by single-
character tags which precede the statement, and per-
forms those sections of compilation which need reference
to the source language, such as trace statement
compilation.

In the second phase a main read program studies the
tags preceding each statement, and calls the relevant
generator subroutine to analyse the statement and to
write out a suitable section of FORTRAN or of simpler
CSL as a replacement for this statement in the body of
the program. Those generators which need test chains
use a subsidiary chain read routine to translate them.

The simple generator approach is complicated by the
small size of the 1401 store, which can only hold a few
generator routines at a time. This difficulty arises
because the 1401 is basically a commercial machine,
and it is overcome by repeated scanning of the source
program, which is written to and fro between two tape
units with different generators in store. After each pass,
the program is a little longer and contains rather more
FORTRAN and rather less CSL.

With this relatively small store, the use of indentation
to define ranges of FOR statements and test chains
caused some problems. The FOR generator operates
recursively, and when it is in the store and is compiling
over a range or nested set of ranges, the identation
structure of that section is deleted, even though the
majority of statements in the range cannot yet be com-
piled due to lack of suitable generators.

The test chain read does not operate recursively;
complex tests encountered in a chain are modified by
the inclusion of a suitable destination phrase and are
copied through, with their test chains and associated
indentation structure, for later consideration.

On conclusion of this phase, the program exists in
FORTRAN logic, but it may contain variables with
subscripts more complex than is allowable in FORTRAN.
In the third phase a syntactic analysis of subscript form
is carried out, and dummy variables and suitable setting

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Control and simulation language

statements are inserted where needed. At present CSL viously been tackled due to difficulty in formulation,
is restricted so that emergent FORTRAN arrays are have now been formulated with little trouble.
three-dimensional or less, but if this is found to be

troublesome, the third phase will introduce address Acknowledgements

mapping functions for higher dimensions.

The fourth phase carries out some error analysis and
tidies up the program into final FORTRAN form.
Compilation is now completed by the FORTRAN
compiler on the 7090.

On completion of their present work on CSL, the
authors became aware of the fact that very similar work
had been brought independently to much the same stage
by Dr. H. M. Markowitz and his colleagues, at the
Rand Corporation.

In the simulation features in the language, we owe a

Operational experience considerable debt to the pioneer work in this field of
This is limited, as yet, but the results seem promising. Dr. K. D. Tocher and his colleagues at United Steel
The compiler took about 9 man-months to write and Companies Ltd.
produces a fairly efficient object program, from the We wish to acknowledge the advice and assistance we
point of view of both storage use and running speed. have received from many of our past and present col-
It is extremely easy to modify and extend, as the leagues, from Mr. D. F. Hartley of Cambridge Uni-
generators can be changed independently of each other. versity who helped us with work on the syntax of the
The ratio of CSL to FORTRAN statements produced, language, and in particular from Mr. I. J. Cromar of
is of the order of 1 to 5, and the ratio of time spent in IBM who bore a considerable part of the work in
writing similar programs in CSL and in FORTRAN is writing the compiler.
also of the order of 1 to 5. We are grateful to IBM United Kingdom Ltd. and Esso
The most interesting point to emerge from use of the Petroleum Co. Ltd., under whose auspices this work has
language is that several problems, which had not pre- been carried out, for permission to publish this paper.
References

BACKUS et al. (1960). “‘Report on the Algorithmic Language ALGOL 60,” Numerische Mathematik, Vol. 2, pp. 106-136.

KeLLey, D. H., and Buxton, J. N. (1962). “Montecode—An interpretive program for Monte Carlo simulations,” The
Computer Journal, Vol. 5, p. 88.

TocHER, K. D., and OweN, D. G. (1960). “The Automatic Programming of Simulations,” Proceedings of the International
Federations of Operational Research Societies Conference. Aix-en-Provence, pp. 50-67.

Appendix 1

CSL test syntax

The notation developed by Backus et al. (Backus et al., {set test)::= (entity> IN {set) | {entity)
1960) is used, extended by the following unconventional NOTIN (set)
syntactic symbols: (set compound)::= {entity> HEAD {set) | {entity>
*+ means “end of line” TAIL (set) | {entity)
iy means “indentation as on the previous line” FROM (set)
—> means “indentation to the right of the indentation {complex test)::= {description line} — (test
on the previous line” chain} | {exists line) |
L means “include the following category on the {unique line)
first line of this structure.” find compound)::= {find line) — {test chain) |
find line)

The categories (label), {empty}, {expression), {entity), . .
{cell) and {set) are left undefined in this extract; the Ctest)::= <simple test) | set test) |
following syntax is intended for illustrative purposes <complex test) | {find
rather than for formal definition, and the meaning compound) | {set com-

of the undefined categories is clear enough for this pound)
purpose. {test chain)::= {test) 3 | (test chain) ¢
{destination)::= (label) & (label) | <label) & | (test) % | (test chain)
& (label) | ¢empty > OR ¢ (test) >
(relation)::= LT | LE | EQ | NE | GE | GT {exists line)::= EXISTS ({expression}) {cell)
{simple test)::= {expression) {relation) {expres- {setd ¥ |
sion) EXISTS (cell) {setd

198

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

Control and simulation language

{unique line)::= UNIQUE ({expression)) {cell)
(set) 3 |
UNIQUE <{cell) {set)> *
(description line)::= ALL {cell) {set) % | {exists
line) | {unique line)
{find line)::= FIND {cell) (set) {criterion> *
{criterion)::= FIRST | LAST | ANY |
MAX ({expression)) |
MIN ({expression))

{simple test statement)::= {simple test)
{destination) % |
{set testd
{destination) ¥
{complex test statement)::= {(complex testd L
{destination)
<find compound statement)::= (find compound) L
{destination)
{set compound statement)::= {set compound)
{destination} %

Appendix 2

Example

This example is based on a CSL program used by
Thomas Skinner & Co. Ltd., publishers of the ABC
timetables, to work out routings for the Quick Reference
Section of the ABC World Airways Guide.

Initial statements in the program read in a two-
dimensional data array of mileages between all airports
in a given part of the world, and establish three sets
which hold subgroups of airports. The first of these,
AIRPORTS, holds the names of those airports between
which possible transfer routings involving one change of
aeroplane are required. The second set, TRANSFER-
PORTS, holds the names of the major airports where
transfer facilities are possible. The third set, USED, is
used during the program as a working-space set. A
transfer routing is permissible provided that the total
mileage flown does not exceed the direct mileage by
more than 15%,.

The following program establishes valid transfer
routings. The initial statements are omitted and the
output statements are stylized to avoid the introduction
of detail which has not been fully described in the paper.

The transfer airports for each airport pair are written
out in the order of increasing total mileage.

FOR A AIRPORTS
FOR B AIRPORTS
ALTB &2
WRITE A, B
ZERO USED

1 FIND X TRANSFERPORTS MIN
(MILEAGE (A, X)+MILEAGE (X, B))
&2

X NE A
X NE B
100* (MILEAGE(A, X)+MILEAGE (X, B))
LE 115*MILEAGE (A, B)
AIRPORT. X NOTIN USED
WRITE X
AIRPORT. X HEAD USED
GO TO 1

2 DUMMY
EXIT

Book Review

An Introduction to Numerical Methods, by R. BUTLER and
E. KERR, 1962; x + 386 pp., 8% X 5%in. (Pitman.) 40s.

In spite of reference in the Preface to the high-speed computer
and to automatic computing, this book is entirely concerned
with methods for desk computing, and even then only with
the more elementary ones.

It is a long-drawn-out exposition of these elementary
methods with a large number of numerical examples.

It contains a discussion of rounding-errors (in chapter one),

199

the solution of algebraic, transcendental and simultaneous
linear equations (avoiding matrices), and including accounts
of synthetic division, Horner’s method, etc. (chapter two),
Finitc Differences (chapter three), Interpolation (chapter
four), Numerical Differentiation and Integration (chapter five)
and the solution of differential equations (chapter six), all at
a level much more elementary than, for instance, in Hartree’s
Numerical Analysis.

J. C. P. MILLER.

¥202 Iudy 61 U0 1senb Aq 0212 h/v6L/€/G/2101 e/ |ulWwoo/woo dno-ojwsepeoe//:sdiy wolj papeojumoq

