
An iterative method for quadratures

By Henry C. Thacher, Jr.

An iterative algorithm is presented for estimating repeated integrals of a function,

= . . . \f(xn)dxn...dxl.

The estimate is based upon numerical values of the function at a set of arbitrarily-spaced base
points, and is equivalent, except for roundoff, to the repeated integral of the interpolating
polynomial.

The convenience of iterative methods of interpolation
such as Aitken's (1932) and Neville's (1934) techniques
is well known. In addition to allowing introduction of
additional data as required by earlier results, they make
no requirements on the spacing of the data, and employ
a simple, easily programmed algorithm. More recently,
D. B. Hunter (1961) has shown that the process can be
extended to numerical differentiation. His algorithm
turns out to have all the advantages of the interpolation
algorithms, but also to be far more flexible in the point
of estimation, and in the order of the derivatives, than
the standard finite-difference techniques for numerical
differentiation. It is the purpose of this note to point
out the possibility of applying Hunter's development to
the quadrature problem.

Hunter's fundamental equation is

y>j P,Q
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where yu h . . ., Pj q is the polynomial of lowest degree
in x which takes on the values yt at x = xh y} at x=xJt . ,
yp at x = xp and y, at x = x9. .v},'},..., p, q is the rth
derivative of yu y, . . . , p, ,.

Cx

Take the integration operator dx to be the inverse
Jo

of the derivative operator, djdx, and let y\s}:
be the 5-fold repeated integral of yt>Ji
the proof of (1), with — s = r, leads to

p< q

pq.
p

Then

yV. i + k — xi+k i+k x i + k ~~ x

(2)

For simplicity in notation, we have adopted Neville's
ordering with interpolations based on adjacent sets of k
points.

The formula (2) is used as it stands, which means
that an iteration involving n + 1 points for yls] needs
values not only for yls] involving n points but also for
y[s + n involving n points. To start the iteration, there-
fore, we need the set of one-point values for ylf with
s — m, m+l, . . .,n+m — 1, wherenis the total number
of points to be used in the estimate, and m the order
of the integral to be estimated. These starting values
are based on zero-order approximations to y\°\ namely
the function values yt each treated as an independent
constant approximation to y. These yield the starting
valuesy\s] = yix

s/sl for the estimate of y\s] corresponding
to the upper limit x of the integral sought.

The amount of computation involved is greater and
the convergence seems appreciably slower when com-
pared with Hunter's process for finding derivatives.

To illustrate its behaviour, the algorithm was pro-
grammed for the Royal-Precision LGP-30 computer,
using floating-point arithmetic with 8+ significant
decimal digits (24.2). Partial results of a typical experi-
ment are shown in Table 1. The truncation error is, of
course, zero for i > 5.

In comparison with standard quadrature methods,
this algorithm has several attractive features: (a) it
may be applied to an arbitrarily spaced set of base
points, and thus may be used, for example, in estimating
the integrals of the inverse of a tabulated function;
(6) it may be used to estimate the higher repeated
integrals, for which few standard formulas are available;
(c) it is readily programmed for a digital computer. On
the other hand, as the data show, the algorithm may be
numerically unstable for large s. Moreover, as the
iteration is repeated, the round-off error in the higher
integrals is propagated downward, and the estimates
diverge. The method must, therefore, be used with
caution, in spite of its advantages, particularly if the
number of base points, and the order of integral to be
estimated are large.
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Iterative method for quadratures

Table 1

Iterative quadrature of y = xs, estimated at x = 0 • 9

I

0
1
2
3
4
5
6
7
8

True

Xi

0-0000000
10000000
0-5000000
0-2500000
0-7500000
0-1250000
0-3750000
0-6250000
0-8750000

values

y<,. •••,'

0-0000000
0-9000000
0-7312500
0-6525000
0-5940000
0-5904900
0-5904900
0-5904900
0-5904900

0-5904900

1-0000000
0-8062500
0-7093750
0-6037500
0-5935125
0-5904900
0-5904900
0-5904900

—

M11....,
0-0000000
4-050000
1-012500
1-056797
0-8831530
0-8857356
0-8857388
0-8857136
0-8857461

0-8857350

IO,I:L.,+,-

9-000000
-0-5906250
1-4800781
0-6939844
0-8926116
0-8857350
0-8857285
0-8857510

—

100*'....,

0-0000000
12-150000

-0-3796875
1-427625
1-102612
1-138807
1-138748
1-138816
1-138823

1 • 138802

l(X

40
— 14

3
-0
1
1
1
1

•500000
•428125
•717774
•5353596
•184511
•138789
•138812
'138868
—

and second repeated integrals are closest to the true
value for i = 5, and thereafter become successively
poorer.

We may analyse this instability under the assumption
that the iteration has been carried far enough so that
the discretization error is negligible, but that random
residual errors, e}f!.., , + t - i , ej+'i *, and so on,
are associated with each of the estimates. Then, by
substitution in (2) we find

I+k -Xir>- i + k-l

X — X,
xi+k — X

S

i i+k

Except for rounding, the Hunter algorithm and the
present algorithm give, respectively, the derivatives, and
the repeated integrals of the unique interpolation
polynomial based on the given data. An expression
for the discretization error, due to replacing the actual
function by a polynomial of finite degree may, therefore,
be obtained by appropriate differentiation or integration
of the remainder of the Lagrangian interpolation
polynomial.

The rounding error may be considered in two parts,
that due to errors in the initial data, and that due to
rounding in carrying through the procedure. The former
is roughly proportional to the sum of the magnitudes of
the weights associated with the various data. Although
these weights are not normally generated in an iterative
procedure of this sort, they may be secured by applying
the iteration to the set of functions ft(xj) = 8V. In
our example, as might be expected, the sensitivity to
inaccuracies in the input data decreases with increasing
order of integration.

A more serious source of error is rounding during
the iteration. Unfortunately, the algorithm tends to
amplify round-off errors, particularly for large values of
s. Evidence of this instability can be seen in Table 1.
Although the interpolated value itself becomes stabilized
at the true value for i > 5, the estimates for the first
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• (3)
Kxi+k — xi)

Thus, if the errors for the ifc-point results are less than e
in magnitude,

\x,+k - x\ + \x, — x\
(4)

\xi + k — xi\

The possibilities of error amplification for large values
of s are obvious, while the likelihood of amplification
for s = 0 is also seen to be low under normal conditions
of application.
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