
Translation to and from Polish notation

By C. L. Hamblin

"Reverse Polish" notation is embodied in the instruction languages of two recent machines, and
"Forward Polish" notation is of use in mechanized algebra. This article illustrates, using a simple
language without detail, some methods of translating between these notations and an "orthodox"
one of the kind used in FORTRAN and ALGOL.

The question of efficient translation between an
"orthodox" mathematical notation of the kind ordinarily
used in writing algebraic formulae (and copied as closely
as is practicable in FORTRAN and ALGOL) and
"Polish" notation has come to prominence as a result
of the use of what is in effect Polish notation as the
basic instruction language of two recent computers.*

Polish notation is so-called because of its extensive
use in Polish logical writings since its invention by
-Lukasiewicz (1921, 1929). -Lukasiewicz demonstrated
that if operators are written always in front of their
operands, instead of (as in the case of the diadic operators
of arithmetic, " + ", "—", " x " and so on) between them,
there is never any need for brackets to indicate associa-
tion of terms. Thus if in place of "a -f- b" we write
" + a b", and so on, the brackets in an expression such
as "(a + b) X c" may be dispensed with in translation,
since " X + a b c" indicates unambiguously the result
of operating with " x " on "-\-ab" and "c": for
"a + (b X c)" we should instead write " + a X b c."
The resulting notation, in the case of long formulae, is
a little harder to read, since brackets aid the eye, but it
has some other advantages. In particular Reverse
Polish—the notation which results if operators are
placed after operands, as in "a b +"—has the property
that the operators appear in the order in which they are
required in computation. Reverse Polish is hence in
some sense a natural notation for an instruction language,
each symbol being interpretable as an instruction.
(Number variables are "fetch" instructions.) The
absence of brackets further makes Polish notation (—
either Forward or Reverse, but probably preferably
Forward—) useful in mechanized algebra, since it eli-
minates a continual source of complication in algebraic
manipulations.

Machine translation from one notation to another is
needed in writing compilers for the new machines, and
it is possible to foresee a variety of future uses for it.
This article illustrates, using a simple language without
detail, some translation methods. In general, translation
is extremely simple if done in the right way

It is convenient to distinguish "pure" translation from
translation which involves manipulation or rearrange-
ment. A simple way of characterizing this distinction

* The English Electric KDF9 and the Burroughs B5000. Each
of these uses a "push-down" (or "nesting") type of store for
arithmetic operands and results, following a scheme suggested by
the present author (Hamblin, 1957, 1957, 1960; see also Hamblin,
Humphreys, Karoly and Parker, 1960).

is in terms of the order of the number-denoting symbols
(numbers and number variables): in "pure" translation
these symbols remain unaltered and in the same order
in the translated formula as they were in the original.
Thus we shall say that the transformation of
"a +(b X c)" into Forward Polish " + a x J c " is a
case of pure translation, whereas its transformation into
" + X b c a" though this is an equivalent form, involves
manipulation as well as translation, since the order
"b c a" of the number variables is different. We confine
ourselves to pure translation, so defined, in what follows.

This restriction, however, does not yet entirely remove
the possibility that a formula in a given notation should
have alternative forms. This is because of the asso-
ciativity of some arithmetical operators. Thus in
orthodox notation "(a + b) + c" is equivalent to
"a +{b + c)," and the brackets are usually omitted;
but to these formulae correspond in Forward Polish
the formulae "++abc" and "+a + bc" respec-
tively. To resolve ambiguity we distinguish two special
cases, the early-operator and late-operator forms respec-
tively of Polish formulae. A Polish formula is in early-
operator (late-operator) form if all operator symbols
occur as early (late) in it as possible. Thus "a+b-\-c+d"
becomes "+ + + a b c d" in early-operator Forward
Polish, " + a + b + c d" in late-operator Forward
Polish, "a b + c + d + " in early-operator Reverse
Polish, and "a b c d + + + " in late-operator Reverse
Polish. There are of course intermediate forms such as
"++ab+cd" and "a b + c d + + " which, though
valid Forward and Reverse Polish respectively, are
neither early-operator nor late-operator.

In the case of Reverse Polish for use as an instruction
language it is usually the early-operator form that is
desirable, since this uses the minimum number of
locations in the push-down store.

By Orthodox A I shall mean a language constructed
with orthodox symbol-order out of the following
symbols.

(i) Number-variables a, b, c, d, . . . (The use of
actual numerals raises no essential new issues; we
need not consider it here.)

(ii) Operators + , —, neg, x , f. Of these, "neg"
(representing "negative") is monadic, i.e. operates on a
single number, and is placed in front of its operand, as
in "neg a": the others are diadic and stand between
their operands, as in "a + b". Symbol " f " denotes

210

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/210/424386 by guest on 19 April 2024

Translation of Polish notation

exponentiation: thus for "ab" we write "a | b." (There
is, of course, no difficulty in arbitrarily extending the
range of permitted operators, but these are enough for
our present purpose.)

(iii) Brackets (,). We assume that "-r" and "—"
are weaker (that is, more weakly associative) than "neg,"
which is in turn weaker than " x , " which is in turn
weaker than " f." Hence the absence of brackets will
never actually lead to any ambiguity. For example

neg axb+c^dxe + / x g

will mean —ab + c?e +fg.

Brackets are used to associate symbols into a group
when they are not automatically so associated by these
rules. (There is, of course, no penalty if brackets are
used superfluously.)

It is a trivial matter to convert formulae in a fully
orthodox notation to Orthodox A, provided, of course,
that they use only the permitted range of mathematical
notions. The essential rules are as follows.

(i) Alter "—" to "neg" wherever it occurs at the
beginning of a formula or immediately following a
L.H. bracket.

(ii) Insert " f" wherever there is a change from
normal type-face to that used for exponents, and put
brackets round the exponent which follows if it contains
any operator. Then use the same type-face throughout.

(iii) Insert " x " wherever a number variable or R.H.
bracket is followed by a number variable or L.H.
bracket.

The Polish notations considered here will have exactly
the same range of symbols as Orthodox A, except, of
course, the brackets.

The following cases of translation will be considered
in detail:

I. Orthodox A to Reverse Polish.
II. Orthodox A to Forward Polish.

III. Forward Polish to Orthodox A.
IV. Forward Polish to Reverse Polish.

These cases provide a survey of the relevant techniques.
As will appear, only minor modifications are needed to
give the other cases of interest.

I. Orthodox A to Reverse Polish
This is the simplest of the cases. Let StS2 . . . Sm be

the Orthodox A formula. The symbols of this formula
are examined one by one in order from left to right,
and the translated formula is written out symbol-by-
symbol directly. Number variables are transcribed as
soon as they are encountered. Operator-symbols, which
can never occur earlier in the sequence of number
variables in Reverse Polish than they do in Orthodox A,
are held in a "nesting list" N until conditions for their
transcription are satisfied. (A "nesting list" is a list
operated on the "last-in-first-out" principle. That is,
of the entries in the list only the last is available at any

one time: if the list has entries £,, E2,. . ., £„, it is
necessary to remove £„ before £„_! can be inspected,
and so on.)

In detail, the following are the operations to be
carried out when symbol Sj of the Orthodox A formula
is examined.

(a) If Sj is a number variable a, b, c, d, . . . it is
transcribed directly to output.

(b) If Sj is a L.H. bracket symbol, it is transcribed
to list N.

(c) If Sj is an operator symbol, the last entry—call
it E—of list N is examined: if E is an operator not
weaker than Sj, E is transcribed to output and the next
last entry similarly examined; and so on until Nis empty
or its last entry is a L.H. bracket or an operator weaker
than Sj. Then Sj is transcribed to list N.

(d) If Sj is a R.H. bracket symbol, entries are tran-
scribed from list N to output until a L.H. bracket symbol
is reached: this is deleted.

(e) After the last symbol of the Orthodox A formula
has been dealt with, the remaining entries of N are
transcribed to output.

As described, this procedure gives as output the
early-operator form of Reverse Polish. An alteration
of detail yields a procedure which gives the late-
operator form: paragraph (c) is replaced by:

(c') If Sj is an operator symbol the last entry—call
it E—of list N is examined: if E is an operator and Sj
is weaker than E, or if JET is " - " and S; is " + " or " - , "
E is transcribed to output and the next last entry
similarly examined; and so on until N is empty or its
last entry is a L.H. bracket or an operator not as
described. Then Sj is transcribed to list N.

The special provisions regarding " 4 . " and " —" here
guard against error owing to the incomplete asso-
ciativity of "—": thus, for example, "a — b + c" does
not have separate early-operator and late-operator
forms, becoming "ab — c + " in either case. Actually,
"—" in orthodox notation is associative to the left: this
corresponds with early-operator Polish directly, but will
always lead to a special rule in other cases.

II. Orthodox A to Forward Polish
Translation to or from early-operator (late-operator)

Forward Polish is closely the same as translation to or
from late-operator (early-operator) Reverse Polish back-
wards, i.e. from right to left. In fact the only fore-
and-aft asymmetry that occurs is not in the Polish
notations, but in the Orthodox A, and then only refers
to "neg" which appears in front of its operands when
the formula is read forwards and after them when the
formula is read backwards, and to the associativity
properties of " —." Consequently, under this heading
two translation methods will be considered, of which
the first, which is by far the simpler, is a modification
of that described above, used backwards. Circumstances
might arise, however, in which it was not desirable to
be forced to write and read formulae backwards, and

211

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/210/424386 by guest on 19 April 2024

Translation of Polish notation

in such cases a method such as the second must be
resorted to. The extra complexity of this method is a
considerable penalty, but it is unavoidable since in
translation from Orthodox A to Forward Polish the
operators must be moved forward in the formula, not
back; and this cannot be done on-the-run. The alter-
native of "queueing" the number-variables until the
operators are sorted out is not as simple as it sounds,
since in most cases all the number-variables need to be
placed in the queue before a single one is taken out and
sent to output, and one might as well have no queue
but simply resort to more than one run-through of the
formula; for example, to a translation first to Reverse
Polish, followed by a translation from Reverse to
Forward as described in IV. Method 2, below, would
usually be faster than this.

Method 1
Let SXS2 . . . Sm be the Orthodox A formula, and let

it contain p bracket symbols: after translation let the
resulting Forward Polish formula be S& . . . Si,, where
of course n = m — p. Symbols of the Orthodox A
formula are taken one by one in the reverse order
Sm, Sm_t,. . . and the translated formula is written out
symbol-by-symbol in the reverse order S'n, S'n^\,. . .
The procedure each time a symbol Sj is examined is the
same as in I above, except that if Sj is the symbol "neg"
it is transcribed to output directly in the same way as a
number variable; and that under (c) in I, for "not weaker
than" it is necessary to read "weaker than", and for
"weaker than" it is necessary to read "not weaker than".

This gives the early-operator form. For the late-
operator form a comparable, if slightly more complicated,
modification of (c') is substituted.

Method 2
Here we first effect a "virtual" reordering of the

Orthodox A symbols without rewriting them, by placing
against each (other than brackets) the present address of
the symbol which is to follow it in the revised order. A
separate indication gives the starting-symbol. For
example, if symbols "ABCDEF" were stored at addresses
18-23 respectively, we could indicate our intention of
reordering them "CBDFEA" by noting the address (20)
of C as starting-point, writing against C at address 20
the address (19) of B, against B at address 19 the
address (21) of D, and so on; thus:

Address

(next address)

18
A

19
B
21

Start
20
C
19

21
D
23

22
E
18

23
F

22

This can be done in a single run-through of the formula
with the aid of a subsidiary list L: each entry of L
consists of a symbol and two addresses, indicating a
subsequence of the finished formula. L reduces at the
end of the process to a single entry.

Let SlS2 . . . Sm be the Orthodox A formula, and
S{S2 . . . Si, the corresponding formula in Forward

Polish. Let Ax, A2, • . . , Am be the addresses of the
symbols in the Orthodox A formula. Against each,
unless it is a bracket or the final symbol S'n, we write
an address, Bt, B2,. . ., Bm. The final output will then
be taken as follows: given that Syi is the starting symbol,
it is sent to output and the symbol at address Bn is
fetched—let this be Sj2: this is sent to output and the
symbol at address Bj2 is fetched—let this be SJ3: and so
on until a blank address is reached.

Let list L consist at any time of p entries Eu E2, .. ., Ep
(where p may, of course, be zero). Each entry Ej con-
sists of a symbol 7} and two addresses Cj and D}. 7}
is one of the symbols a, (,+,—, neg, x , \ . Every entry
stands for a sequence of symbols in the final (Polish)
formula: if 7} is a there is a number-denoting expression
which can be found in the Orthodox A formula by
starting with the symbol at address C}—call it Ski:
taking next the symbol at Bkl—call it Sk2: and so on
until the symbol at address Dj has been taken. If 7}
is a diadic operator there is a similar sequence consisting
of that symbol followed by a number-denoting expression,
its first operand. If 7} is a monadic operator we always
have Cj = Dj (there is, as it were, a one-symbol sequence).
If Tj is a bracket symbol the entries that follow it are
all contained within a bracket-pair in the Orthodox A
formula: here C, and Dj are left blank and are not relevant.

At various stages, to be specified, an entry which is a
merger of a succession of existing entries is formed. To
merge £,(= T&D,), £}(= TJCJDJ), and £,(= TkCkDk)
we replace these entries by a single one, namely by
aC,Dk if Tk is a, otherwise by TjCjDk: at the same time
against the symbol (in the Orthodox A formula) at
address D, we write the address Cj\ and against the
symbol at address Dj we write Ck. Similarly for the
merger of a longer or shorter sequence of entries.

The procedure for the writing-in of addresses against
the symbols of the Orthodox A formula can now be
fully specified. The symbols Su S2,. .., Sm are examined
in order and for each Sj the following action is taken.

(a) If Sj is a number variable an entry aAjAj is added
to the list L.

(b) If Sj is a L.H. bracket an entry "(0 0" is added to
the list L.

(c) If Sj is a monadic operator symbol an entry
SjAjAj is added to the list L.

(<•/) If Sj is a diadic operator symbol list L is examined
backwards from the last entry (without removing any
entries) until either a weaker operator symbol, or a
bracket, or the beginning of the list is encountered. Then

(i) if what is encountered (say at Ek) is a weaker
operator symbol, Ek+, is replaced by the merger of SJAJAJ,
Ek+U Ek+2,. .., Ep; and Ek+2,. . ., Ep are deleted.

(ii) If what is encountered (say at Ek) is a bracket
symbol, Ek is replaced by the merger of SJAJAJ, Ek+i,
Ek+2,. . ., Ep; and Ek+U . . ., Ep are deleted.

(iii) If what is encountered is the beginning of the list,
Ei is replaced by the merger of SjAjAj, Eu E2, • • •, Ep;
and E2, . . ., Ep are deleted.

(e) If Sj is a R.H. bracket list L is examined back-

212

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/210/424386 by guest on 19 April 2024

Translation of Polish notation

wards vwunuut removing entries) until a bracket symbol
is encountered (say at Ek); and Ek is replaced by the
merger of Ek+X, Ek+2, • • •, Ep, which are deleted.

When all the symbols of the Orthodox A formula
have been dealt with, if p > 1, Ex is replaced by the
merger of Ex, E2,. . ., Ep\ and E2,.. ., Ep are deleted.
Now C, gives the address of the first symbol in the
Polish formula (and Dx that of the last).

To yield late-operator Forward Polish instead of
early-operator, only a minor modification is needed:
under (d) above, and under (d)(i), in place of "a weaker
operator symbol" write "a weaker or equally weak
operator symbol (other than the symbol '—'in case
Sj is ' + ' or ' - ') . "

m. Forward Polish to Orthodox A
This is a relatively simple case, not unlike I: the

operators may similarly be stored up in a nesting list.
However, provision must, of course, be made for
inserting brackets where necessary; and since the asso-
ciative influence of an operator extends in the result
after it as well as before it the writing of an operator in
the output does not mean that it can be cancelled imme-
diately from the nesting list. Hence an extra provision
must be made in the nesting list for putting a mark
against entries to indicate that they have been "written."

The symbols of the Forward Polish formula SiS2 • • Sm
are examined in order and the following operations are
carried out.

(a) If Sj is a diadic operator it is transcribed to the
nesting list; but a R.H. bracket is written in the nesting
list first if Sj is weaker than the operator which is the
current last entry in the list, if any: in this case also a
L.H. bracket is sent to output.

(b) If Sj is the monadic operator "neg," and if this is
weaker than the operator which is the current last entry
in the nesting list, a L.H. bracket is sent to output and
a R.H. bracket is written in the nesting list: then, and
in any case whether this is so or not, "neg" is transcribed
to output and also "neg" is added to the nesting list,
marked "written."

(c) If Sj is a number variable, it is transcribed to out-
put: then if the last entry in the nesting list is an operator
marked "written," it is cancelled; if it is a R.H. bracket
it is transcribed to output. The next last entry is taken
from the nesting list and treated in the same way, and
so on until an operator not marked "written" is reached:

this is sent to output but left in the list, marked "written."
If no such operator is reached, the translation is complete.

A closely similar method can naturally be applied,
used backwards, to the translation of Reverse Polish to
Orthodox A: compare method 1 of II.

IV. Forward Polish to Reverse Polish
The simplest of all methods of converting from

Forward Polish to Reverse or vice versa is simply to
read the pertinent formula backwards: this is not quite
accurate as it stands, since certain operators such as
"—" and " f" are asymmetrical (Forward Polish
"— a b" means "a — b" whereas Reverse Polish
"b a —" means "b — a"), but it may be possible to
allow for this in interpretation. The order of the
number-denoting symbols is of course reversed. But
where this procedure is unacceptable the following
method is appropriate.

The Forward Polish formula SXS2 . . . Sm is taken
symbol-by-symbol as before, using a nesting list with
provision as in III for placing a mark against each
entry. In this case a mark placed against an entry
indicates that only one operand of the operator con-
cerned remains to be completely written. As each symbol
Sj is examined, operations are carried out as follows.

(a) If Sj is a diadic operator it is transcribed to the
nesting list.

(b) If S} is the monadic operator "neg" it is transcribed
to the nesting list with a "mark" against it.

(c) If Sj is a number variable it is transcribed to out-
put : then the last entry of the nesting list is transcribed
to output if it is "marked," and similarly the next last,
and so on until an unmarked entry is reached: this is
"marked." If there is no unmarked entry translation
is complete.

This procedure, perhaps somewhat surprisingly, trans-
lates early-operator Forward Polish into early-operator
Reverse, and late-operator Forward Polish into late-
operator Reverse; and intermediate forms into inter-
mediate forms. A procedure which would translate,
say, early-operator Forward into late-operator Reverse,
or which would always give early-operator Reverse
whatever the form of the original Forward, would
need to be rather more complicated.

It is immediate from considerations of symmetry that
an identical procedure used backwards—that is, reading
and writing the relevant formulae from right to left—
translates Reverse Polish to Forward Polish.

References
HAMBLIN, C. L. (1957). "An Addressless Coding Scheme based on Mathematical Notation," W.R.E. Conference on Computing,

Proceedings, Weapons Research Establishment, Salisbury, South Australia.
HAMBLIN, C. L. (1957). "Computer Languages," Australian Journal of Science, Vol. 20, p. 135.
HAMBLIN, C. L. (1960). "GEORGE, an Addressless Coding Scheme for DEUCE," Australian National Committee on Com-

putation and Automatic Control, Summarised Proceedings of First Conference, paper C6.1.
HAMBLIN, C. L., HUMPHREYS, H. L., KAROLY, G., and PARKER, G. J. (1960). "Considerations of a Computer with an Addressless

Order Code" and "Logical Design for ADM, an Addressless Digital Machine," Australian National Committee on Com-
putation and Automatic Control, Summarised Proceedings of First Conference, papers C6.2 and C6.3.

LUKASIEWICZ, J. (1921). "Logika dwuwartosciowa" (Two-valued logic), Przeglqd Filozoficzny, Vol. 23, p. 189.
LUKASIEWICZ, J. (1929). Elementy logiki matematyczny (Elements of mathematical logic), Warsaw.

213

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/210/424386 by guest on 19 April 2024

