The method of successive grids for reduction of function storage

requirements™

By Roger L. Boyell

A method is analysed for reducing storage requirements of arbitrary but relatively well-behaved

functions of any number of variables.

The method consists of storing successive digits of the

words representing the values of the function according to grids of successively finer meshes.
The advantage is illustrated as dependent upon the size of the function table to be stored, being
well suited to computers operating with variable word length.

It is frequently required to maintain a large table of
values of an arbitrary function, this function being of
one or more variables. When operating with computing
devices, it is frequently necessary that the size of the
bulk store be as small as possible—both in number of
entries and in size of each entry (number of digits carried)
—even at the expense of computational effort. It may
be desirable to maintain the table in two portions, con-
sisting respectively of those relatively few points which
lie on a coarse grid, and then of those points that must
be interpolated (only differential values stored) by use
of a fine grid. If the function to be represented is slowly
varying, it may be found that the total size of the table
(number of entries times average number of digits per
entry) would be further reduced by having a three-level
grid—coarse, medium, and fine.

Extending this technique to its limit, one may conceive
of a computer, operating under a radix r, in which each
succeeding grid is r times as fine as its predecessor. There
would be a different mesh grid for each digit in the table
entries. Specifically, the coarsest grid would give the
first digit, the next finer grid would give the next lower-
order digit, etc., until the value of the function at the
selected point was built digit by digit. (Note that a
point on any given grid is also on any finer grid, and thus
all lower order digits will be stored there also.) Obviously
this represents a saving in the number of digits stored,
compared with storing all the necessary digits for all
points on the finest mesh grid, but it requires more
computation to accumulate the digits from different
grids in order to obtain the value of the function from
the table. (The analogy to digit-by-digit analog/digital
converters may be apparent.)

Example

To make the process more concrete, take a simple
example. Fig. 1 illustrates an arbitrary but monotonic
function, plotted on coordinates expressed in a binary
number system. The requirement that the function be
slowly varying is more explicitly a limitation that the
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Fig. 1.—Example for radix r — 2, digits per word n 3

slope of the function, positive or negative at any point,
cannot exceed one unit of ordinate per unit abscissa, after
appropriate scaling factors have been applied. Indeed,
this is a general limitation on the method described
herein. (The instantancous slope must be allowed to
equal unity, or else the ordinate could never change as
the abscissa advanced away from the origin.) At the
halfway point along the abscissa (100 in binary), the
first digit of the ordinate is given by the value of the
curve at that point. For all tabulated points on this
curve of greater abscissa, the first digit can increase by
no more than one unit, since the value of the curve can
change by no more than three units (011 in binary) and
this curve is monotonic increasing. Thus, for all points
of greater abscissa, only differential values need be
stored with respect to the value at the halfway point,
thus reducing the number of digits to be stored for the
table.

It is convenient to set up the relations involving the
number of digits in a form such as Table 1. Referring
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Method of successive grids
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first to Case A, column (1) shows the level of breakdown
—halfway, quarterway, etc.—along the abscissa of the
original curve. In the example of Fig. 1 with eight
points along the abscissa, including the origin, there
are three levels necessary (corresponding to the three
binary digits required to represent the eight-valued
abscissa). Column (2) shows the number of points
added at each breakdown, or the number of points
which can be reached by going to each successive level.
Column (3) shows the limit that can be reached on the
change of value of the ordinate (in decimal notation)
upon going to each level. Column (4) shows the number
of digits required to represent the possible change in
ordinate for each level. Column (5) is simply the pro-
duct of Columns (2) and (4), giving the total number of
digits required.

In the simple example chosen, it can be seen that
eleven digits (in this case, bits) are required to represent
the value of the curve at the seven points other than the
origin. Using three-digit accuracy in the conventional
way, it would of course require twenty-one digit positions
to store the same data, representing almost a factor of a
half in storage size.

The other cases in Table 1 are successive generaliza-
tions, in all of which the index i =1, 2, . . ., n where n
is the number of digits of precision with which the data
must be stored. Case B retains the restriction of mono-
tonic functions, but Case C removes this restriction by
adding a digit signifying the algebraic sign of each suc-
cessive low-order portion of the word representing the
value of the ordinate. Finally, Case D illustrates the
most general case of an arbitrary radix r. (An entire
digit position is assumed to be required for the algebraic
sign.)

It is apparent that, with an nr-digit word to represent
the abscissa, r” — 1 points other than the origin may
be represented using n different grids, each of mesh r
times that of the preceding. The total number of digits
using this “method of successive grids” is the sum of

321

column (5) in Table 1, or for Case D

noo . 2r — 1

r—1 'Zl ri-ln +2 —i)= Pa— (rm—1)—n
On the other hand, storing all ordinates independently
(including a digit for the sign) would require (n -+ 1)
(r"—1) digits in storage altogether. The ratio of storage
space required is always less than unity. Forabinarycom-
puter (r = 2) it reduces to less than 3/(n + 1); storing
32,768 entries, (n = 15) this upper bound becomes 3/16,
extremely close to the actual storage reduction.

For computers operating in the binary system, not
only is the method of successive grids rather efficient,
but also the selection of points at successive levels is
particularly easy. Referring to Fig. 1, it can be seen
that the first level of breakdown is represented by the
halfway abscissa (100 in binary). The next level of
breakdown is represented by the abscissa X10, where
X is 0 or 1 respectively for the 1/4 and 3/4 points along
the abscissa. In general then, for breakdown level i
there are 2¢ ! points on that level represented by that
number of combinations of i — I bits at the beginning
of the abscissa word, with the rest of abscissa word
being of the form 1000.... For computers operating
in number systems other than binary, a similarity exists.
For each breakdown level i, the first i — 1 digits are
allowed to run through all possible values, but the next
digit is restricted to non-zero values, thus producing the
(r — 1)ri ! points for that level.

Conclusion

The advantage of the method of successive grids, when
it is applicable, is greater for tables of functions of more
than one variable; a saving of a factor of two or three
in each dimension can be quite useful. For a two-
dimensional table, the computer must be programmed
to add successive digits for the value of a function at
any point from the “lower left” corners of the interstices,
including the point of successively finer grids.
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