
The Atlas scheduling system
By D. J. Howarth, P. D. Jones and M. T. Wyld

The Atlas computing system involves an operating system which is implemented by the Supervisor
program held in the store of the computer. One part of the Supervisor is the scheduler program
which determines the order in which available jobs are assembled in store, compiled and executed.
The essential features of the operating system are outlined and the task of the scheduler program
within the framework of this system is described. The advantages of a computer-organized
scheduling system are pointed out, and an account is given of the salient features of the particular
scheduling system which is used on Atlas.

Introduction
Atlas is the name given to a comprehensive computer
system which has its origin in the Computing Machine
Laboratory under Professor T. Kilburn at Manchester
University. The final design is the result of close
collaboration between this group and Ferranti Ltd.
This paper describes the basic principles of the scheduling
system adopted for Atlas. The main features discussed
are the ordering of a queue of jobs awaiting execution,
the allocation of main store space and tape decks, the
assembly and preparation of jobs for execution, and the
communication system between operator and scheduler
program, which includes the allocation of external
priorities to jobs. A later paper will describe the
dynamic time-sharing of jobs during the course of their
execution, and associated simulation studies.

Virtually no information has been published which is
of practical value in formulating the Atlas scheduling
system, and hence the system is designed to facilitate
alterations in the light of operating experience. The
basis of the system may be expected to require little
changing, but certain decisions, which depend upon a
balance of various factors, may require modification
when the relative importance of these factors is known
in more detail.

Summary of the Atlas Operating System
The principles of the Atlas Operating System, all the

activities of which are controlled by a program called
the supervisor, have been described in previous papers
(1, 2 and 3). In order to appreciate the action of the
scheduler, it is advantageous to summarize first the salient
features of the system. It is designed to overlap the
operation of those parts of the computing system which
can function concurrently, namely, input and output
peripherals, magnetic tapes, the central computer, and
the human operators. In order to achieve overlap of
input and output operations with computing, regions of
the core and drum store are used as "wells," which can
be filled and emptied at peripheral speeds by the peri-
pheral equipment, and at computer speeds, for short
bursts, by the central computer. These wells are supple-
mented by system magnetic tapes (a system magnetic
tape is one which is controlled by the supervisor, in con-
trast to a private magnetic tape which is under direct

control of an ordinary program), which are not used to
supply the central computer directly, but which are used
to fill and empty the wells in core and drum store. Jobs
whose peripheral input is complete are assembled in
main store, prior to execution, from the system input
tape or from other system tapes on which they have been
loaded previously. Program results occupy the output
well in main store before being recorded on the system
output tape.

Complete jobs may consist of several separate input
documents (a document is a self-contained section of
input information presented to the computer con-
secutively through one input channel), one of which
must contain a job description. This lists all other input
documents required, the titles of any magnetic tapes
required, the output streams and the type of peripheral
required for each, and also supplies approximate esti-
mates of storage space (in combined drum and core
store) required for execution, computing time, and
quantity of output for each output stream. These
estimates are used by the supervisor program as a guard
against serious program error and are also available for
use by the scheduler. Decisions called for by the operator
are thereby reduced to a minimum, sufficient informa-
tion being supplied to the computer by the user to
enable a job to be run. Allowance is made for operator
intervention in exceptional cases and this is described
in a later section.

The scheduler is the part of the supervisor program
which determines the order in which the available jobs
awaiting execution should be assembled in main store,
and should be compiled and executed. In the following
sections it will be assumed that no special priority has
been attached to jobs by the operator, and that the
scheduler is permitted to select jobs in any order; we
shall consider later how this order may be influenced
by the action of operators.

The advantage of a computer organized scheduling system
After recognizing that the proposed dynamic buffering

scheme (described above) on Atlas means that normally
all slow peripheral transfers are indirect and overlapped
with computing operations, the merit of doing anything
other than executing jobs in precisely the same order as
they enter the computer might be open to doubt.

238

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

However, this simple method of operation can lead to
extremely inefficient use of the computer. This would
be the case, for example, if a long sequence of jobs all
produced output for one peripheral, while other peri-
pherals, which later jobs wished to use, remained idle.
On a very large computing system (32 tape decks, 4 line
printers, etc.) the order in which jobs are executed is not
so important since there may be enough peripherals to
deal with any load, irrespective of the order in which jobs
are executed.

However, it is uneconomical to buy a computing
system with more than the minimum number and types
of peripherals, which, if used efficiently, can handle the
expected load.

If jobs are sorted by the operator before they enter
the computer, inefficiencies of this type are less likely to
occur. However, due to the speed at which the machine
executes jobs, and also the operator's comparative lack
of knowledge of the immediate state of the machine,
the task of efficiently ordering a large number of jobs is
extremely difficult. A far better method of operation is
for the operator to take no account of the types of job
entering the computer (all jobs being fed in as soon as
they appear), and for a scheduling system, which at any
instant knows the exact state of the computer, to deter-
mine the order of execution.

A sophisticated and efficient scheduling system is the
ultimate object of the overall Atlas supervisor, made
possible by the special time-sharing features of the
Atlas hardware and basic supervisor routines. If a com-
puting system does not have built-in features for
protecting and interrupting programs during execution,
then anything other than a very simple scheduling
system is probably not worth-while, even if it is possible
to design some elegant system. In these circumstances
the advantages of an "efficient" scheduling system are
offset by the time and effort required to devise the
system, and then, when the scheduler is working, by the
time spent in the scheduling routines.

On Atlas, the main difficulty lies not so much in the
implementation of any given scheduling system, but in
formulating the particular rules and framework of the
system. If the scheduler is designed properly, it should
be possible, in the light of operating experience, to tailor
it to obtain the best results for the particular installation
concerned and type of work it is doing. Excessive
scheduling, when considerable time is spent in routines
doing detailed look-ahead processes, should be avoided:
inaccurate estimates and error monitoring of jobs tend
to nullify any attempt at detailed future planning.

The task of the scheduler
The object of the operating system on Atlas is to

maintain the fullest possible useful activity in those parts
of the computing system which can function simul-
taneously; that is, to reduce to a minimum periods of
idleness in any part of the system which is required for
further use. Such periods can be caused by a delay in
passing information from one branch of the system to

another; for example, if a job is using a magnetic tape,
either the central computer may be idle awaiting the
conclusion of a transfer between store and tape, or the
tape may be idle awaiting a command from the central
computer. A period of idleness can also occur when a
peripheral is free and no attempt is being made to
execute available jobs which could use this equipment.

The scheduler may be visualized as arranging for the
transfer of jobs from a list of available jobs to a list of
jobs in course of execution. The supervisor program on
Atlas permits sharing of the central computer between
several object programs in course of execution, and thus
the Execute List may hold more than one job at any one
time, if this is necessary to achieve efficiency; the com-
position of this list will be described in this section.
At first sight, it would appear that maximum efficiency
would be obtained if the Execute List comprised one
job using each output peripheral and magnetic tape,
together with a base-load job to use any available central
computer time. Due to the wide difference in the rate
of use of information by the peripherals and the central
computer, the central computer might be expected to be
in use for only a small proportion of the total time on
any one problem, and whilst not in use for this problem
could be used by other problems. The presence of so
many problems on the Execute List is not necessary to
achieve efficiency, however, and is to be avoided in the
interests of efficient use of store. The operative parts
of such problems must be in core store to permit fast
switching of control between problems without the need
for transfers between core and drum stores; this would
imply an excessively large core store, any one part of
which is only in use for a small proportion of the total
time. Inefficient use of store also results from the fact
that, for many problems, the combined core and drum
store required for execution considerably exceeds that
required for storage of input material, and hence total
storage requirements are lessened by reducing the
number of problems present at any one time on the
Execute List. Since frequent switching of control
between object programs is not desirable, the supervisor
program is designed to provide rapid switching of con-
trol between an object program and supervisor routines,
rather than between two object programs.

A straightforward reduction in the length of the
Execute List is achieved by using the output well in core
and drum store and on the system output tape to collect
output information from all object programs for all
output peripheral equipments. Problems which are
output limited (that is, those which use an output
peripheral for a longer time than they use the central
computer) can then be executed in series, filling the
output well. During their execution, such jobs are not
held up for peripheral transfers. Only when the output
well is filled for all peripherals is control switched to
programs which are computer limited, only one of
which need be in course of execution at any one time.
The output well is emptied by the output peripherals
until a low level of available output is reached for any

239

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

peripheral, when output-limited jobs are again executed
in series to refill the output well. In the absence of jobs
using magnetic tape, therefore, the presence of two jobs
on the Execute List achieves efficiency, and for most of
the time only one of these is actually active. Jobs using
magnetic tapes cannot be dealt with in this way, since
it is impractical for the supervisor program to provide
an adequate buffer for information transferred to and
from magnetic tapes. If tape-limited problems are run,
therefore, it is essential in the interests of efficiency to
maintain these on the Execute List in addition to the
two entries described above; the central computer will
use tape waiting time to proceed with other jobs in the
Execute List. The number of such jobs will depend upon
their computing time, and the number of tape decks
required; one such problem may be sufficient under
normal conditions on many Atlas installations.

The object of the scheduler is to maintain a supply of
problems to the Execute List, and to arrange as far as
possible that a vacancy on the Execute List can be filled
immediately by a problem already assembled in the
input well in main store. The scheduler will therefore
be activated whenever a vacancy appears on the Execute
List, through termination of a problem, and whenever
input of a job through the input peripheral equipments
is complete. Since no peripheral-limited problem
(i.e. problems which are entered to the Execute List in
order to supply output to the peripherals) will be executed
once the output well is full, and while the peripheral
equipments are emptying it, the scheduler is also
activated whenever the level of available output for any
peripheral which is in use reaches a lower limit. Problems
are then executed in series until the output well is filled,
and then a vacancy is left on the Execute List. By this
means, frequent interruption of a long computer-limited
job by short output-limited jobs is avoided; the latter are
run in bursts, during which the computer-limited job
becomes inactive, and between these "bursts" the
computer-limited job is free of interruption. Following
sections will describe in more detail the types of jobs
handled by the scheduler, and it will be found that the
simple description so far given of the necessary entries
in the Execute List is capable of extension to embrace
all jobs which occur in practice.

Streams
Having stated the general aims and method of the

scheduler there remains the practical problem of selecting
the right type of job from those available, and assembling
it for execution. The major difficulties connected with
selecting jobs of the right type from a single long list of
jobs are the time required for searching, and the possi-
bility that some job may be permanently overlooked
since it never fits into the desired category. A simple
solution to these difficulties is obtained by sorting jobs
into streams as they enter the computer. For scheduling
purposes there is need for a computer and a tape stream,
and for various peripheral streams. The tape and
peripheral streams supply jobs which will maintain steady

use of the tape decks and peripheral devices, whilst
computer stream jobs keep the central computing unit
active.

There are several factors which influence the types of
jobs which enter the various streams; these are now
listed and their effects on the composition of the streams
discussed.

1. The most obvious way of classifying jobs into
streams is according to whether they are computer,
tape, or peripheral limited.

2. With short jobs where execution time is less than
some specified time (say one minute) there is a
strong possibility that estimates for the use of
peripherals, tapes, and the central computing unit
are inaccurate. This is particularly true of "com-
mon" jobs which contain no job description of
their own but use the standard Atlas one.

3. If long and short jobs occur in the one stream, there
is the possibility that a large number of short jobs
may accumulate during the execution of a long job,
and this is undesirable.

4. Since a jobs' output may occur in uneven bursts,
a long job, even if it is peripheral limited, cannot be
relied upon to maintain steady use of the peripherals.

5. For reasons already mentioned, peripheral-stream
jobs are to be executed in series, and hence they
must be short in order to ensure that all the peri-
pherals are regularly supplied with output.

6. Since there are only a finite number of tape decks
there is need for a tape allocation routine which
governs the allocation of tape decks; this is most
easily implemented if all jobs which require tape
decks fall into only one or two streams.

Taking all these factors into account, a reasonable
solution as to the composition of the stream lists, which
fits in with the rest of the scheduling system, appears to be:

1. All short jobs which do not use tapes are allocated
to the stream belonging to the peripheral which
they use most.

2. All short jobs which use tapes, and all long jobs
where tape time exceeds their computing time, are
allocated to the tape stream.

3. Remaining jobs, that is all long jobs which are not
tape limited, are allocated to the computer stream

Jobs are sorted into their streams as they enter the
computer, according to the information given in the job
description. When a particular type of job is required
on the Execute List, the appropriate stream is consulted
and the first job chosen; by this means the search time
is reduced to a minimum and there is no possibility of
any jobs being overlooked. When a computer or tape
job leaves the Execute List it is replaced by a job from
the computer or tape stream. When a peripheral job
ends and there is a peripheral whose backlog is below a
certain desired level, or when there is no peripheral job
on the Execute List and the output backlog for any
peripheral falls below an emergency low level, then a

240

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

job from the relevant peripheral stream is entered on the
Execute List. Also, every time a new job joins a stream
queue and becomes available for execution, the scheduler
is consulted to see if this job is wanted on the Execute
List. Once the tapes for a short tape job have been
mounted, and it is not entered in the Execute List as a
tape job, then it may be treated as a peripheral job and
selected for execution on this basis; this affords a means
whereby short tape jobs may by-pass long tape jobs.
Some peripheral-stream jobs may be willing to have
their results put out on any one of a number of peri-
pherals, and jobs in this category are queued in an
"any" stream. In this case the scheduler puts out the
results on the peripheral which is being used the least,
thus helping to spread the output load evenly over as
many peripherals as possible.

Since the stream queues must contain entries for every
complete job in the computer they may become very
long. It is essential, therefore, that entries in these lists
be as short as possible to permit of efficient scanning by
the scheduler and tape and space allocation routines
without excessive use of central computer time, core
store, and transfers to and from the drums. The simple
method of choosing jobs in order from the stream
queues for the Execution List make it possible to
implement the system if each entry only contains a
condensed form of the job title, some reference position
of the job on tape, and a link with the next job in the
stream. However, jobs have to pass through an assembly
stage (see next section) before entry to the Execute List,
and it is convenient if there is sufficient information
(i.e. number of tape decks and system tapes required) in
the stream queue to tell whether it is possible to go ahead
and prepare the job. Also, in certain special circum-
stances it may be necessary to execute jobs out of their
natural stream order. For these reasons approximate
estimates of execution time, amount and type of output
and space requirements, the type of compiler to be used,
and any external priority of the jobs are kept. This
information is also valuable to the routines which govern
the allocation of tape decks and space. The whole of
this information is kept in 120 bits, which means that a
single block of store (512 words) is sufficient to list
over two hundred jobs which may be present in the
computer at any one time. Precise information (names
of tapes and system documents, location in store and
on tape of each document, etc.) necessary for the assembly
and preparation of jobs is contained in an "internal" job
description, which is formed at input time from the
programmer's job description and is recorded in an input
stream as a separate document belonging to this job.

The question arises as to the action taken when a
peripheral or tape becomes free and there are no jobs
awaiting execution in that particular stream. Under the
present stream structure it is possible that there are jobs
in other streams which may make a great deal of use of
this peripheral or tape deck; this is the case, for instance,
with long peripheral-limited jobs which have been placed
in the computer stream. When a stream becomes empty

it therefore appears worth-while to search and see if
there are jobs in other streams which could profitably
be transferred to the empty stream. However, the fact
that the stream is empty means that this peripheral is
not likely to be in great demand in the near future, and
hence there is no point in transferring jobs, which make
little use of the free peripheral, to the empty stream;
in fact doing this could lead to inefficient operation. In
order to ensure enough work for the central processor
there should always be at least two jobs on the Execute
List, even if it means taking jobs from the same stream.

Assembly of jobs
The computing speed of Atlas is such that small

problems may be expected to occupy the central com-
puter for only a few seconds during their execution.
It is therefore essential that an entry in the Execute List
should be able to be replaced rapidly by the next problem
selected by the scheduler, and one of the tasks of the
scheduler is to assemble problems in advance so that
compiling and execution may begin immediately and are
not subject to delays. The scheduler in fact selects in
advance problems which are to be assembled, deals with
any long-term preparations and then transfers these
from the list of available jobs to an Active List, which
comprises jobs in the course of assembly prior to execu-
tion. Normally computer and tape jobs are not entered
on the Active List till the previous computer and tape
jobs are finished; since these jobs are long it is difficult
to predict when the previous job is likely to finish, and
a short delay between the running of these jobs can be
tolerated. Peripheral jobs are entered on the Active
List when they are likely to be selected for execution,
and where possible a certain minimum of jobs are kept
on the list to ensure a ready supply of prepared jobs
for the Execute List. When a problem is required for
execution, only those problems on the Active List whose
assembly is complete are considered, with the exception
of when the central computer can only be used to start
execution of a partially assembled problem.

Assembly of a problem involves collecting all the
information required to run a problem so that it is
available to the central computer with the minimum
possible delay when the problem is entered to the
Execute List. A completely assembled problem on the
Active List has the relevant input information in the
input well in the combined core and drum store, the
required compiler or input routine in the drum store,
and any private magnetic tapes mounted and their titles
checked. The process of assembly may therefore consist
of reading input information from the system input tape,
reading documents previously recorded on previous
system tapes ("document" or "archive" tapes), reading
a compiler into store where necessary, instructing the
operator to mount magnetic tapes, and verifying the
titles of all such tapes. The system may be easily extended
to permit "on-line" use of other peripheral equipments
which would be treated as being in the same class as
magnetic tapes and prepared for use in a similar manner.

241

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

It is essential to observe that assembly of a problem
may extend over a long period of time, although, of
course, the central computer is only occupied for a small
proportion of the time. Collection of a document from
the system input tape may not be completed until a full
"swing" of this tape has elapsed, a time interval, in the
worst case, of around 16 seconds. Since the same tape
is used both to write blocks received from input peri-
pheral devices and read back previously written blocks
to recover documents as they are required, the tape
performs a "swing" action in which frequent scans are
made over a few feet of tape, although it will gradually
progress forwards. Collection of documents from other
system tapes may require scanning over long sections of
tape, and a delay of up to 5 minutes may be experienced
even when the correct tape is already mounted. The
mounting of magnetic tapes by the operator may be
expected to occupy a variable length of time, but one
which is necessarily long considering the speed of the
central computer. The logic of the scheduler and the
assembly routine takes into account these wide variations
in assembly times, and attempts to minimize the effect
of delay in any branch of the system on the other
branches of the system which can operate concurrently.

The process of assembly is divided into two main
phases. The first phase deals with long-term assembly
of magnetic tapes, documents from system tapes other
than the system input tape, and compilers. Not until
this phase is completed is a job made available to the
scheduler for inclusion on the Active List, and not until
called for by the scheduler is the assembly of any
documents from the system input tape initiated. The
space and tape allocation routines, to be described later,
scan the complete job list and initiate the first assembly
phase for jobs near the head of the stream queue. As
tape mechanisms become available, the operator is
instructed to mount private tapes and/or system tapes;
the required documents are read from system tapes into
main store and from there may be temporarily recorded
on the system dump tape. The space allocation routine
makes main store available for compilers, which, if they
are not already in main store, are read as required from
a system library tape. As this stage of assembly of each
problem is completed, the scheduler is activated, and
should the problem be required on the Active List, any
relevant documents are collected from the system input
tape. The problem is, in fact, entered to the Active List,
and is scanned by the routine controlling the system
input tape; this routine collects documents required by
any job on the Active List as the system input tape
moves forwards to the writing position, and hence can
assemble several problems during one "swing" of the
system input tape. The location of documents is
obtained from the internal job description which, if
necessary, is read in from the system input tape on the
backward swing. It should be noted that any or all of
the phases of assembly are omitted where they are not
required. Frequently a problem will require only
information recently read in through the input peripherals

and will require a compiler already present in main store,
in which case the first assembly phase is omitted. If"
demands on store are not heavy, the problem may also
be already in main store, in addition to being recorded
on the system input tape, and in this case, assembly is
virtually instantaneous.

Interaction with operators
The scheduler can be independent of any operator

scheduling, but there does exist a two-way communica-
tion system between the operator and scheduler. When
the scheduler requires action by the operator, such as the
mounting of magnetic tapes, an explicit command is
printed out to the operator. Because of the comparative
slowness of operator action, requests to the operator are
given, where possible, well in advance of when the action
is needed. In fact, it is advisable that jobs which require
some operator action should be fully prepared before
entering the execution phase, otherwise inefficiencies
resulting from a prolonged delay in operator action can
be serious.

It is possible for the operator to convey information
to the scheduler, and an example of this is the allocation
of an external job priority. From the scheduler's view-
point external priorities given to a job through the
operator at the user's request are necessary to satisfy the
user, but may lead to gross inefficiencies in computer
operation. The need to obtain the operator's approval
before allocating a job special priority affords some
protection, but it should be recognized that external
priorities impinge on the scheduling system and determine
independently what is to happen. Of course the change
of state in the computer brought about by the allocation
of an external priority is taken into account by the
scheduler when determining the best course of action in
the future. Also, the framework of routines set up to
implement external priorities may be used by the
scheduler to achieve its own ends.

The normal scheduling system on Atlas is based almost
solely on efficiency considerations, and allocation of an
external priority to a job by the operator affords the
means whereby the individual user's requirements may
be satisfied. There appears to be a need to allow four
priorities—top, high, normal, and low, with the following
functions.

1. Top priority: the specified job is executed and the
results put out as soon as possible regardless of the
state of the computer, or what other jobs are
awaiting execution.

2. High priority: the specified job jumps to the head
of its stream queue.

3. Normal priority: the specified job is given the
priority and treatment described in previous
sections.

4. Low priority: the specified job is treated as normal
until it reaches the execution list when it remains
at the bottom of the list.

242

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

Tape allocation routine
The Atlas operating system normally requires three

tape decks for its own use, viz. input tape, output tape,
and dump tape; this means that three decks are occupied
permanently by the supervisor, though the system is
flexible enough to operate with fewer decks when
absolutely necessary. When only two decks are available
the input and output tapes are combined on one tape.
Both tapes are normally used in a similar fashion, and
the cost of combining them into one is a reduction in the
effective size of input and output wells on tape. If only
one deck is available this must be used by the dump tape,
which acts as an extension of main store. The operating
system still functions when no decks are available, but
only as efficiently as circumstances will allow, and car-e
must be taken that input and output wells are not
allowed to occupy all the free space in main store. If a
computer installation has a large number of decks then
it may be worth while for the operating system to use
more than three decks; for instance, it would be valuable
to have one deck permanently loaded with the library
tape and another with a separate dump tape to record
error monitor dumps of object programs.

Part of the information which accompanies each job
into the computer is a list of the tapes required and any
documents which have to be obtained from system tapes.
Thus, before a job commences execution, the number of
decks it requires and the names of the tapes to be
mounted are known; this information is valuable for
scheduling purposes and the assembly of jobs prior to
execution. However, in certain cases tapes are only
required during part of their total time of execution,
and thus tape decks can be called for or made free
during the course of a job's execution; one common
example is the use of tapes as temporary working space
during compilation.

It is the job of the tape allocation routine to allot
tapes to the various sources which require them in such
a way that the scheduler can maintain efficient operation
of the computer. There is clearly strong inter-action
between the scheduler and the tape allocation routine,
the behaviour of one affecting the decisions of the other.
The normal order of priority for allocating tape decks
is as follows:

1. Supervisor system tapes.
2. Jobs or compilers which call for tapes during

execution.
3. Jobs called to enter the execution list and requiring

either private tapes or documents from system tapes.
4. Jobs near the head of their stream queues which

require private tapes or documents from system
tapes.

Since jobs have not direct access to system tapes and
it is the supervisor's job to collect documents from these
tapes, they can be dismounted as soon as the relevant
documents are read into main store. However, there is
no point in dismounting a system tape if the deck is not
required, and if the deck is required it is worth-while,

before dismounting the tape, to read off any other
documents which are likely to be called for in the near
future. Exactly how many documents should be read
into main store depends on the size of the documents,
the state of the dump tape, and the present demand on
tape decks. If the space occupied by documents which
are read into main store before they are called for is
wanted, then the documents are recorded on the dump
tape. It should be noted that apart from this reason
the dump tape is used to record error monitor dumps,
suspended programs, and overflow from main store,
which could include such items as jobs in process of
execution and documents or output which lie outside
the scannable region of the output tape.

Though it is not customary to use a satellite computer
in association with Atlas operation it is possible to do so
if required. Jobs previously recorded on a "satellite"
magnetic tape are executed in sequence, and the outputs
from these jobs are recorded on another tape to be
printed on the satellite computer. Tapes in this category
are mounted as soon as sufficient tape decks are available
after the request for a satellite run has been received
from the operator.

Space allocation routine
Every block of main store space in Atlas is a member

of a group, depending on its owner, and there are six
main groups of owners; these are:

(a) Free space.
(b) Input and output wells.
(c) Jobs that are being prepared for execution.
(d) Jobs being executed.
(e) Compilers.
(/) The supervisor.
The basis of the space allocation routine is that a

hierarchy is formed of all these owners and also of all
requests for space, and no request is allowed to take
space from an owner of higher priority. The ratings of
each member of this hierarchy are essentially dynamic,
depending on the state of the machine at the time.

There is an area of space in the machine which is
readily available to any request; this consists of all free
space and all blocks in input and output wells which
have been duplicated on magnetic tape, copies of which
have been kept in main store. The number of these
available blocks is known at any time. Essentially, a
request can only take space from this group, and if there
is not sufficient space, then routines are activated which
begin to free blocks of a lower priority than the request;
when this happens, the request is put into the space
request queue, and each time a block is freed, the top
element in the queue is checked to see if there are enough
free blocks for it. In certain cases the request is not
queued but the space allocation routine returns to the
routine which made the request with the information
that the request has been refused, thus allowing the
routine to take alternative action. For instance, the
scheduler may ask for space to enter a peripheral job in

243

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024



Atlas scheduling system

the Execute List; if insufficient space is available, it may
be possible for another smaller job on the Active List
to fit into the space available. Certain other requests
are allowed to by-pass this main queue; these are the
types of requests which ask for single blocks at relatively
infrequent intervals, and if the request is not granted
some part of the computing system would be halted;
i.e. if a request for input-well space is not granted then
a peripheral may be halted.

The ordering of the space request queue is important
because low priority requests for a large amount of
space should not be allowed to block small, relatively
high priority requests. Of course, care must be taken
that a request is not always by-passed, and if it has been
in the queue for more than a certain length of time it is
allowed to begin to reserve space. Also, the priority of
most requests will be proportional to the length of time
that they have been in the queue.

There are two types of information in main store.
The first is information which has no copy on magnetic
tape, i.e. programs being executed. In order to free this
type of space it is necessary to dump the information
on the dump tape. This can take a long time and
owners in this class have a fairly high rating. However,
the second class is information which is duplicated on
magnetic tape, i.e. compilers; space belonging to these
owners is overwritten and freed almost instantaneously.

It is a complicated task to keep track of the informa-
tion in the store and on the dump tape, but a directory
system has been devised which makes it possible to over-
write peripheral-stream information in units of one
block. However, for other information it is necessary
to dump or overwrite it in reasonably sized sections;
i.e. even if only a few blocks are needed an entire
document might be overwritten.

The actual routines which do this work are in two
sections. One section is in the fixed store, and this is
sufficient to take care of most requests for space. -The
other section is in the main store, and this contains the
longer routines which deal with dumping and retrieving
information. These space allocation routines, and in
fact the whole supervisor, have been written in such a
manner that it is possible to overwrite the major part
of the main store routine, leaving virtually the entire
store available to the user.

Conclusion
It must be emphasized that the system outlined above

is suitable for any type of Atlas installation, and is
independent of the configuration of peripherals, core
store, and drum store, apart, of course, from changes in
essential parameters at different installations. However,
the scheduling system has been designed in two parts.
Routines called into action most frequently are held in
the fixed store, and these will be the same on all installa-
tions. They are called into action, and effectively con-
trolled, by routines in the core and drum store and by
parameters in the subsidiary working store, which can
be changed in the light of experience, and to meet any
particular requirements.

Acknowledgements
This work forms part of the Atlas project. It has

benefited from many helpful discussions with the authors'
colleagues at Manchester University and Ferranti Ltd.,
whose permission to publish is acknowledged.

References
1. KILBURN, T., HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H. (1961). "The Manchester University Atlas Operating System

Part I: Internal Organization," The Computer Journal, Vol. 4, p. 222.
2. HOWARTH, D. J., PAYNE, R. B., and SUMNER, F. H. (1961). "The Manchester University Atlas Operating System Part II:

User's Description," The Computer Journal, Vol. 4, p. 226.
3. KILBURN, T., PAYNE, R. B., and HOWARTH, D. J. "The Atlas Supervisor," Proc. E.J.C.C, December 1961.

Editorial Note:
A Summary of the above paper was presented at the Interdata Exhibition

in Munich, Germany, on 30 August 1962 by P. D. Jones, with parallel French
and German translation. The German version of this paper appeared in
Elektronische Rechenanlagen, Heft 4, 1962 (Oldenbourg Verlag, Munich),
and a French version has been submitted to Chiffres (AFCALTI, Paris). The
original text, as above in English, was received by the honorary editors of this
Journal on 21 June 1962. Overseas readers may find these references of
interest.

244

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/5/3/238/424455 by guest on 13 M
arch 2024


