
A dynamic storage allocation scheme

By J. K. Iliffe and Jane G. Jodeit

This paper describes a system of semi-automatic storage control which has now been in operation
on the Rice University computer for a period of 18 months. Experience in using the system
reveals the possibility of a high level of automation in solving storage allocation problems with
comparatively simple provisions in machine hardware. Further areas in which machine design
may assist in solving these problems are suggested.

1. Introduction
The technique to be described in this paper is based on
the use of codewords, which are essentially pieces of
descriptive information held in the machine during the
execution of a program. These provide the basis of
communication between programs, and between pro-
grams and arrays of data. The use of similar control
devices has increased significantly in recent years,
notably with reference to commercially oriented systems,
and that presented here is an integral part of an operating
and compiling system (Iliffe, 1961). It is particularly
convenient when it can be arranged that the information
about arrays which is acquired during the compilation
phase of a program can be carried over, essentially
unchanged, to the execution stage in the form of code-
words. This tendency towards blurring the hitherto
sharp distinction between compilation and execution
processes seems to be one of the most important aspects
of the codeword technique, and it is capable of much
further development than we shall be concerned with
here.

Codewords are not, however, merely an adjunct of a
compiling system. They have been used extensively
with both "machine language" and "symbolic assembly"
systems, whenever it was found convenient to leave
storage allocation to the machine. Such a situation
arises at first out of necessity, as when writing a program
to operate on arrays of unknown length, and subse-
quently out of choice, since one quickly comes to realize
that by leaving storage allocation to the machine the
programmer wins a new degree of freedom in the
mechanics of putting together separately prepared pro-
grams and data, as a means of applying a computer to a
particular problem. Out of such mechanics have arisen
also the "relocatable" and "relativized" forms of pro-
grams, the "common" region and "communication"
list as means of passing information from one program
to another, and the loading routine, which does imme-
diately prior to execution what could not be done before
in the way of storage allocation.

Until recently, "leaving it to the machine" has meant
simply either stating maximum array sizes at compilation
time or specifying array sizes by giving the values of
certain parameters along with all the other information
which is given to the machine at load time. The second
method avoids wasting space, but makes for a more

complicated loading routine. Such techniques deal
inelegantly, if at all, however, with situations in which
either (i) the total problem size exceeds the capacity of
the available "main store," or (ii) the actual storage
requirements depend on values derived during the
course of the calculation, or (iii) two or more problems
are to be scheduled to share the store at a given time.
Such situations are important: a compiler is a set of
programs to which all three conditions may pertain;
A solution to these difficulties is to allow both the
extent and position of elements of a program to vary,
in the course of problem solution, at the discretion of the
programmer, or the operating system, or of both: it is
this process which we term "dynamic storage allocation."

We shall demonstrate that the codeword system
combines the normal functions of a loading routine
with the ability to allocate storage dynamically. It also
provides the basis for a powerful operating system; it
simplifies the indexing of arrays; and it provides for
some elegant extensions of problem-oriented languages.

In the Rice University system, the technique is applied
to scientific problems, in which fairly elaborate data
structures are handled, but simple input-output controls
are sufficient. The following three Sections describe
the basic system of codewords, the allocation of storage
space in a single-level store, and the method of operating
on arrays. Section 5 introduces a technique, still in the
experimental stage, for extending the apparent size of
the main store by using a backing store with some
automatic control over block transfers. Finally, the
significance of the codeword technique in both hand
coding and compiling is discussed, with particular
reference to the page-address scheme of the Ferranti
Atlas.

2. The codeword representation
Consider a store S of consecutively numbered loca-

tions in the range (L, H). A sequence of consecutive
locations within S will be termed a block and identified
by the pair [F, N] giving N(> 0), the number of words
or elements in the block, and F, the address of the first
element.

A block may be indexed in which case the content
(consisting of a signed integer or zero) of a particular
register / is associated with the block during the
addressing process which is described below. Given

200

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

an indexed block, a base b may be associated with it,
with the significance that in some external referencing
system the first word of the block has index number b.

The block description is completed by specifying a
type t, which is used by output procedures in determining
the format of the block elements, and four numbers
p, q, r, s, whose use will be given in detail below. In
general terms, p is used to indicate whether or not the
block is in main memory at a given instant, q indicates
whether or not the block has a reserved (fixed) position
in the backing store, r indicates whether or not the
elements of the block are codewords referring to other
blocks, and s is used in determining the activity of the
block. We shall denote p, q, r, s, t collectively by the
symbol 6.

The specification of (F, N, I, b, 6) in coded form
requires something of the order of 48 bits, or one machine
word on many contemporary machines. F and N are
of the order of a full address length (15 bits) each; /
is one of a small group of special-purpose index registers
(modifiers); b is normally a small positive or negative
integer or zero; t can occupy 2 or more bits, depending
on local requirements; p, q, r and s require only 1 bit
each. Table 1 shows the coding of the block specification
on the Rice University computer, of which the 56-bit
word length is more than sufficient, particularly when
allowance is made for the extravagant coding of / and b.

A block specification thus represented in a machine
location is termed a codeword; if this is stored at location
B then it is possible without ambiguity to refer to the
"block B," meaning that whose codeword is found in
location B.

Assuming that the length of a single machine word is
sufficient to contain a codeword, the possibility arises
that the elements within a block B may themselves be
codewords referring to a set of N "lower level" blocks
{£,}, i = b, b + \,...,b+N—\. This situation is
dealt with by setting r = 1 in any codeword referring
to a block of codewords. In other cases r = 0, indi-
cating that the block elements are single-word data
representations. We shall refer to the structure con-
sisting of a block B together with (possibly) a descending
tree of sets of sub-blocks as the array B. The content of
location B is the principal codeword of the array; any
other codewords which may occur will be termed
auxiliary. In practice, arrays with up to four distinct
levels of codewords have been commonly used. Mixed
blocks with both codeword and numerical elements are
not normally permitted.

In detail, operations on arrays are defined in terms of
operations on their individual elements. A definition of
an array operation consists of a program which obtains
access to array elements by indirect referencing through
the codewords of each array. Let A be an array code-
word. In symbolic coding practice the appearance of
"A" as an address field of an order indicates that the
contents of location "A" is to be used as an operand.
In the present case we want to use A to specify a code-
word, and then to use the information in the codeword

to advance to an element in the array A. This is done
in the following way: the given first word address F of
the block A is modified, using the content (/) of the
given index register /; the address so obtained is either
that of an operand or of a codeword. In the former
case the process terminates, and in the latter case it is
applied again to the new codeword, as it was to A. One
way of looking at this is to imagine stepping automatically
through a list structure with N branches at each node
instead of two, the actual branch taken depending on the
value of a parameter / associated with the node and set
prior to entering the addressing sequence. From this
point of view, the sequence terminates when an atomic
element of the list has been selected. In order to denote
addressing of this type we shall use the notation "*A"
and associate with it the application of the following
Addressing Rule:

Rule 1: Let A — (F, N, I, b, p, q, r, s, t) where the
content of / is i.
Assume that p = 0 and 0 < i — b < N. Then
if r = 0 the operand selected by "*A" is in
location F— b + i; if r — 1, the operand
selected by "*A" is the same as that obtained
by applying the Addressing Rule to the address
"*F - b + L"

In more usual terminology, addressing is performed
by iterative replacement through a sequence of code-
words, with B-modification at each stage of the iteration.
The iteration is terminated (r = 0) when the address of
an elementary operand has been found. The condition
p = 0 assures that the block is in storage when Rule 1
is being applied; ifp = 1, Rule 2 is applied, as described
in Section 5. If the condition 0 < i — b < N is not
satisfied, the operand of *A is undefined: this means, in
effect, that the location number of the selected block
element is outside the permitted range (F, F + N — 1).
Because of Rule 1, it is usual to store F' — F — b in
the codeword A in place of F. If A is not an indexed

Table 1

Coding of the Block description on the Rice University
computer

F,N
I

b
t

P, 1, r, s
(Spare)

15
6

12
2

1
2

bits
bits

bits
bits,
00:
01:
10:
11:

each
(selecting one index register out
of six)

, decoded as follows:
Octal Data, format # 1
6-bit character strings
Octal Data format # 2
Decimal Data

bit each
bits

201

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

block, then by definition b = i = 0 and the effective
address obtained at each stage of the iteration is F, so
that it is not normally meaningful to have unindexed
blocks appearing within an array structure, except as
terminal elements.

It is important to emphasize the dynamic nature of
the addressing process: in any application of Rule 1 the
current contents of a series of index registers Iu I2, • • ., 4 ,
determined by the codeword hierarchy of the array, are
used. Programming through codewords involves pre-
setting the contents of these registers to make the correct
selection of array elements.

Example l(a). An important example of an array
structure is afforded by the representation of a rect-
angular matrix, whose elements, occupying single
machine words, are stored by row in the machine. Let
row i of the matrix be found in block \Fh N], with code-
word Rt = (Fh N, J, 1, 0, q, 0, s, t) which indicates that
the block is indexed by / , with external subscript
range running from 1 to N. Let the row codewords
be arranged in order in a block [F, M] with codeword
C = (F, M, I, 1, 0, q, 1, s, i) indicating that the block
is indexed by /, with external subscript range running
from 1 to M. Consider an execution situation in
which (/) = i, (J)=j and the address "*C" is to be
decoded by Rule 1. We then have "*C" replaced by
"*F — 1 + i" (since r = 1). But {F - 1 + 0 = Rh
by construction of the row codeword block, and "*R,"
gives the operand in address Ft — 1 + j (since r = 0);
the latter, however, is the address of the yth element of
the ith row of the matrix, which we may denote by Cit s
in accord with the conventional notation.

The importance of this result is in the fact that it
provides a method of addressing a matrix element which
is independent both of the actual position of the matrix
in storage, and of its row and column sizes. All that is
required during coding is a knowledge of the location
of the principal codeword C, the determination of which
is as simple a matter as locating single-word numerical
operands. During execution, provided the codeword
structure is maintained, the matrix can be placed any-
where in storage, and its position, or the position of
some of its rows, may be changed to meet other storage
requirements if desired; the block of auxiliary codewords
C also has this property of mobility during execution.

Example l{b). In the previous Example, we may
have constructed codewords CT = (F, M, J, 1, 6),
Rj = (Fh N, I, 1, #,), i.e. interchanging the roles of
/ and J. With the same initial conditions, addressing
"*C r " would now give the element Cjti. In other
words, constructing C and Rf "virtually" transposes
the matrix, without altering the position of any of its
elements in storage.

Example l(c). Again referring to Example l(a), it is
fairly easy to see that if we apply a permutation operator
&(i -> TT(/)) to the block C, then addressing *C will

F

C\

Cl

ST VT

S

w

Fig. 1.—Main storage areas

give the element Cn&j from the same initial conditions.
A row permutation has been effected by rearranging the
auxiliary codewords. It is not so easy to effect a column
permutation. What might be done, given a permuta-
tion 8%(j^-p{j)), is to set up a new vector Q, where
Qk = p{k), k = I, 2, . . ., N. Let Q be indexed by the
content of register K. Then C,, p(J) will be obtained by
first setting (K) = 7 and addressing *Q, thus obtaining
p(j), then setting (/) = p(j) and addressing *C. This
illustrates the general method of coding subscripted
subscripts.

3. Memory organization

Fig. 1 shows the main divisions of the addressable
(random-access) store in the codeword system for the
Rice University computer. The region F denotes a set
of fixed stores associated with the accumulators, trap
addresses, and manual operating system. Region C is
a basic "directory" of codewords referring to arrays in
the remaining region S. C is divided into Cl which
refers to the "system" arrays, and C2 which refers to
arrays defined by the programmer and the more common
library routines for elementary functions, matrix opera-
tions, etc. Thus the simplest way for a programmer to
assign addresses to his array codewords is to place tnem
in C2; once chosen they normally remain unchanged
for the working life of a problem. The final region W
is used as a common working storage push-down list by
all routines: one index register is set aside to index the
list. F, Cl and C2 contain 64 words each, W contains
128 words, and the remainder of the 8,192-word store
is devoted to S. However, both C2 and W are readily
extended in length if necessary.

Provision is also made for identifying programs and
data by name by maintaining a table of symbols, ST,
which identifies each named object in the machine at a
given time. To each entry in ST corresponds an entry
in the table of values, VT; for scalar quantities this
entry will contain the value itself; for programs and
arrays the corresponding principal codeword will be
found in VT. At the start of a computing run, ST and

202

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

Co

Fi - 1

Fi

Gi

Gj

Fi- 1

Fi

Fn~ 1

Fn

Gm

G\ T

c,

C2 Mi

i
i

GJ+i Mj

Ai C,

Cn

0 Mm

Start of inactive chain. Total
m

available space, T = £ Mj.
' I

First active block \F\, Ni]
occupies JVj + 1 locations in
store. Codeword at C\.

First inactive block [Gi, Mi]
occupies Mi locations in store.

General inactive block
[Gj, MJ\.

General active block [Ft, Ni].
Codeword at C,-. When pro-
tected, Ai gives the backing
store address.

Last active block [Fn, Nn].

Last inactive block [Gm, Mm].

Fig. 2.—Layout of available memory S

VT of suitable length are selected in S; they are them-
selves referenced through codewords in C\. At any
time, the principal codeword for any array in the
machine will be found in VT (if it is named), in C
otherwise.

Consider a storage configuration requiring the use
of n blocks in S, [Fh Ni], i=l,2,...n, where the N,
are initially known, and Ft are to be determined. Assume

n

that 2 N, < H — L + I — n, so that the available

storage S(L, H) is adequate for the complete con-
figuration. Then a method of selecting the F; is simply
given by the formula:

F, = L+ '

This is the rule adopted on initially loading S. It will
be noted that blocks are loaded sequentially, and that
an extra location is taken before each block, which is
used to form a "back-reference" from each block
pointing to its codeword C,-.

After the initial assignment, the remaining space in S
is designated as an inactive block. As calculation pro-
ceeds, further blocks are taken from the inactive rejpon,

and in due course previously active blocks are returned
to the inactive region. In a general situation, therefore,
S is divided randomly into active and inactive areas as
illustrated in Fig. 2. Let the inactive blocks be [G,, Mj],
7 = 1 , 2 , . . . , m. Then to facilitate searching for space
the first location of each inactive block is used to give
its size Mj, and the location of the next inactive block in
memory, GJ+U thus forming a simple chain. The
starting point of the chain is in a fixed location Go of
the Cl region, and it is terminated in Gm, for which the
"next inactive block" is given address 0. Go also

m
contains T = £ M,, the "total available" inactive

7 = 1

store at any time.
Through the control program described in Section 4

requests are made for blocks of storage of arbitrary
length, say E. Assuming E + 1 < T, i.e. that there is
sufficient space to satisfy the request, three methods of
taking space, of increasing complexity, are attempted.

Procedure SI. Starting at Gu search is made through
the Gj sequence to find the first M,for which E + 1 < Mj.
If some such region, say [G/, M,] is found, the block
[G/, E + 1] is activated, and a smaller inactive block
[G, + E + 1, M, - E — 1] is substituted for [G,, M,]
in the inactive chain.

Procedure S2. If 57 fails, an attempt is made to
find two or more adjacent inactive regions which can
be combined to give the required block size. Thus, if
there is a J for which Gj -f- Mj = GJ+U then a new
block [Gj, MJ + MJ+1] can be formed and substituted
in the chain for the previous [Gj, Mj] and [GJ+,, MJ+,].
After combining inactive blocks, SI is reapplied.

Procedure S3. Finally, if no useful space is recovered
by method S2, a complete reorganization of memory
takes place, in which all active blocks are compressed
to the low-address end, leaving a single inactive block
of adequate size to meet the request. Let [Gu M,] be
the lowest-addressed inactive block in memory. Then
it is either the last block (in which case the recovery
process terminates), or it is followed by a block [Fh N,\.
Assume [Fh Nj] is active (if it is inactive it can be com-
bined with [Gj, M,] by the method in S2), and transfer
the elements of [Fh Nj] to [G,, JV,], thus leaving the
lowest-addressed inactive region at [Gj +N, + l.Afj].
This process is repeated until there are no more active
blocks to be moved.

In the process of moving an active block there are
two adjustments which may have to be made in other
parts of memory. Firstly the codeword referring to
the block must be made to give the correct starting
location. Secondly, if the block itself consists of a set
of codewords, each back-reference from the lower-level
block must be adjusted accordingly.

There are obviously certain restrictions on mobility
which it is practical to make on a conventional machine,

203

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

even though they could be removed in theory. In the
first place, principal codewords in C are fixed, and
referred to by fixed addresses in all programs. The
codewords in VT are referenced by a type of transfer
vector (see Fig. 3) in each program which is automatically
set up by the loading routine. Hence it is not possible
to allow VT to move once a set of programs has been
loaded for execution.

Finally, there is the problem of maintaining correct
link addresses through a series of subroutine transfers,
in case one of the subroutines is moved before a return
is made. To do this in complete generality requires the
saving not of an absolute return address, but of sufficient
indices to select the correct point of return to the higher-
level program (which may itself be an element of an
array). In effect, this means that subroutine entry and
exit become small subroutines in those cases where a
memory reorganization may take place in the lower-
level routine. Since, in fact, only a minority of sub-
routines are of the latter type the general scheme of
linkage has not been put into effect, and immobility is
achieved by a simple device described in the next Section.
In a machine making great demands on the store,
facilities for this type of linkage would be a highly
desirable feature of the hardware.

4. Operations on arrays
It is important conceptually to be able not only to

address and manipulate individual elements of an array,
but also to regard it as a whole, and perform what might
be thought of as "macro-operations" on it. This facility
is equally desirable with regard to programs which the
programmer has written, and now wishes to regard as
single operators in building up a larger system, as with
the programs in the system library, or with the arrays
on which they are intended to operate. Thus given a
matrix inversion routine INV, and a matrix M, we
wish to apply INV to M with the minimum of bother
about where INV and M are, how big M is, and so on:
these are details which the routines can find out for
themselves, through the codewords. Under the generic
title of "arrays" we include programs, vectors, matrices,
and higher-order structures devised by the programmer
to suit the ordering of his data, or the logical structure
of his programs. The sort of operations which can be
applied to arrays include purely numerical manipulations,
transmission from one storage medium to another, and
"growth" processes such as generation, extension,
branching and decay: these operations may be applied
either by the programmer in the course of his program,
or by the operating system.

It is convenient to introduce a pseudo-code to describe
operations on arrays or parts of arrays. This is essen-
tially a generalized single-address code which is obeyed
interpretively by part of the operating system. In the
Rice University machine, each command in this pseudo-
code is encoded in a single machine word which is
termed a control word.

A "pseudo-address" is used to select an array, or a
block, or a segment of a block. Thus a codeword address
C is given, together with a pair of numbers (/,'«),
indicating that in the block C the block of elements
with (external) indices/ , /+ 1, . . . , / + n — 1, is to be
the operand of the control word. It is convenient to
set (/, n) = (0, 0) if in fact the entire block C is the
operand, for in this case the true values (b, N) can be
obtained automatically from C. If, in C, r = 1 (indi-
cating that C contains auxiliary codewords) then the
operation can be applied either to the selected block, or
it can be applied iteratively to each block referred to by
the auxiliary codewords. Which alternative is taken is
determined in the pseudo-code. For example, it is very
useful to be able to print out codewords referring to an
array, as well as the array itself, during testing pro-
cedures. In the "iterative" type of addressing, the same
choice is made when any further arrays of codewords
are encountered; thus it is possible to cause an operation
to be performed on all elements of an array of arbitrary
structure.

One of the principal operations on an array is the
act of defining it. Pseudo-orders are provided to
generate codewords and take space automatically for a
vector or rectangular matrix or a program; this space
may be left occupied by zero words, or having taken
space, a READ operation may be used to fill it from
paper tape punched in one of a variety of octal, hexad,
or decimal formats. To define more elaborate structures,
control words are provided which enable codewords to
be addressed relative to the "zero external index"
position of any block in the machine. This so-called
"base selection" procedure works as follows.

(1) Under "base zero" conditions, any codeword
address C which is used refers to the fixed machine
address C.

(2) It is possible to select a block B, and indicate that
thereafter any codeword address C will be taken
to refer to that in machine location corresponding
to Bc = Bo + C. In these conditions, codeword
referencing is relative to base B.

(3) Several successive block selections may be made,
each one relative to the previously determined
base, in order to reach a particular block in a
complicated array. A control word is provided
to "step back" to base zero conditions, or through
a specified number of levels.

Example 2. Consider a matrix M whose elements
are programs MitJ. It is required to define program
Mi, J by reading it from paper tape. The necessary
control words have the functions:

1. Select base M\
2. Select base /;
3. Read block J;
4. Return to base zero.

Apart from defining an array, operations are provided
for erasing it or part of it (i.e. returning space to the
inactive chain) and for dumping it on the backing store.

204

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

Given any block, it is also possible by means of control
words to erase it in part, or to insert a segment of zero
elements at either end or anywhere in the middle.

The remaining pseudo-operations are for the con-
ventional functions of the operating system, namely
making corrections, checking data, printing, punching,
setting tags (or "flag bits"), and initiating the execution
of programs. Control words are normally presented in
their octal form, but provision is made for identifying
arrays symbolically. No attempt has been made to
put the complete pseudo-orders into mnemonic form,
since they contain a large amount of information which
would thereby become unnecessarily cumbersome, and
the present format has proved quite adequate for both
manual and tape-controlled operating procedures.

The "READ" operation is naturally the basis of the
loading routine. Since all the system subroutines are
themselves in array form, however, it is of interest to
note the method of getting the system into operation.
A short program is automatically read into the store,
sufficient to reserve the regions F, C and W, and to be
able to perform enough of the READ operation to load
simple programs and vectors with codewords in C. The
following programs define the basic parts of the inter-
pretive scheme, and take space for ST and VT. At this
point a control word is read which transfers the loading
operation to the general part of the interpretive scheme,
with the initial storage allocation scheme outlined in the
last Section. This enables symbolically denned data to
be loaded, and appropriate cross-references to symbolic
data to be placed in each program, making further use
of address replacement.

It should be remarked that each program is executed
in a relativized form, so it is relocatable, without altera-
tion, to any part of the store. References to a principal
codeword in VT are made through a word at the end of
the program into which the appropriate VT address is
inserted by the loading routine. Thus the program
remains relocatable; when it is moved, only its code-
word in VT or C has to be changed (see Fig. 3).

In order to avoid the complications of subroutine
linkage introduced by the reorganization scheme (S3)
it is arranged on loading that all programs which may
call, directly or indirectly, on S3, are placed at the low-
address end of the available store. After these have been
loaded, a control word is used to indicate that all blocks
subsequently defined may be freely moved by the
storage allocation program. This system works tolerably
well, since many programs and all data arrays are not
so restricted. As remarked earlier, the restriction can
be removed at the cost of lengthening subroutine entry
and exit procedures.

5. The nse of the backing store
The system so far described works independently of

any supplementary storage which may be available
apart from the main memory. The existence of a backing
store makes it possible to obtain an effective "single-
level store" of much greater extent than the main

memory region, through an extension of the use of code-
words. Our work in this direction has been restricted
by the use of magnetic tape as a backing storage medium,
which has obvious disadvantages. It seems more useful
to consider a tentative way in which a more suitable
medium may be employed.

A backing store with the access time of magnetic
drums is required in an efficient system. To match the
main memory organization it must also be capable of
accepting and transmitting a block [F, N] with arbitrary
F and N, identified by an address A. When a block is
in the backing store, its address A is placed in its code-
word in place of F. At the same time, the bit p is set
equal to 1.

During the addressing process (Rule 1) it was assumed
that p = 0. The condition p = 1 causes an interruption
of the addressing sequence, and transfer of control to a
routine which will obtain the block, if it exists in the
backing store, and restart the main calculation from the
point of interruption. If a complicated array is initially
held entirely in the backing store, several interruptions
may take place in a single addressing sequence in order
to load blocks of auxiliary codewords to the main
memory prior to obtaining the required array elements.

In the total extent of a calculation, a given block may
be defined for all or part of it; when it is defined it will
spend some time in the backing store and the remainder
in main memory. It is assigned no fixed position in
either store. In particular, it may vary in size dynam-
ically, so that any position it occupies in the backing
store must be relinquished when it is brought into main
memory. Using magnetic tapes, this means that blocks
are stored in an irregular sequence, with gaps which are
difficult to use up; transfers from tape leave more gaps,
and transfers to tape are made to the end of the sequence.
A "recovery" procedure, involving writing out all arrays
on to a new tape and then writing them back into the
backing store, is possible but highly inefficient. Again
the availability of drum storage with short addressable
blocks would offer considerable gains in efficiency.

There is an important subset of arrays, notably most
library and system programs and certain tables, which
never change their content, and hence may be left in
permanent positions in the backing store, without need
to write them up from main memory after they have
been used. These are the "protected" arrays in which
the digit q = 1 in the codeword. For unprotected
arrays, q = 0. If [F, N] is a protected block in S with
codeword C, then location F — 1 will contain in addition
to C the address A of the block in backing store.

Given an unprotected block [F, N] in S, it may be
"erased" by referring to C and setting F = N = 0. At
the same time, [F, N] is added to the inactive chain of
store. If [F, N] is protected, it is "erased" by referring
to C and setting F = A, p = 1, and inactivating [F, N]
in storage.

Given an unprotected block at address A of the
backing store, it is erased by referring to the codeword
and setting F = N = 0. It is impossible to operate on

205

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

a block whose codeword is not in main memory. In
particular, it is impossible to load it into main memory.
It is possible, however, to erase a block while it is in
backing store, since this involves an operation on the
codeword only. In the magnetic-tape system, block A
is not available for use subsequently (unless a recovery
operation takes place); in a more practical backing-
store arrangement, the storage used by A would imme-
diately become available for re-use.

Thus the operations which are available to the coder
through the use of control words applied to an array
C = (F, N, I, b, p, q, r, s, t) are:
ERASE (C) Clear C from the single-level store, making

its space inactive, unless it is protected, in
which case it is only erased from main
memory. In detail:
If q = r — p = 0, erase C. If q = r = 0
and p = 1 erase C from backing store.
If q = 0 and r = 1 and p = 0, apply
ERASE to all elements of block C and
then apply it to C. If q — 0 and r = p = 1,
fetch C to main memory then apply
ERASE. If q = 1 and p = 0, apply
ERASE as for q = 0. If q = 1 and/> = 1,
no action is required.

DUMP (C): If C is in main memory and unprotected,
write it in the backing store and erase
from main memory. If C is in main
memory and protected, erase it from main
memory. Otherwise, no action is required.
Details follow similar lines to ERASE.

Either of these commands requires as parameter the
address of the codeword C, which may be principal or
auxiliary.

It is also necessary to provide an explicit command
for loading an array into main memory. By using this
in an anticipatory fashion, the coder may obtain a
faster-running program, although if he fails to do so
the interrupt procedure will automatically load the
required blocks.
FETCH (C): If p = 0, ignore. If p = 1, r = 0, load C

into S from backing store. If p — 1,
r = 1, load C into 5 from backing store
and then apply FETCH to each element
of the block C.

It should be noted that by explicitly using the FETCH
and DUMP orders the coder initiates a complete transfer
of the array C to or from the backing store, whereas the
automatically generated transfers will be seen to concern
only single blocks. The reason for this is that calcula-
tions often involve only one or two blocks at a time
from a given array, and it is important to avoid loading
the main memory with unrequired array elements. On
the other hand, on the assumption that the coder's
anticipation is accurate, there is no loss of flexibility in
allowing FETCH and DUMP to work iteratively through
an array.

Provision must be made for the eventual situation in
which a block is requested by referring to a codeword
with p = 1, or through a control word, but the total
available inactive space T is insufficient to satisfy the
demand. It must therefore be met by placing one or
more presently active blocks in the backing store. In
order to minimize the use of data transfers, two criteria
must be established: (a) the method of selecting an
active block for transfer to the backing store, and (b) the
rules for combining (a) with the search procedures
SI, S2, S3 described in Section 4.

For example, given a technique for placing a "priority
value" 7T, on each active block [Fh N,], i — 1, 2, . . . , « ,
which in some way approximates to the chance of it
being used in the immediately ensuing calculation, it
does not follow that the block with least priority is the
most suitable for disposal. The decision must be related
also to the amount of space E which is requested, and
the position and size of each block.

It must also be assumed that the use of backing storage
in the form of tape or drums or both involves the
existence of perhaps several autonomous transfers
taking place between main memory blocks and peripheral
devices at a given time. This possibility makes the
application of S3 impossible except in special circum-
stances. We are also faced with the possibility, in
reconsidering subroutine linkage, that a program may not
only move around in the main store, but also be dumped,
so that on returning to it from a lower level subroutine
it may have to be recovered from the backing store.

A recovery procedure U for obtaining an inactive
block of length E in main memory will now be described.
It involves a search through arrays, which is conducted
by starting at a principal codeword in C or VT, and
passing down the array hierarchy to the lowest level
blocks (r = 0), thence working up to the principal code-
word, examining each block which is encountered. C
and VT are scanned cyclically in repeated applications
of U, i.e. one search is satisfied by a block in array B,
then the next search is started at the array following B
in C (or VT). In each codeword which is examined in
the search, the digit s is set equal to 1. If a block is
unused between two searches, s will remain equal to 1;
otherwise it will have been set to 0.

Procedure Ul. For each [Fh iV,], if p = 0, q = 1
and s = 1 the block is erased. If, as a result of this, a
block of sufficient length becomes available, the search
is terminated immediately.

Procedure U2. If Ul fails a second search is made,
dumping each block for which p = 0, q = 0 and s = I,
again terminating the search if a block of sufficient size
is inactivated.

Procedure U3. If £/2 fails, the blocks which remain
(p = 0) are all those for which originally 5 = 0. In all
these now s = \. Hence Ul and £/2 are repeated; this
time the search is bound to terminate, provided E is
within the capacity H — L + 1 of S.

206

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

It is now possible to give an improved version of the
Addressing Rule.

Rule 2. Let A = (F, N, I, b, p, q, r, s, t), where the
content of 1 is /.

(i) If s= 1, set s = Q.
(ii) If not 0 < / — b < N, exit to an error routine.
(iii) If p = 0, proceed as in Rule 1.
(iv) (p = 1). Request a block of N inactive words

through the operating system (this will be satisfied
by first searching the [G, M] chain, by SI and S2
and then applying U if this fails). F is now a
backing-store address. Transfer the block from
backing store to main memory setting F = initial
address, and s = p = 0. Now proceed as in
Rule 1.

The use of magnetic-tape storage in a conventional
sense (as opposed to employing it as backing storage)
is also provided for through codeword control. Assume
that facilities exist for variable-length working, and that
any block of information on tape can be identified by
an address A(7">. Then the process of writing an unpro-
tected block [F, N] to tape is accompanied by replacing
F by AW in the block codeword, and setting p = 1.
(It is not normally meaningful to write protected blocks.)
The recovery operation FETCH (C) applied to a code-
word containing an address A<r> is sufficient to enable
the block C to be located on tape and transferred to
main memory. Unless it is protected, it will at that
point become undefined on tape; a block may, however,
be written to tape, and then protected (setting q — 1),
and thereafter held permanently on tape as opposed to
the backing store.

To enable buffered tape-processing operations to take
place it is convenient to provide one or more blocks in
the permanent part of main memory into which blocks
from tape can be read. This is not quite the same as the
FETCH operation of the previous paragraph, since
(i) the blocks on tape are essentially anonymous, and
(ii) the main memory block is reserved permanently, so
that there is never any need to enter the Search procedure.
The operator FILL (C, ri) causes block C in main
memory to be loaded from the next block on tape
number n; EMPTY (C, ri) writes the content of C on to
tape number n. In each case the size of the block on
tape is equal to the length of C.

In writing an array to tape the elements of the array
must be accompanied by blocks of auxiliary codewords.
Since auxiliary codewords cannot be written until all
lower-level blocks have been written, the information
placed on tape would be very awkwardly arranged for
reading back unless special provisions were made. In
fact, the block addresses to which lower-level blocks
will be written are anticipated, and information is
stored in the correct order for reading back.

Finally, regarding VT as an array, it is possible to
write on to tape all symbolically defined information in
the machine at a given time. This is done by a special

operation, Write Definition Set, WDS (C, ri), where C
gives the name to the set of definitions which has been
written on to tape number n; at the same time, all the
corresponding ST entries are written as a bloc1' on tape.
By means of the reverse operation, Read Definition Set,
RDS (C), a previously existing machine state can be
re-established, or a new state can be built up out of a
combination of sets of definitions.

6. Programming techniques

There are evidently a number of consequences of
the codeword addressing system which affect the human
as much as the automatic coder. The most notable
advantage offered is flexibility in handling arrays and
making cross-references between them. Second to this
is the basis of a dynamic storage allocation scheme,
although it will not be forgotten that other solutions to
this problem, in particular the page-address system
(Fotheringham, 1961), are possible. It is interesting to
contrast the relative merits of what may be termed the
machine-oriented page-address system with the problem-
oriented codeword system, to see what advantages
emerge in any total design.

In the first place it should be said that there is no
inherent preference on the part of a machine user
between problem- and machine-oriented storage control
schemes, since both are intended to remove the same
problem from his sphere of influence without substituting
anything for it. We would also regard the actions of the
more sophisticated programmer who was willing to
insert explicit commands in his code of the form
"(Fetch/Dump) (Block/Page) X" as roughly equivalent
in both cases. The main advantage of the page-address
system is in the simplicity of uniform page storage in
both main store and backing store, and in the absence
of time-consuming search and recovery procedures.
Against this can be put the suggestion that by close
packing the codeword system allows fuller use to be
made of the main memory; it also has some advantage
in handling blocks exactly corresponding in size to the
pieces of data and programs being used and which,
moreover, can continually be adjusted in size to meet
new problem requirements: exactly what weight can be
attached to this advantage is rather a subjective matter.

It should be noted that reference to data through a
codeword is only made when the data is part of an array;
the existence of VT serves to distinguish all the common
external names of a set of routines from the private
internal quantities, whose values are stored within the
separate programs, and referenced directly. This
remark also applies to transfers of control within a
program. An analysis of a selection of existing programs
for the Rice University computer showed that references
to data through codewords amounted to 10-15% of
total data references. Thus, the address comparison
which is an essential part of the page-address system is
avoided in a high proportion of store references when
codewords are used. There are no lock-outs on the

207

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

Rice computer, but errors arising from the omission of
a check at this point are extremely rare, particularly as
nearly all programs are assembled or compiled from a
symbolic external language in which references outside
the program area, other than through VT or C, are
impossible. The most likely source of error in an
address is through an index value of an array running
wild, but since by construction of the codeword system
all array references are through VT or C, it is feasible
to make a check at this point to see that the bounds of
the array have not been exceeded. (This is done in the
B-5000 Descriptor System (Burroughs, 1961).) Evi-
dently, such a check is even stronger than the page
lock-out scheme, and one of a number of less rigorous
and less complicated schemes could be accepted.

An advantage of the codeword scheme is that elements
of arrays of two or more dimensions can be addressed
with "true" index values in the index registers, rather
than having to compute the value of an address function.
Many benefits to automatic coding are thereby pur-
chased. The price of this, of course, is that two or more
memory cycles may be taken (applying Rule 1) where
traditional methods would require one, providing the
compiler were sufficiently adept at loading and incre-
menting modifiers. Little has been done so far to
mitigate this effect in compiled programs, but a number
of steps can be taken in hand-coded routines to regain
lost efficiency. Consider, for example, a routine R
operating on a block [F, N] specified by a codeword C
whose address is given to R as a parameter. Provided
the main computation in R makes no demands for
extra storage (which may involve re-allocation) it is per-
missible to extract F and N from C and use these as the
true parameters, as in conventional coding. A second
device is available on a machine with a set of stores
with appreciably faster access time than the main
memory: any codeword which is frequently being
referenced is brought to one of these for the duration
of that routine, or for parts of it.

Finally, given a well-defined set of arrays constituting
a complete method of solution for a given problem, it is
possible to fix at least a subset of these in main memory
and replace cross-references through VT by direct
references to blocks, thereby reducing by one the number
of iterations in applying Rule 1 in many cases.

A useful side-effect of the automatic facilities for
applying Rule 1 is the ability to set up communications
between data and programs generated by a subroutine-
type compiling system. Fig. 3 illustrates a memory
scheme containing two programs P, Q, a vector R, and
a symbolically-identified scalar value S. P makes
reference to Q and R, and Q makes reference to S. The
program P is followed by two words (a, a + 1) in which
the addresses of the codewords of Q and R are entered
on loading P. These addresses are qc, re respectively.
Since Q and R are non-scalar, replacement bits, indi-
cated by *, are also inserted. No changes are made in
the program. Similarly, when Q is loaded, the address
sc is inserted in the word (b) which is at the end of Q,

Fig. 3.—Communication through VT (External variables)

[Mnemonic operations: CLA = Clear and Add
TSR = Transfer to Subroutine]

Fig. 4.—Communication through W (Parameters)

but since 5 is a scalar, no * bit is inserted. The words
thus formed act as "partial" codewords in forming links
in replacement chains through which correct data
references may be established. The paths of the chains
are indicated by the arrows in Fig. 3. Thus the reference
at p in P passes through a + 1 (indirect relative address)
to re (indirect absolute address) to r + (/) — 1 (direct
absolute indexed address). If it is necessary to move R,
only (re) needs to be changed. No problem arises if
an array varies in size or structure in the course of a run,
or from problem to problem.

By analogy with the above method of referencing the
external variables of a program, those of its parameters
which are called by name can be handled through a list
of addresses which is built up in the PF-region by the
calling routine prior to entering a subroutine. For
parameters called by value, which we restrict to being
scalar quantities, the value is stored in the W-list and
the * bit is omitted from the address in the program.
Fig. 4 illustrates the use of program Q which has one
parameter called by value, and two by name. In the

208

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

Dynamic storage allocation

particular configuration given, the value of a quantity x
has been stored in the W-list, together with the address
of a vector R whose name appears in ST, and the address
of a scalar parameter N which is to be found internal to
the program P. The quantity PF is a pointer set by the
calling routine and fixed throughout the execution of Q.
It is used by Q as a reference point in addressing para-
meters. Arrows point out the paths taken in the
replacement chain.

Detection of the state p = 1 in a codeword can also
be the means of locking out arrays "during transfer
operations, or of obtaining operands defined in a number
of unconventional ways. For example, elements of a
matrix may be defined by means of an algorithm rather
than by an explicit array; or a variable may be defined
formally in terms of others, and require to be evaluated
interpretively.

It need hardly be added, finally, that the unique
correspondence between codewords and the data they
reference makes it possible to provide information to
the coder which he would otherwise have to make
special provision to obtain. For example, in the algebraic
language such functions as ROW (#M), COL (#M),
applied to a matrix M, and LENGTH (~#K) applied
to a vector V, are used to obtain the sizes of any arrays.
By executing the program VSPACE (#U,a,b)a. vector
U of b — a + 1 elements is defined, with external sub-
scripts ranging from a to b; any previous definition of
U is erased, and a pre-assigned B-register is used to
index U. The ability to include matrix and vector
operations within the algebraic formula language is very
simply gained.

It can be seen that a large number of attractive facilities
are provided through the use of a codeword addressing

scheme. Its disadvantages are encountered when heavy
demands are made on the main memory space by blocks
of varying size, as, for example, may be the case in a
large-scale scheduling system. Thus a demand for a
block of size E, currently in backing store, leads to the
successive operations:

1. search the [Gj, Mj\ chain for a suitably-sized
block E,

2. if no block can be found, apply the recovery
procedure U,

3. transfer the required block to main memory.
In general, none of these three operations can be over-
lapped, in contrast to the page-address scheme in which
a spare page is always kept on hand in main memory-,
and the transfer from backing store can take place while
a search is being made for a new spare page. Hence the
frequency with which the recovery procedure has to be
applied is a critical parameter in assessing the perform-
ance of the codeword system on a particular machine.
On a large machine, on which recovery time becomes
vital, it might be feasible to include a scavenging
program of low priority in the list of programs under
execution, automatically increasing its priority when
the available inactive space fell below a critical level.

7. Acknowledgement

The work described in this paper was supported in
part by grants from the National Science Foundation,
G-7648, and from the National Aeronautics and Space
Administration, NsG-6-59. Construction of the Rice
University Computer was sponsored by the Atomic
Energy Commission under grant AT-(40-l)-1825.

References
BURROUGHS CORPORATION, "The Descriptor," 1961.
FOTHERINGHAM, J. A. (1961). "Dynamic Storage Allocation in the Atlas Computer Including an Automatic use of the Backing

Store," Communications of the A.C.M., Vol. 4, p. 435.
ILIFFE, J. K. (1961). "The Use of the Genie System in Numerical Calculations," Annual Review in Automatic Coding, Vol. II,

Pergamon Press, 1961.

209

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/200/424382 by guest on 13 M
arch 2024

