
Newton-Cotes type quadrature formulas with terminal corrections
By R. A. Sack

A number of quadrature formulas for equidistant argument are proposed which combine
optimized weighting of the ordinates with the use of a limited number of derivatives, central
differences or differences of first derivatives at the end of the range of integration. The com-
parative errors of the new formulas, as well as of the standard formulas and those given by
Salzer, are discussed qualitatively and illustrated on a number of examples.

Nature of the approximation formulas
Numerical quadrature formulas for finite ranges of
integration and equidistant arguments are mostly based
on the trapezoidal rule in which the integral

I=\"f(x)dx (1)
Ja

is replaced in zero order by the sum*

/100(fl, h, r) = h[±f(a) + iM + 'll
k=l

Xa + kh)],

b = a +rh. (2)

To this expression correction terms can be added, which
may be of several types (cf. e.g. Lanczos 1957, Kopal
1961); of the standard quadrature formulas the following
are the most relevant for the purposes of the present
paper.

(1) The Euler-Maclaurin formula, in which the cor-
rection is expanded as a series in the odd terminal
derivatives (T.D.'s):

M

— 'lOO Z J
Bn

<IMO — y100
~dmf(b) dmf{a)~

(m + 1)!" dbm da"
(3)

where the prime on the summation sign indicates that
the sum is to be taken over odd values of the index only
and the Bm+1 are the (signed) Bernoulli numbers

B2 = -&#4= 3 0 > i ? 6 = 4 2 ' i > 8 = 3 0 ' - • ( 4 )

(2) Gauss's modification of Gregory's formula, which
uses terminal central differences (T./LAS'S) of odd order

j= '.oo - h j r
where

(5)

h)-g(x -/))];
= g(x + h)- 2g{x) + g(x - h), (6)

and correspondingly for higher powers in 8;*. The
coefficients Cn+, can be calculated by integrating the
Newton-Bessel interpolation formula:

2,497r - 1 r - n r - m
c2 - g, c4 - - 3Q, c6 _ — ,

90 (7)

* The meaning of the triple indices of / will be explained in
equation (9) below.

(3) The Newton-Cotes formulas, in which the total
range of integration is divided into a number of
(preferably equal) subranges, and within each subrange
the function is essentially approximated by a Lagrangian
interpolation polynomial, which is integrated. This
results in summations in which the tabular values o f /
enter with unequal coefficients, in contrast to equation (2).

TLQ0(a, h, L) = h S a,f{a + Ih).
1=0

(8)

These formulas can also be considered as the trapezoidal
rule (2) with corrections involving even differences up
to the highest order (L or L — 1) which can be formed
within each subrange.

All the formulas quoted above suffer from limita-
tions if a high order of accuracy is required. The Euler-
Maclaurin formula may necessitate the calculation of
high derivatives, which in most cases is increasingly
difficult; the central difference method requires know-
ledge of the function beyond its range of integration;
for the most convenient use of the higher Newton-Cotes
formulas the total number of intervals r should be
divisible by the order of the subrange L; in addition
there is an increasingly marked alternation in the
magnitude of the coefficients, leading to alternations in
sign in extreme cases, which seems somewhat unnatural
from a logical point of view and increases rounding-off
errors.

In view of the fact that for many functions the first
derivative, though not the higher ones, can be calculated
easily, the writer was led to investigate the possibility of
combining any two or all three methods, i.e. odd T.D.'s,
odd T.fxS's and adjustable coefficients for the tabular
values of the integrand. Such expressions, for a basic
range of L intervals, would be of the form:

<I, h,L) = S a,Aa
1=0

IK)

M

m=\

\a+Lh

+ h
7 1 = 1

where

\a + Lh) - inSjAfl)] (9)

/.-/ (10)
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Newton-Cotes type quadrature

for reasons of symmetry. The last sum in (9) can be
written in the alternative form

(W+D/2

h L c a + Lh) - iLhahKa)\ (11)

Formulas of the type (9) yield accurate integrals for all
polynomials up to degree P

where
P = Lo + Me + Ne (12)

Lo = L + 1 {L even), Lo = L (L odd),
Me = 0 (M = 0), Me = A/ + 1 (M odd > 0),
Ne = 0 (N=0),Ne = N+l(N odd > 0).

(13)

The coefficients a;, 6m and cn or c'n in (9) and (11) can
easily be determined as the solutions for the unknowns
in the $(P + 1) linear equations obtained by substituting
xp(p = 0, 2,. . ., P — \) for the integrand, with h = 1
and a suitable choice of a, though some of the formulas
can be obtained more simply as shown in the Appendix.
The resulting coefficients are listed in Table 1 for a
number of formulas in order of increasing L; those for
the pure Newton-Cotes formulas are included in the
table, but not for the pure Euler-Maclaurin and central
difference methods, which are given by (3) and (4), and
(5) and (7). The list could be indefinitely extended, but
in the writer's opinion higher order expressions would
be of little advantage as they would suffer progressively
from the drawbacks enumerated above for the standard
formulas. It is usually preferable to subdivide the total
range into equal subranges and apply a lower order
formula repeatedly; in this case the derivatives and
central differences will cancel except at the limits of the
total range, and the tabular values at the junction of
two subranges appear with coefficient 2a0.

Of all the formulas specified by Table 1 those with
L = 2 or 3 are by far the most useful; they combine
high accuracy with reasonable simplicity and small
variation in the size of the coefficients of/(apart from
the factor $ for a0 and aL). They can be applied parti-
cularly simply if we define for even r:

+f(a + 2A)
So=f(a+h)+f(a + 3

.. J(b - 2h)

and for r divisible by 3:

S3 = if(a) +fta +f(b - 3/0
S.2 =Aa+h)+Xa+2h)+f(a+4h)+-- • +f(b-h).

Then we can put

hto = KSO + Se) + ^h(So - l

1

14)

'kl5)

(16)

hox = St)
11

o - Se)

o + A) - (a - h) +f(b -h)- f{b + h)],

(17)

512) + ^A(512 - 2S3)

3

11

/3,o =

73O1 = h(S3 + 5I2) + ^h(Sn - 2S3)

+ ^h[f{a + h) -f(a -h)+f(b-h)-fLb+
(19)

Comparison with other mixed formulas
Several of the formulas described by the equations (9)

and (11), or expressions equivalent to them, have been
derived by previous authors. If we consider only one
basic subrange, the first and last sums in (9) can be
combined to yield

ILMN = hZa',j{a + ///) + S m . . . (20)

where the first sum is now to be taken from / = — %Ne

to / = L + \Ne, and

= a, — \ sgn - \ sgn (L c\L_ „. (21)

In this formulation all the relevant ordinates occur once
only, and not twice as in (9) or (11). Coefficients for
the formulas (20) when M = 0 have been given by a
number of writers; the most comprehensive list has been
given by Miller (1960) for N' = iNe = 1, 2 and —1;
the last case, in which the terminal ordinates are not
used at all, is not strictly contained in the formula (9).

The expression /210, under the name "corrected
Simpson's rule" has been discussed in detail by Lanczos
(1957), though the formula (6.17.2) in his book contains
an error in sign.

Quadrature formulas making use of first derivatives
have been derived by Salzer (1955, 1960) by integrating
Hermite osculatory interpolation polynomials over
ranges equal to, or smaller than, the range of data
utilized. They are of the form

/ = KZaJip + lh) + 'ia + lh) (22)

and for L + 1 data points are accurate for polynomials
up to degree P = 2L + 1; they should therefore be more
accurate than most of the formulas with the same value
of L derived in this paper. Against this must be held
that the derivatives must be known or calculated at
internal points, and that the corresponding terms do
not cancel when the integration is carried out over
several contiguous subranges.

Formulas similar to Salzer's can be derived which
involve first derivatives at other points besides the inte-
gration limits, but are not necessarily based on a com-
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LMN P

1 1 1 5

13 17

1 1 3 7

2 0 0 3

2 10 5

2 0 15

2 3 0 7

2 1 1 7

2 0 3 7

3 0 0 3

3 10 5

3 0 15

3 3 0 7

3 1 1 7

3 0 3 7

4 0 0 5

4 10 7

4 0 17

4 3 0 9

4 1 1 9

Coefficients occurring in
For L >

1
2

\_
"2

J_
2
1

7
15

17
45

11
63

457
945

377
945

li
80
69
160
363
728

4449
8960

2049
4480

14
45

62
135

342
945

7874
16065

34022
70875

1

2
2

2
2
4
"3
26
15

56
45

64
63

976
945

1136
945

9
8

8-2
80

171
160

729
728

8991
8960

4671
4480

64
45

1024
945

1216
945

16384
16065

8192
7875

Newton-Cotes type
Table 1

the expressions J
3, the at are given

a

quadrature

JLMN-

only

b\
11

120

5
63

191

[Cf.
up to

equations
/ rx T I
/ — L2-^ J

63

31
15120

(9) and

1
120

1
252

23

2
3

75
17
45

31
63

457
945

377
945

9
8

SI
80

171
160

729
728

8991
8960

4671
4480

24
45"

32
35

664
945

15744
16065

544
567

39
80

J>9_
160

363
728

4449
8960

2049
4480

2016

15

3_
"40

60
"728

-39
448

-4
63

7280

2016

-3
80

27
4480"

-123
2240

-16

(11)]

720

1
~252

47
3"780

2_
•45

-3
80

-16

- 4
51

- 5 2
675

16
16065

945

256
70875

945

256
70875

= C2

-31
60480

5
63

5
63

1
945

4
945

- 3 1
945

4
945

- 4
105

1
378

13
2240
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Newton-Cotes type quadrature

Table 1 {continued)

LMN P

5 0 0 5

^ 1 A 1
J 1 U /

5 0 17

6 0 0 7

6 10 9

c. n i Q

LMNP

13 0 5

1 1 1 Q

15 0 7

LMNP

i l 07

9 -i 1 q

•3 -i n 7

'j -i i q

4 i n o

4 a i 11

95
288

22835
48384

9355
24192

41
140

3149
7000

241
700

"i

125
96

1875
1792

14375

12096

54
35

972
875

1899
1400

125
144

11875

12096

22375
24192

27
140

243
280

387
700

Coefficients occurring in the

bi
1

37
336

1229

12096

1
12

279
2400

-9959
76032

]

For L = 1,

b'i

31

~360

131
1260

2533
25920

877
10080

18119
168000

-3413
29568

«o

37
77

4201

8505

111
224

85017
170240

387818
813645

2841698

5769225

a0 — al — h

bi
1

720

-31
10080

-176
90720

1
720

-59
14400

-1579

190080

a\

80
77

8608

8505

225
224

170343
170240

851968
813645

1951744
1923075

"i °1 bi

-275

68
35

8
7

209
140

Table

expressions

For L > 2,

b'i
1

720

-31
10080

-176
90720

1
504

-6401
1512000

-5057

665280

a2

37
77

4201

8505

225
224

170343
170240

775008
813645

103328
104895

233

4032

-3
50

2

Cl

-275
12096

-9
700

I'LMN- [Cf. equations (23)

, the at are given only up to

bi = b'i

-1
6720

103
3024000

-313
1774080

bi
-17
231

-8
81

-9
112

-129

1216

-556

7749

-5308
54945

Cl

3
112

221
12096

79
2400

-3623
76032

b'i

-259

3465

-269
2835

-23
280

-4299
42560

-6572

90405

-5212

54945

ci

-275
12096

-9
700

and (24)]

1 = 2

Cl

3
112

803
45630

79
2400

6293

142560

bi = b'i

2
3465

-11
5670

1
1120

-27
10640

128
271215

-32
18315

Ci = C 2

Ci = C2

103
362880

4001

2280960

Cl

157
8505

1971

85120

97984
5769225
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Newton-Cotes type quadrature

plete osculatory interpolation. For this purpose the and EION become —
expansion (9) has to be modified by replacing the sum
over the odd derivatives by a sum over central differences
of the first derivative

M

m=l

(23)

where the first and last sums are identical with those
given in (9) or (11). The sum over m can be written in
several alternative forms of which the following is the
most useful

h2 S bm[f'{a +(L+ m)h) - f'(a + mh)\ blm = b'm (24)
with m running from —{^Me — 1) to (\Me — 1). For
M = 1 the expressions I'LXN are identical with ILiN.
For formulas with M > 1 the coefficients are tabulated
in Table 2. The expressions 72i0, A'31. 2̂31, 1̂53 and Ii5i
are equivalent to some of Salzer's formulas, but in the
forms (23) or (24) they have the advantage that the
correction terms vanish for adjoining subranges, except
at the end of the total range.

The general condition for terminal corrections to
cancel on juxtaposition of equal subranges is that they
are centred on the integration limits and can be expressed
as odd-order derivatives or central differences.* Hence
they must not include even derivatives such as the one-
strip formulas given by Lanczos (1957) in section (6.19)
of his book, nor forward and backward differences as
in Gregory's formula. The latter, for any finite order
of differences, is equivalent to a formula of the type (20)
with M = 0, though not necessarily with optimized
coefficients; hence any refinement thereon by means of
better weighting factors or derivatives will only lead
back to another formula of the type (20). Nor is it
convenient to retain part of these non-central differences
as terminal corrections, since for a given end point two
corresponding expansions in A and V up to order N
will differ by quantities of order N + 1, and on juxta-
position will only partially cancel. Formulas outside
the scope of (9) and (23) which satisfy the cancellation
conditions might involve both Z)3 and 82D, or mid-
interval ordinates; but such cases will not be further
investigated here.

Discussion of errors
The error in all the expressions (9) and (23) for a

single basic range is of the form

/ - ILMN = Lhp+2ELMNf^+^)KP + 1)! (25)

where the ELMN are constants and £ is a value of x lying
between a — \NJi and a + (L + iNe)h. This form
has been chosen so that for unit intervals LE represents
the error in the integral of the function xp+i over the
range; in particular for the Euler-Maclaurin formula
and the central-difference formula the coefficients EiM0

* This is true only if the symmetry condition (10) holds.

and — CN+2 of (4) and (7),
respectively. The coefficients E are tabulated in Table 3
in order of increasing P for most of the formulas given
in this paper, including (3) and (5) and Salzer's 4-interval
formula

3T5/(2)

]. (26)

The general trend of the error can be explained by the
following argument.

For a prescribed number of data, but adjustable
positions, the optimal grouping corresponds to Gauss's
quadrature formula, in which the data points are fairly
widely spaced in the middle of the range, but clustered
towards its ends. Hence a quadrature accurate to order
P will have a smaller error the more closely the corre-
sponding interpolation polynomial describes the inte-
grand near the limits. With the formulas discussed in
this paper high order T.D.'s will, in general, satisfy this
requirement best; first order T.juS.'s and second
differences of first derivatives, in turn, will be more
advantageous than large values of L, for which the
function is equally closely approximated throughout the
range, though higher differences are less useful as they
involve data too far outside the integration range. As
an illustration the results obtained with various formulas
having P = 5, and with Simpson's rule, for the integral

/ = \ xdx = 256/7; h= 1
•>-2

are listed in order of accuracy in the second column of
Table 4; approximations with P =1 and P = 9 give
the result rigorously.

If the integrand possesses singularities near the range
of integration, the above arguments need modification
as the higher order derivatives will vary considerably
between a and a + Lh, and the advantage of a small
value of E may be more than offset by a less favourable
position of £. If we expand the integrand as a Taylor
series about the midpoint of a subrange, terms of very
high order may contribute appreciably to the integrals.
Integrals of the form

\ [x - (a (27)

form a harmonic sequence, whereas the corresponding
expressions from the quadrature formulas are sums of
geometric progressions which converge if only internal
and terminal points are used, but diverge for formulas
employing external points or T./xS.'s (cf. (20)). Terms
due to T.D.'s form arithmetic progressions; their rate
of divergence increases with M. (It is known that both
the Euler-Maclaurin and the central-difference formulas.

234

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/230/424440 by guest on 19 April 2024



P L

3 1
1
2
3

5 1
1
1
1
2
2
3
3
4
5

M N

1
0
0
0

3
3'
1
0
1
0
1
0
0
0

0
1
0
0

0
0
1
3
0
1
0
1
0
0

E

+0-0333
+0-367
-0-133
-0-300

- 0 0238
- 0 1 0 7
- 0 0738
-2 -27
+0-0762
+0-476
+0-193
+ 1-39
- 1 - 5 2
-3 -27

Newton-Cotes type quadrature

Table 3

Values of the error coefficients E
Primed values of M refer to I'LMN

p

7
L

1
2
2
2
2
3
3
3
3
4
4
5
5
6

MN

5
5'
3
3'
1
0
3
3'
1
0
3
3'
1
0
1
0
1
0
0

0
0
1
1
3
5
0
0
1
3
0
0
1
3
0
1
0
1
0

£

+0-0333
+0-878
+0-0652
+0-163
+0-458

+27-8
- 0 102
-0-362
-0-279
-4 -09
-0-267
- 1 0 4
-0-772

-14 -7
+ 1-63
+9-24
+3-96

+23-6
- 4 3 - 2

P LM
9 1 7

1 0
2 3'
4 3
4 1
6 1
6 0

N

0
7
1
0
1
0
1

(26)

E

- 0 0 7 5 8
- 5 6 0

+ 1-03
- 3 - 4 8
- 9 - 3 1

+74-6
+373

+3-69

diverge asymptotically if the integrand possesses singu-
larities for any finite complex argument; the same would
apply if formulas analogous to those derived in this
paper with increasing M or N were employed.) The
Newton-Cotes formulas thus appear favoured over
expressions with non-zero M and N. On the other
hand, the terms (27) enter into the Taylor expansion
with coefficients roughly proportional to (Lh/z)s, where
z is the modulus of the difference of the midpoint of the
range and the nearest singularity, and for high values of
P it may be preferable to keep L small by increasing M
or TV, in spite of the ultimate divergence of the corre-
sponding expressions. Thus the numerical results for
the integral.

/ = J dxjx = In 2, h

are compared in the third column of Table 4. We see
that, although the proximity of the singularity at x = 0
makes the use of differences particularly dangerous, the
length of the basic range still makes the 4-strip Newton-
Cotes formula the least accurate of all the expressions
with P = 5; the same applies to /410 if P = 7.

Short basic ranges are of special importance if the
integration takes place between two complex singularities.
This is strikingly illustrated in the last column of Table 4
for the integral

/ =

Table 4

Comparison of numerical results

/to
a
b
h
r

I

1130

^210

A l l

1201

/ 4 0 0

A2OO

/ 1 3 1

1210

/211

/4IO

(26)

A 30

/l'31

/230

/MI

5
5
5
5
5
3
7
7
7
7

9

5
7
7
9

- 2
2
1
4

36-57

36-67
36-27
36-87
34-67
42-67
45-33
36-57
36-57
36-57
36-57

36-57

37 00
36-57
36-57
36-57

1
2
0-25
4

0-693 14718

1481
1448
1502
1305
1746
2539
14706
14731
14757
14626

14712

15176
14680
14771
14690

(x* + l)-i

0
1
0-25
4

0-785 3981634

39828
39706
39854
3931
5294
3921
3981635
39799
39781
40336

398124

39871
3981641
39775
39802
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Newton-Cotes type quadrature

where the singularities occur at ±/. The 4-interval
Newton-Cotes rule gives an error several magnitudes
greater than the Euler-Maclaurin formula using third
derivatives, and is even considerably worse than
Simpson's rule. The surprisingly good result obtained
with the latter (/2Oo) i s t o some extent fortuitous since the
third derivative vanishes at both limits, and hence the

mean value of the fourth derivative vanishes. For the
same reason 7110 = /130 in this case.
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Formulas of the type ILMQ with L = 2, 3 or 4 are most
easily derived by elimination of higher derivatives in the
Euler-Maclaurin formula (3) and (4). Thus elimination
of the third derivatives from the expressions

ff(x)dx = \(f0 +f2)

and

Appendix
Simplified derivations of some of the rules

derived by comparing the expressions A,M+6, o f°r

h = 1, 2, 3 and 6. The equations (A4)-(A6) include
the corresponding Newton-Cotes formulas, provided M
is formally equated to —1, instead of zero.

The expression

(Al)

2" - /o") (A2)

(A3)

which is the formula I2i0 for h = 1; it is accurate for
polynomials up to fifth degree. Similarly elimination
of terms in dM+2fldxM+1 from /,, M+2,o w i t n intervals
h and 2h leads to the general formula

= / 0 + f2 - ^ ( / 2 -

where/; is written for/(a + /), leads to

ff(x)dx = ^ ( / + / ) + ^

M Um + lD

im + 1)!
Om+1

and if the intervals are h and 3/i to

ft I -J ~S S / * i

I3M0 —

M 3M+3
_ ,(n

Jo
m^, (m + 1)!

A second elimination of/(Af+2) from I2 M+2t 0 yields

{(2M+2 — l)(2Af+5 — 2)

X(/O

( 2 M + 3 —

(A6)

For higher values of L such a straightforward elimination
is not possible, though the formulas for L = 6 can be

11
A I I = '100 J2Q' 7 -/o) + 1 2 0

(A7)

follows from identification of /i3/ '" with fiSlf (this is
rigorous for quartic polynomials) and elimination of
this quantity from 7,30 and 7i03 in (3)-(7).

Formulas of the type ILON are most easily derived by
means of the symbolic operators E and 8

E% =/„, i(E - E-1) = A E - 2 + £- ' =

Hence a correction term of the form

(A8)

(A9)

can be written as

H2 = (1 - 2£ + - / O )

~

(A10)
Similarly

#3 =/o —/l — / 2 +/3 =
~x

£ < I il ~fo)

(All)

and

^ 1 £-l

- 2 + 82KJ*

Writing the expressions lL0N in the form

(A12)

= Aoo + + £' "A - /*8»/o) (A13)

for I = 2 or 3, and equating the coefficients of /xS"
obtained with the use of the expansions (A10) or (All)

236

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/230/424440 by guest on 19 April 2024



Newton-Cotes type quadrature

The general formulas ILMN can similarly be derived
symbolically if the differential operators Dm are expanded
in terms of pS"; a list of these expansions is given
in Chapter 9 of Kopal's book (1961), where the operator
20 corresponds to the more widely used D, and in the
introduction to Miller's report (1960).

with those in (5) and (7) up to N + 2, we obtain the
coefficients listed in Table 1. For 1 = 4 we have to
consider two correction terms a,//2 and a2H22 and
equate coefficients up to order N + 4. This method
can, with some loss of simplicity, be extended to L = 5
and 6.
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Book Reviews {continued from p. 227)

chapter shows the generality of solutions using dimensionless
variables, not only in reducing the work in a particular
problem but also for showing the connections between
problems from different fields, such as mechanics and
electricity, and so making possible the development of
analogue computers.

The later chapters in the book are more specific and
inevitably reflect the author's interests. A more compre-
hensive set of illustrations would have needed a team of
writers covering other fields, but would have given a more
balanced picture of the relations between mathematics and
industry. Chapter 4 discusses "spinning in the textile
industry," and is followed by one on "Nuclear Reactors,"
which shows how the partial differential equations are
replaced by a large number of simultaneous linear algebraic
equations which are adapted to computer solution. Chapter 6
discusses linear programming, an important part of opera-
tional research, using the "stepping stone" method and that
of "fictitious costs." Chapter 7 shows how much work in
aircraft design is solving equations with different boundary
conditions corresponding to different profiles, and then
discusses how computers have made possible the solutions of
the equations of meteorology. The last chapter gives the
mathematical analysis of burning wood and relates the
analysis to the physics of the process.

Most chapters conclude with one or more references to
other books or articles, but a more comprehensive biblio-
graphy which could have included other topics from, e.g.,
the electrical industry, would have been useful. As part of
the aim of a series like this is to encourage students to use
books, it is unfortunate that no index has been included.
Despite this minor criticism the book will be found useful
by that increasing body of teachers aware of the importance
of relating their mathematics teaching to the problems of
modern industry. It should certainly be ordered for all
school and college libraries, and many teachers will want to
buy a personal copy. P. J. WALLIS.

Symbols, Signals and Noise, by J. R. PIERCE, 1962; 305 pages.
(London: Hutchinson and Co., 21s. Od.)

It is a pleasure to be able to commend a book as highly as
this' one can be commended. It is an excellent presentation
of, and commentary on, the subject of information theory in
its various aspects.

After a preamble on the nature of physical and mathematical
theories, the book proceeds through the history of electrical
communication, the problems of coding, the idea of measuring
information and the problem of combating disturbances.
It then discusses the application of these ideas in physics,
computing, psychology and art, and ends with a brief mention
of some recent investigations.

The author is in a senior position in the Bell Telephone
Laboratories and has obviously been closely involved in a
great deal of this subject. His historical account, which
begins with the origin of the Morse code and with the problem
of signalling over telegraph cables, is written with obvious
human feeling. This is not a mathematical book, and the
mathematical reader may find some of the treatment tedious.
It is, however, very definitely a pro-mathematical book, in
that it stresses throughout the dominating part played by
mathematics in the development of the subject, and tries with
a good deal of success to give the reader a feel for the things
that motivate mathematicians. The author takes great care
to indicate just how far he has attempted to present the
subject with precision, and at what point he reverts to a
description in general terms. He goes out of his way to help
the non-mathematical reader to follow as much as possible
of the book, even to the extent of giving a miniature textbook
of mathematics in an appendix. (This is in fact probably too
brief for its purpose, and is interesting rather as a glimpse
of mathematics from a new angle for those who can under-
stand it already.) A more useful appendix is a short but
excellent glossary.

Many chapters begin with seemingly irrelevant and wasteful
digressions, but these always turn out to be written with a
worth-while objective. One even finds that the apparently
casual examples in the early chapters are designed to prepare
the ground for later chapters in the book. The end of each
chapter is a clear summary of its main points. In the later
chapters, which roam over such fields as psychology and
cybernetics, there is much that will interest and intrigue the
reader who is concerned with computers; here, however, the
connection with information theory often becomes tenuous.
It is clear that the simple matter of measuring amounts of
information, which is the central concern of information
theory, is only a beginning to a study of these other fields.

(Continued on p. 245)
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