
On the scheduling of jobs by computer

By E. S. Page

The problem of deciding the best order in which to process a set of jobs in a factory has so far
eluded theoretical solution except in very simple cases. A similarity between the scheduling
problem and the sorting one suggests adapting well-known sorting methods. A scheduling method
based on merging is shown to give results that are better than those from known methods.

Introduction

The scheduling of jobs in a factory is one of the problems
which offers rich rewards for any satisfactory solution.
The aim is to allocate the order in which a set of jobs
shall be passed through the factory so that some
desirable criterion should be achieved. Each of these
jobs requires several operations to be performed, and
in many cases these operations can be performed only
by certain machines. This is, of course, a combinatorial
problem and, like many other similar problems of
practical and theoretical interest, the number of possible
combinations arising can be very large. Even one of the
simplest types of this problem is still formidable. The
simple case we consider here is where all the jobs have
the same number of operations to be performed and all
in the same order. There is also to be the further
restriction that once an order of processing shall have
been decided, that order shall be maintained throughout
all the operations. Thus, the problem is only that of
ordering the jobs themselves, and not of ordering the
operations within the jobs.

For example, if there are just three jobs A, B, C each
needing work on three machines in the same order we
just have to decide which of the six permutations of
(A, B, C) should be selected for the processing order.
Once this is chosen the jobs follow one another through
all the machines in the same order. The situation can
be represented on a chart (Fig. 1). Tn the diagram A
requires 10 units of time on the first machine, 3 on the
second, and 4 on the third, and the corresponding times
for B, C are (2, 5, 8) and (4, 4, 4). The letter Q indicates
that a job is waiting for attention and an /that a machine
is idle. For the order ABC the jobs are finished in 30
time units; other orders can finish more quickly (e.g.
BCA) and the queueing and idle patterns change.

There are three common methods of attack on com-
binatorial problems. That which springs readily to the
mind of anyone with a high-speed computer at hand is
the enumeration of the possibilities and then the selection
from them of the best order. Unfortunately, even for
such a small number of jobs as ten or a dozen, the
number of possible orders is very large, 121=479,001,600,
and this size of number commands respect. The mathe-
matician would prefer a theoretical attack, but so far
only simple special cases of even this simple problem
have been successfully solved. Johnson (1954) has
solved the problem for one cost function for any number
of jobs which require operations on only two machines
and has extended this to a special case where there are

three machines. Further generalizations seem to lead
into extremely difficult mathematics. Some of these
problems have been formulated as an integer linear-
programming problem, for which algorithms exist, but
which are as yet too lengthy for the sizes of problem of
practical interest. Several practical complications have
not yet been included in this formulation. The last
method, favoured by practical men, is to play a hunch—
that is to use the method dignified by mathematicians
with the name "heuristic." It has occasionally been
suggested that the alternative of trying a few of the
combinations at random might be worth while, but this
is really only a special case of the heuristic method
where counsels of despair prevail.

Various methods that are operated in practice usually
stipulate some simple rule-of-thumb which is to be
followed in allocating the orders: for example, those
jobs which are nearest their promised delivery date, or
perhaps the most valuable jobs, should be given priority.
The success of rules like these are judged according to
certain criteria of efficiency, and these same criteria can
be used to compare the results obtained by employing
different rules. In a recent paper (Page, 1961) it has
been suggested that some of the methods used for sorting
data in an automatic computer might be applied to this
scheduling problem. It was shown that when the
criterion of efficiency is the total completion time of the
jobs, a method based upon the merging technique gives
results which compare very favourably with some other
methods. Here we consider the merging method further.
We take another cost function, the total idle time in
all stages of the work. For small numbers of jobs, up
to seven, all possible orders are examined and both the
optimum order and optimum cost for this cost function
are compared with that obtained by the merging method.
For larger numbers of jobs, merging is compared with
another method based on a sequential allocation of
jobs to the order, and also with a Monte Carlo approach,

Machine 1 • A • B • C •

Machine 2

Machine 3 « I I 1 • A • 1 • B

Fig. 1.—Chart of machine loading

214

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

which, in spite of the earlier comments, has some initial
attraction; in both cases merging performs appreciably
better than the alternative methods.

Methods

The merging method for scheduling

A method for sorting data commonly used on an
automatic computer is merging. When we are placing
items in order of key number, using merging with two
strings of fixed length, we build up first pairs, then
quartets, octets, and so on in the correct sequence until
the complete ordering is reached (see e.g. Friend, 1956).
At each stage we use the knowledge that the two sets
we are merging are in the correct sequence themselves,
so that we only need to consider the relative order
of the two current leading items of the sets. Similar
principles can be adopted to provide an order for the
scheduling problem which is usually a good one even if
not the optimum, and further, which actually attains the
optimum in a certain range of cases (Page, 1961). The
aim is to build up sequences of jobs which fit together
well in the sense of the criterion of efficiency we are
using, and to form from these sequences longer ones
and yet to allow a certain amount of further rearrange-
ment if it is advantageous.

Suppose that we have some cost function by which to
measure the effectiveness of different orders for any
number of jobs. This cost function might be the total
value of work in progress, the completion time of all
the work, the total delays, the total idle time of machines
in the various stages, or similar and perhaps more
complicated functions. Although it may be difficult
to express this cost function explicitly it is clear that
such a function exists whenever there is a criterion for
saying that one order of jobs is better than another
order. We suppose that we are given some such criterion
or cost function, and that we have to schedule a set of
jobs, distinguished say by letters a, b, c, . . . The
merging method proceeds as follows.

Consider the first two jobs presented a, b; decide
according to the given criterion which of the orders
(a, b), (b, a) is preferable for processing and record
the better order, say (a, b). Repeat this stage for all
succeeding non-overlapping pairs of jobs and so obtain
a set of pairs like (a, b), {d, c), (/, e), {g, / /) , . . . In
order to maintain a correspondence with the merging
method for ordering items of data by key numbers, we
can think of these pairs of jobs in two strings,

If the number of jobs is odd we can insert a dummy one,
requiring no processing, to complete the pair. The
next stage is to form quartets from

{(a, b), (d, c)}, {(/, e), {g, h)}, . . .

We consider the orders {a, d), (d, a) and pick the better.
Suppose it is (a, d). Then we start our quartet with

job a, and now proceed to find an order for the remaining
three jobs. We compare the orders (a, b, d) and {a, d, b);
we choose the better one, say {a, b, d), and take its first
two jobs as the first two of the quartet. Finally, we
compare (a, b, d, c) with (a, b, c, d). The merging of
data corresponds closely with this method of scheduling;
at each stage the current heads of the two strings are
examined, but for the job application both orders have
to be tried and the cost functions calculated, whereas
it is only necessary to compare the key numbers in the
context of data-sorting. We proceed from quartets to
octets, and so on until an order is obtained for the
whole number of jobs.* A flow chart is shown in Fig. 2.

It is clear that this method is one which places impor-
tance on jobs "fitting together"; when a good fit is
obtained at an intermediate stage it is likely to be
maintained subsequently, but there is still the oppor-
tunity provided for a change in case a better fit can be
found. Naturally, not all the possible orders are
generated and examined; only a subset of these orders
is considered, but it is a subset which seems to have a
reasonable chance of containing a good order even if
not the best one. The bigger the subset we look at the
better are our chances of getting a good final order, but
we have to take care that the computing involved does
not increase too rapidly. We can get an idea of the rate
of increase of the computing work with the number of
jobs. Let un be the amount of computing required for
2" jobs. The time to calculate many cost functions
for a sequence of jobs will be about proportional to the
length of sequence; thus when two pairs are to be merged
into a quartet there will be two sequences each of 2, 3, 4
jobs to be considered, and similarly for later stages in
the merge. Accordingly,

since we have to merge to get two sequences of 2" jobs
and then to combine these. Hence

«„ = 22"+1 -\-{n - 4) 2 " + 2. (1)

Thus we might expect the computing work to increase
by a factor of about four when the number of jobs
doubles. However, at each comparison we have two
sequences of jobs which are identical save for the last
pair which are in their two possible orders. Conse-
quently, for some interesting cost functions, for example,
the total time of completion, only little extra computa-
tion would be necessary for each comparison if it is
possible to store the intermediate information. The rates
of increase in computation for a Pegasus program using
the total time criterion are shown in Table 1. No parti-
cular attempt was made to streamline the program, but

*- There is a slight similarity between this approach and that by
Dynamic Programming. At each stage, however, Merging selects
the optimum from only a very restricted range of possibilities,
while d.p. makes the optimum selection at greater effort, but in
return assures that the final order is optimum, which Merging
does not.

215

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

it is seen that the actual rate of increase as the number
of jobs doubles is by a factor of about three and not four
as suggested by (1).

Table 1

Rate of increase in computation for scheduling by merging

TIME RAT

8 jobs
16 jobs
32 jobs
64 jobs

MACHINES

IO _ _

4 jobs
8 jobs

16 jobs
32 jobs

3

2-3
3-1
3 0
3-1

4

2-7
2-8
3 0
3-1

8

2-5
2-8
3 0
3-1

CALCULATED
FROM (1)

4-7
4-2
4-1
4 0

Other methods for scheduling

The other methods with which we compare merging
are as follows.

Pairing
This method, a variant of merging which tries many

fewer combinations, was suggested in an earlier paper
(Page, 1961). A pair, quartet, etc., is regarded as per-
manent once it is made, and subsequently only the two
orders of the sets so far achieved are compared. For
example, if the pairs {a, b), (c, d) are fixed at the second
stage we only compare orders (a, b, c, d), (c, d, a, b).
Although the number of orders tried is much less than
in merging, some of them are different, and it is occa-
sionally possible to get a better result from pairing than
merging. Usually, however, merging does better than
pairing, but it takes more computing. A similar argu-
ment to that used to derive (1) shows that the time for
pairing 2" jobs will be proportional to n2n+i.

Exchanging
Starting from an arbitrary order, adjacent jobs art

interchanged, proceeding from first to last, and the
exchanged order retained if an improvement is made in
the cost. The exchanging continues until an order is
maintained through a whole cycle. This method is one
of the simplest conceptually, and is perhaps the first
which comes to mind for improving a given order. It
has, however, disadvantages in its application quite
distinct from the results it achieves which we find to
be disappointing (cf. Page (1961), and the section on
results in this paper). First, and most important, the
number of exchanges required to complete the process
as outlined is not known in advance, and can be very
large for qxite moderate (30-60) numbers of jobs. The
improvements in cost that are made are usually each
small, and a more intelligent method of selecting com-
binations to try would get quicker results. Further, no
provision is made for the exchanging of groups of jobs,

Read in data & add zero blocks
if necessary to make N = 2^

set counter
n = 2

pick first
n jobs

divide into
2 equal strings

pick first from
string a & first

from string b

calc. cost function
ab then ba

ab better ?

store first
from string a

store first
from string b

any more left
in this string?

any more in
other string?

move this
string up
one place

store these
away after

ordered-jobs

bring down
stored re-
ordered jobs

are there n
further jobs to
sort from total?

print cost function
& final order

stop

Fig. 2.—Flow diagram of scheduling byMerging

216

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

and this approach may help where exchanging adjacent
jobs does not. It is not practicable to keep a record
and subsequently explore all cases of exchanges which
leave the cost unchanged. In spite of all these com-
ments the method, which has been suggested several
times, needs to be tried if only to demonstrate further
that other approaches get better results more quickly.
A possible exception may be when the starting order is
a good one derived by some other method.

Selection
This method is the one used in an experimental pro-

gram by J. D. Croston of Kodak Ltd. In this method
each of the jobs is placed in the first position for prp-
cessing, and the total idle time to the completion of the
job is calculated; that job with least idle time is selected
and fixed in first position. Then each of the remaining
jobs is tried in the second position and the total idle
time for the two jobs is found and the least one again
selected, and its job allocated. At each stage there is
one less job to try in the next position. This method
clearly corresponds to the Linear Selection method of
ordering items of data (e.g. Friend, 1956); the data are
examined to find the first item, and then the second, and
so on." This is usually a very inefficient method of
sorting, and it is interesting to see how it fares when
applied to scheduling.

Monte Carlo
Given the task of scheduling n jobs this method merely

selects permutations at random from the n\ possibilities
and picks the best one. There is scope for examining
sequential rules for deciding how many trials to make,
but here we consider only a cruder approach.

Several methods of picking random permutations,
just as with scheduling, can be obtained from the
adaptation of methods of sorting. One of the simplest,
and one that is widely used by hand, depends on the
Selection method. A random integer in a range larger
than 1 to n is generated, and if it corresponds to an item,
that item is selected for the first member of the per-
mutation and is no longer available; further random
integers are generated until the whole permutation is
formed. At some stage or stages in the hand method,
the items are renumbered in order to avoid rejecting too
many random integers—in this case usually selected
from a table. This procedure is conveniently coded
for a binary computer so that renumbering occurs as
the number of items unallocated reaches a power of 2.
The number of bits used from the random-number
generator also falls by one.

If at some stage we are using k bits from a random-
number generator to pick the next item from r remaining
items, we need 2k/r trials on the average. Hence the
average number of number generations required for
the whole permutations is
5 = 1 + 2\i + i) + ... +

Using the Euler-Maclaurin summation formula and
crude approximations we have

or better,

S~2n log 2

2*{log In - log (2*~» + 1)}

where 2k~l <n< 2k. The point to be made is that
the time for the construction of the random permutation
by this method increases linearly. The items selected
one by one can be marked by the appropriate bit in a
word, and if the word-length allows, there can also be a
record of the number of unallocated items within that
word. For example, the Pegasus word-length of 39
bits allowed the items to be marked in groups of 32,
while leaving enough bits for the count of items. Com-
puters with a fast "BITS" operation might find the
recording of the count unnecessary.

One simple rule for deciding the number, N, of trials
to make is to choose N so that there is at least a specified
probability a, that at least one of the trials shall lie in
the best 100P%(0 < P < 1) of the distribution over the
«! possible permutations. Then

1 - (1 - P)N > <x,

so that we need to take N > log (1 — a)/log (1 — P).
The drawback is that this is not the type of rule that is
really needed; even after the best permutation tried has
been chosen there is no information at all about how
much better the best order is. The only consolation is
that we know about how hard it will be for anyone else
to find a better order than we have, if they search by
this method.

Simulation results

For all the examples we consider, the times required
on the various machines were generated by the multi-
plicative method for pseudo-random numbers to give
integers in the range 1-16. This just happened to be a
convenient method of obtaining data which would
provide a good test of the methods of scheduling, in the
difficult type of problem where the total loadings of all
the machines are about the same.

Small numbers of jobs
First we obtain by enumeration the optimum cost

for a small number of jobs. For 7 jobs there are 5,040
orders, and on our Pegasus computer, the complete
enumeration took about half an hour when each job
had to be processed on seven machines. The con-
struction of the permutations was achieved by the
method given by Wells (1961). For each set of machine
times the jobs were scheduled by the five methods—
Merging, Pairing, Exchanging, Selection, and Monte
Carlo. The number of jobs concerned here is very small,
much smaller than the number in most practical situa-
tions, but the results displayed in Table 2, show that
the methods tried give orders of jobs costing from 7%

217

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

TabSe 2

Comparison of costs for scheduling 7 jobs each on 7 machines

Cost function: total wasted time. Averages over 25 sets of 7 jobs

METHOD

Average cost
Percentage exceeding best
Computing time (seconds)

MERGING

231-2
7-3

20

PAIRING | EXCHANGING
1

251-8
16-9
12

253-0
17-5
21

SELECTION

270-3
25-5
10

MONTE CARLO

240-8
11-8
26

BEST

215-4

1925

to 25% more on the average than the best order, and in
individual cases, up to 60% more than the best. Thus
even in such an apparently simple and small problem,
big differences in cost can occur by a poor approach.

The figures on the first three methods (M, P, E) con-
firm the previous ones (Page, 1961) for up to 32 jobs,
3, 4, or 8 machines, and cost function taken as the
total time of completion. Merging again shows up
best, and again, Pairing is about as good as Exchanging
and takes less time. Previously it had only been pos-
sible to compare the costs with a crude lower bound;
it now appears that the orders achieved have costs which
are much nearer to the optimum than had been suspected.
It is not possible in this case to say whether the per-
centage differences from the best cost will decrease as
the number of jobs increases.

The next point concerns the very poor performance of
the Selection method; it is quick to schedule in this way
and so perhaps is feasible even by hand, but the results
it achieves are so far below that of merging that the
extra computing will be justified in all but a few
applications.

The Monte Carlo method was used for 20 trials
on each set of jobs, and the best order selected for
comparison. The computing time was a little longer
than that for merging, and the order not as good. How-
ever, experience with other problems indicates that if
Monte Carlo has any advantages at all it will be on
large rather than small problems. We return to this
question later; at present this crude Monte Carlo
approach has no advantage over merging.

The conclusion we draw is that Merging provides an
order with a cost usually nearer to the optimum than
the other methods considered for small numbers of
jobs.

The actual order produced by any of the methods
will not necessarily have much in common with the
optimum order (or one of the optimum orders if there
are several with equal costs). A measure of the agree-
ment that can be adopted is the number of adjacent
pairs of jobs in the order achieved that are in the same
order as the optimum. In the Appendix the distribution
of this number of successors in a random permutation
agreeing with a specified permutation is derived. This
distribution is shown to tend rapidly, as the number of

items increases, to the Poisson form with unit mean so
that

prob {r correct successors} == e~ljr\

If a permutation with r successors is A times as likely
to occur as one with (/- — 1) successors, the distribution
of r tends to Poisson with mean A. Table 3 shows the
average number of correct successors for the four
deterministic methods in the 25 sets used.

Average
MERGING

3-2

Table 3

number of correct successors

PAIRING EXCHANGING

1-7 2-4

SELECTION

1•8

The amount of agreement achieved by all the methods
is better then than that for a random permutation at a
high level of significance, and Merging is clearly the
best of the methods by this criterion. In order that a
random sample of m permutations should contain at
least one with k or more correct successors with
probability P, we must have, approximately,

for P = 0-99 and k = 3 we need m = 55, and thus tne
Monte Carlo method would need more than three times
as much computing as merging for comparable results.

The distribution of the cost function over the 7!
permutations was formed for a few of the enumerations.
Most of the distributions were unimodal, roughly sym-
metrical; others had nearly constant frequencies over
the middle of the range and sometimes appeared bimodal.
In nearly all cases it was clear that an order achieving a
cost within 10% of the optimum would fall into the top
one or two per cent of the distribution.

Larger numbers of jobs

The Merging, Pairing and Exchanging methods have
been compared (Page, 1961) using a total time of
completion cost function for as many as 64 jobs and
8 machines. The pattern of these results is just that
shown by the present comparisons with a different
function for small numbers of jobs; Merging gets the

218

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

Table 4

Comparison of Merging and Selection methods of
scheduling:

total wasted times

NUMBER OF JOBS
16 32

Merging
Selection
Percentage differing

(S-M)/M

243
297

277
353

128
337 539
425 631

22°/ 27°/ 26°/ 17°/" /o z ' /o z a /o l • /o

best results, while pairing and exchanging do about as
well as each other, and the former takes less computing.
Accordingly, we do not continue these comparisons.

The Merging and Selection methods have been tried
on sets of artificial- machine times. Fifty sets of 8, 16,
and 32 jobs, and ten sets of 128 jobs using seven machines
have been scheduled by both methods. The means of
the total idle times are shown in Table 4.

It is seen that the Merging method produces an order
which has 17-25 % less wasted time on the average than
Selection. The Merging method produces a better order
than Selection in over 90% of the cases tried, and where
its order is worse it is only very little worse. The
average gain is so large that it is certainly worth con-
sidering applying the Merging method in spite of its
greater computing time.

As the size of problems increases Monte Carlo
methods can become more efficient than conventional
deterministic methods—for example, in the solution of
sets of simultaneous linear equations (Curtiss, 1954).
We have performed more Monte Carlo runs on the
sets of 128 jobs previously used with the results shown
in Table 5, together with the computing time on a
Ferranti Pegasus. For each set, 300 random permuta-
tions were selected and the order with the best cost
Selected; this number of trials gives a probability of
about 0-95 that the best order found lies in the best 1 %
of the distribution. Table 5 shows a very poor achieve-
ment for Monte Carlo compared with Merging; there
is little difference in the results for Pairing and these
Monte Carlo trials, and the computing for Pairing is
very small. It is clear that we can achieve much better
results than Monte Carlo in the same computer time, or
about the same results with only a fraction of the effort.

Much less efficient than Merging is Exchanging; the
computing time taken varies according to the number
by cycles of exchanging necessary, but the order of time
is about the same. The only (slight) thing that can be
said for Exchanging is that it is easy to program, but
so too is Selection, which is quicker and gives better
results. Accordingly, we discard both Exchanging and
Monte Carlo. Pairing takes such a short time that there
is something to be said for it and also for the slightly
slower but more effective ordering obtained by Selection.
Merging gives appreciably the best order at the cost of
most computing, but the additional computing expendi-
ture will usually be amply regained by the increased
efficiency of production.

Conclusion
It must be repeated that, while the Merging method

will give an exactly optimum order of jobs for some cost
functions and for some sets of jobs, usually the order
produced is one which is "good" or "very good" but
not "best." Even so, it is suggested that the method
has some merit in practice; it is easy to apply, it can
include a wide range of practical conditions, such as
groups of identical machines, machines identical in
function operating at different speeds and so on, and it
can use a wide range of cost functions—indeed, all that
is required is a rule for deciding whether one order is
better than another. Jobs uncompleted after one
scheduling period can be inserted for scheduling in the
next, and provision made in the cost function to ensure
that they are not displaced in the production line. This
approach which seeks (rather empirically) a good method
over a wide range of conditions is lent respectability by
the way it seems to conform to the views expressed in a
more general context by J. W. Tukey (1961). In so
many practical situations (all?) the criterion for opti-
mality is known only approximately, and lack of pre-
cision may enter in other ways; there seems little point
in labouring heavily to obtain an exactly optimum
solution according to an approximate criterion, and
instead a method may be welcomed which compares
well with several other methods when judged by several
different criteria.

Acknowledgement
I wish to thank Miss M. G. Robson for programming

and running all the calculations described above.

Table 5

Comparison of methods on 128 jobs, 7 machines
Monte Carlo: best order in 300 trials

Total wasted time
Percent over merging
Computer time (minutes)

PAIRING

729
35%
4

MERGING

539

35

EXCHANGING

882
64%

30-45

SELECTION

631
17%
9-5

MONTE CARLO

725
34%

115

219

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

Scheduling of jobs

References

CURTISS, J. H. (1954). "Comparison of Classical and Monte Carlo Methods for Simultaneous Linear Equations," Symposium
on Monte Carlo Methods, New York: Wiley, pp. 191-233.

DAVID, F. N., and BARTON D. E. (1962). Combinatorial Chance, London: Griffin.
FRIEND, E. H. (1956). "Sorting on Electronic Computer Systems," / . Ass. Comp. Mach., Vol. 6, pp. 169-74.
JOHNSON, S. M. (1954). "Optimal Two- and Three-stage Production Schedules with Set-up Times Included," Nav. Res. Log.

Quart., Vol. 1, pp. 61-68.
PAGE, E. S. (1961). "An Approach to the Scheduling of Jobs on Machines," / . Roy. Statist. Soc, B, Vol. 23, pp. 484-93.
TUKEY, J. W. (1961). "The Future of Data Analysis," Ann. Math. Statist, Vol. 43, § 1.5.
WELLS, M. B. (1961). "Generation of Permutations by Transpositions," Math. Comp., Vol. 15, pp. 192-5.
WHITWORTH. W. A. (1901), Choice and Chance, 5th edition, Cambridge: Deighton Bell.

Appendix: the agreement of permutations

A standard permutation of n objects (Au A2, • • • An) is
given together with a sample permutation (au . . . an)
where the a's are some rearrangement of the ,4's. We
wish to find the distribution of the number of pairs
(AjAi+i). Let this number of correct successors be r;
we derive the distribution of r under the null hypothesis
that all sample permutations have the same probability
1//J! of selection.

Let the number of permutations of n items with r
items following the same one as in the standard per-
mutation, i.e. r successors be «„, r; then on the null
hypothesis the probability of obtaining r successors in a
randomly chosen permutation is

Pn,r=Un,rln\
If there are r successors there are n-r-l places at which
the order differs from the standard; these places can be
selected in

c:;!,)=(":')
ways. There are thus n — r sections of the standard
order which can be arranged in any sequence which does
not preserve the order of two adjacent sections of the
standard, i.e. in un_r, 0 ways. Hence

/» — 1>tn

The permutations, wn> 0 in number, of n items which
have no successors can be obtained from permutations
of n — 1 items with 0 or 1 successors by inserting the
nth item in a suitable position. Thus An can be put
first or after any of the n — \ items except An_\ in any
of the Mn_Ii0 permutations with no successors; and An

must separate the pair in correct order in the «„_!,!
permutations with one successor. Hence

»n, o = (« — l)«»-i, o + ««-]. i.

and so unfi = (n — l)wn_i, 0 + (« — 2)wn_2; 0-

By inspection, one solution is n\ + (n — 1)! and the
general solution follows by variation of parameters.
We have

Un, 0 = i
3!

and «„, r = ^-p—'- in — r + 1) X

l 1
3!

(-
• ' ̂ (« - r + 1)!

Whitworth (1901) derives wflj0 by enumeration of the
possibilities, and David and Barton (1962) by another
method.

The mean number of successors p[is given by
n - l

H-i = 2 rpn_,
r=0

1

x

Zl Pn-
o

l,s.

Hence
1
n

Similarly we can snow that the factorial moments

14) == E{r{r - 1) . . . (r - k + 1)} = 1 - k/n.
For n large and r < n, pn< r is approximately the

probability of r in a Poisson distribution of unit mean.
The approximation is best for r = 1, while the distri-
bution has a slightly higher proportion of zeros than the
Poisson.

On an alternative hypothesis that permutations with r
successors are A times as likely to occur as those with
(r — 1), we can show that the expected number of
successors is

5n=(n-l)ACn_,(A)/Cn(A)

where C(A) =
n - l

r = 0

and Cn(A) satisfies a recurrence relation
Cn(A) = (A + n - l)Cn_,(A) + (« - 2)(1 - A)Cn_2(A).

The distribution approximates to a Poisson with mean A.
Thus a range of approximate procedures for tests and
estimation of successors is available based on methods
for the Poisson distribution.

220

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/214/424392 by guest on 19 April 2024

