The use of higher derivatives in quadrature formulae

By J. D. Lambert and A. R. Mitchell

Some new high accuracy quadrature formulae involving derivatives of the integrand are derived
and compared with existing formulae.

1. Introduction

Interpolation formulae using function values and
derivatives at several points have been known for some
time. An extensive list of references relating to this
topic can be found in Hildebrand (1956).

Quadrature formulae involving derivatives of the
integrand have been proposed by several authors. For
example, Squire (1961) produced a class of quadrature
formulae in which the value of an integral over a finite
range is expressed in terms of the integrand and its
derivatives at the end points of the range. Also, Hammer
and Wicke (1960) derived formulae of a special type
which make use of the values of the integrand and its
derivatives at special points unequally spaced within the
range of integration. The evaluation of the coefficients
and the special points was carried out by Struble (1960)
for a variety of cases.

It is the object of the present paper to generate the
general family of quadrature formulae which involve
derivatives of the integrand at equally spaced intervals,
and to examine the usefulness of such formulae.

2. Optimum formulae
Yk
In order to evaluate the integral J_f'(x)dx. consider
the class of formulae o
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Yo. Vi are the values of y at the points x4, x;;
YO s=1,2,...1; t=0,1,...k) are the / successive
derivatives of y at the (k + 1) neighbouring points
Xo -+ th, h being the distance between consecutive points
along the x-axis, and a,, are coefficients to be determined.

If yo, v, and the derivatives of y up to order / at the
(k + 1) points are expanded as Taylor series about a
convenient origin, the expansions substituted into (1)
and the coefficients of the various powers of & equated
to zero, then the following equations are obtained
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The first (kK + 1)/ of these equations can be solved to
give the values of a, (s = 1,2,.../; =20, 1, ... k).
With these values (1) now determines a class of formulae
with minimum truncation error.

The values of the coefficients and the form of the
principal part of the truncation error are independent
of the choice of origin. If, however, the mid-point of
the range is taken as origin, the labour of calculating
the coefficients is considerably reduced. The form of
the terms after the first in the truncation error series
depends on the choice of origin, and if the mid-point is
chosen, the second term vanishes. Accordingly the
values of a,, and the first two non-vanishing terms of
the truncation error are given in Table 1 for / = 2 and
in Table 2 for / = 3. Coefficients have been quoted for
k < 5in the case / = 2, and for k < 4 in the case / == 3.
For larger values of k, the coefficients become exces-
sively unwieldy, and in any case, the coefficients of the
function values are no longer all positive, a situation
which can lead to an adverse accumulation of rounding
error. (A negative coefficient for a function value has
in fact already appeared when k = 4, / = 3.) Hence-
forth the formula of class (1) with k == «, / == 8 will be
referred to as [« B]. For example, Simpson’s rule is
the formula [2; 1], the general Newton-Cotes formula is
[7; 1], and the general formula of the class derived by
Squire is [1 ; #].

3. Sub-optimum formulae

Formulae involving derivatives of the integrand with
an increased truncation error can also be obtained from
(1) by putting certain of the coefficients a,, equal to zero.
If p of the coefficients are taken to be zero, then only
the first (k 4 1)/ — p equations of (2) need be solved to
give the remaining coefficients. The formulae obtained
are referred to as sub-optimum formulae.

A class of sub-optimum formulae is now derived for

the numerical evaluation of J?}(X)(/.\'. where 7 is a
x*

solution of the equation %’ == g(x, n) and is tabulated
at regular intervals of x. Examples of such functions %
are the Airy integral, the Whittaker function, and the
Mathieu function. Ifin (1) all the coefficients except a,,
and a;,(t =0, ... k) are equated to zero, the class of
formulae is obtained which involves the values of 7
and its second derivative, the latter being readily obtained
in terms of % from the differential equation. These
formulae are quoted for k = 1, 2, 3, 4 in Table 3.
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Derivatives in quadrature formulae

Table 1
=2
Coeficients
k 1 | 2 3 i 4 5
| |
[ 93 3202 319085
2 | 15 224 8,505 912,384
L . M3 812 69185
2 15 224 | 8,505 912,384
a3 7 243 | 11,232 1,270,000
5 | 224 8,505 912,384
213 93 8,192 1,270,000
| 224 8,505 912,384
o | 3,202 | 691.875
| 8,505 912,384
a | | 319085
| | 912384
1 1 i 57 116 | 36.975
@20 12 15 l 1,120 2,835 i 1,064,448
1 81 512 L 314375
@21 2 0 CTLI20 2,835 T 1.064.448
4 1 8 0 | _272.500
22 15 L0 1,064,448
I 512 272,500
@ | CoLI0 | 283 1064448
| | 116 314375
= CTass 106444
| 36,975
azs | | 11064448
Truncation Errors
|
hSp(5) _ _L { ‘
, 720 |
H7 (D . ! | l
: 40320 | 4725 |
hOp(®) _ f,,,],f_ . 9,* }
. 113,400 |~ 313,600 |
Jipan - i [ 78,,,* ‘
- | 27,596,800 1,964,655
. | e mas
b T 1.915.538.625 230.150,688,768
1115‘,(15) — 7ﬁ,, .
i | 38.626.689,024
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Table 2 [=3
Coeflicients
k 2 3 4
o 1 41 3,849 1,257,482
2 105 9,856 3,648,645
. 1 128 10,935 6,848,512
" 2 105 9,856 3,648,645
. ; 41 10,935 1,617,408
12 105 9,856 " 3,648,645
. 3,849 6,848,512
'3 9,856 3,648,645
. 1,257,482
14 3,648,645
a3 1 2 2,799 52,552
10 35 49,280 1,216,215
ay, 1 0 2,187 \ 1290816
10 49,280 ‘ 1,216,215
a,, 2 2,187 0
35 49,280 j
sy 279 | 290,816
49,280 j 1,216,215
sy 52,552
T 1.216,215
L R 153 _ 2408
| 120 315 49,280 1,216,215
S T . 1 2187 126976
; 120 315 49,280 1,216,215
| e 2,187 184,788
315 49,280 1,216,215
| 153 126976
| 49,280 : 1,216,215
| | _2A08
1 1,216,215
Truncation Errors
h7p™ s : | | |
. | 100,800 | |
hoy®) I i
. 7,257,600 i i
htlpdD E o i ;
: - 130,977,000 |
h13p(13) ‘ _ 1 % _ 9 . i
: 5108103000 | 5,637.632,000 |
B153(15) 171 i
: | | 2.209,951,744,000 |
W17y J _,,‘47,8, I
: | | 162,983,603,908,125
ot | | | 4721
: | 27,870,196,268.,289.375
h21p2D | i
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Derivatives in quadrature formulae

Table 3
Coefficients
k f I 1 2 \ 3 4
\ |
; 1 i 5 % 3 8,674
v 2 ; 21 | 56 39,105
. 1 32 81 57,344
" 2 21 56 39,105
; 5 81 24,384
12 | 21 56 | 39,105
. | | 3 | 57.344
13 | ! 56 § 39,105
a | 1 E ,816l‘},
H | E 39,105
a3 1 ‘ 1 9 | 1912
24 . 315 1,120 | © 821,205
I ] 351 | 102.400
24 ‘ 315 1,120 ‘ 821,205
as, 1 351 \ 56,064
315 1,120 821,205
ass 9 ) 102,400
1,120 821.205
1912
821,205
Truncation Errors
|
h5 (S —
J \ 120
1
T(T) .
k' 5.040
h91v(9) . L S 3i
: 396,900 313,600
hl 1 v(l 1) R ,l,A . ,7%117, .
’ 13.097,700 27.596.,800
P13 o 42608
i 554,867.688.,375
A1y 80

713,316,824,521
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Derivatives in quadrature formulae

Table 4

. . U dx
Numerical Evaluation of j ETZ
—_— l =

(Theoretical value 1-098,612,288,668)

E | ORDER OF |
| METHOD NUMBER OF | MESH SIZE | TRUNCATION | RESULT ERROR
i VALUES | ERROR ) ‘
| |
I | Formula 2: 3] once | 8 | I 1 | 1-098,667.854 | --0-000,035.565
2 | Formula [2; 3] twice | 12 ‘ 1 11 - 1-098,612,522 | +0-000,000,233
3 f Sub-optimum formula 25 5 ‘ 9 | 1-098,612,288,785 ‘ -+0-000,000.000,117
4  Struble (I == 3) 3 Uneven mesh | 7 | 1-096,652,562 | —0-001,959,727
(3 points) i | |
5 | Struble (/ = 3) 5 Uneven mesh 11 1 1-098,590.615 —0-000,021,674
! , (5 points) ‘
6 | 9-point Newton—Cotes | 9 i 10 1-098,616.867 | -+0-000.004,578
| once ‘ |
7 | 9-point Newton-Cotes | 17 % 10 | 1-098,612,304 | +0-000,000,035
twice i |
8 ! 9-point Newton-Cotes | 25 ‘ L | 10 | 1-098,612,289,926 | +-0-000,000.001,258
" three times 1 3 3
9 | Weddle’s Rule four 25 5 { 7 - 1-098,612,332 +-0-000,000,044
I! times | ‘ ‘

Sub-optimum formulae can also be chosen in such a
way that the coefficients are simpler than those of the
corresponding optimum formulae, and the increase in
truncation error may be compensated for by the greater
simplicity of calculation. In many cases, a solution of
desired accuracy is most readily obtained by employing
such a sub-optimum formula with a suitably small mesh
length. For example, a sub-optimum formula with
k = 2, I = 4, which is particularly suitable for repeated
application is

h ) .
Y2 — Vo = (B(Mfo + 64f) + 31f,)

5h? h*
(D) )y 3 £0)
+ 63 (/0 f2 ) 945(f0 .fl )a

1
. .o . T Yt
with a principal truncation error of 198,450hf . If

this formula is used » times to cover the range of inte-
gration 2nh, the result

h .
Yan — Vo = 6“3[31](0 + 64f) + 62f; + 64f5 + . ..

+ 62.on -2 + 64:}(‘21141 + 314/‘2n]

5h? h*
LT D] 13 £
T 63 [fO f2n ] 945[f0 2n

is obtained.

4. Numerical results

It is very difficult to get a fair means of comparing
various classes of quadrature formulae. The numerical
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+1
results obtained for the evaluation ofj L dx by a

—1 X+2
selection of formulae are set out in Table 4. The figure
entered in the column headed “number of values”
denotes the total number of values of the function and
of its derivatives employed in the formula.

It is of particular interest to compare methods 3 and 8,
which both involve the same number of function values.
Method 8 (9-point Newton-Cotes used three times) has
a smaller mesh size and a higher-order truncation error
than method 3, which uses the sub-optimum formula of
the last Section. Nevertheless, method 3 gives the more
accurate result. This is due to the very small numerical
factor in the principal part of the truncation error. The
smallness of these factors is a general feature of the
methods proposed in the present paper, as will be seen
from Tables 1, 2, and 3. It is thus possible to obtain
accuracy comparable with the Newton-Cotes formulae
with a very much larger mesh size. Provided the
derivatives of the integrand can be evaluated at the end
points of the range without too much difficulty, method 3
again compares favourably with method 8 in ease of
computation on a desk machine, since the coefficients
are much simpler.

5. Concluding remarks

In general, it is impossible to single out one particular
formula of class (1) as giving the best balance between
accuracy and labour of computation, since the latier
varies greatly with the form of the function and its
derivatives. Nevertheless, the formulae using higher
derivatives developed in the present paper can have a
distinct advantage over existing formulac when the
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Derivatives in quadrature formulae

integrand, although given analytically as a continuous
function of x, is most readily evaluated by reference to
a tabulation at discrete values of x. Provided such a
function can be differentiated, sufficient accuracy may
be achieved by using formulae involving higher deriva-
tives with a mesh size large enough to avoid the need for
interpolation of the tabulated function.

Finally, although quadrature formulae are frequently
employed in the solution of first-order ordinary differential
equations, it is not intended that the formulae derived
in the present paper be used for that purpose. The
formulae given by (1) are designed to perform quadrature
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Note on the solution of certain tri-diagonal systems of

linear equations
By D. J. Evans and C. V. D. Forrington

This note describes a technique for solving the tri-diagonal systems of linear equations encountered
in the numerical solution of certain types of partial differential equations.

In some methods of numerical solution of second-order
elliptic difference equations with constant coefficients, it
is necessary to solve repeatedly tri-diagonal systems of a
certain restricted form. It is usual to solve these systems
by an algorithm based on Gaussian elimination, which
leads to a simple process involving 9N arithmetic
operations, including N divisions, where N is the order
of the system.

We have considered a method, which when applicable,
reduces the number of operations and requires only a
small number of divisions independent of N. Thus the
advantage in speed may be considerable on machines
where the division operation is slow compared with the
other operations.

Consider a restricted system of the form

a b 1T Xy ] [ (ll ]
bab X5 d,
b a b X3 ({3
= (1)
L b'a_ '_X.NJ _d'NJ

or in matrix notation Ax = d.
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We attempt to factorize A4 into the product LLT,
where L is a lower triangular matrix and L7 its transpose.
Now consider the product LLT when

L=Tr T
qr
qr
(2
o qrl
then LLT — [r? gr -
ar q* + r* qr
qr q* + r* gr
(3)
s o @ ).

By comparing LLT and A we see that values of g and r
can be chosen so that LLT = A for every element except
the first element in the first row. This is so when
g*> + r? = a and gr = b which gives

P =dla b v@ =4l g bl (@)
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