Solutions of differential equations

Then eqns. (11), (12), (13), etc., are linear implicit
equations which may be solved successively to give
k., Il,. m, etc. We shall say that such a process has ¢
stages if R, is not zero, but all succeeding R are zero.

By a straightforward but tedious calculation it is
possible to expand x, — x, |, in eqn. (14) as a power
series in A,, and to compare this with the Taylor’s series.
It is found that the following equations must be satisfied
in a two-stage process in order to ensure correspondence
between the early terms of both series:

h,: R, + R, 1 (15)
/7,:': Ria; + Ryla, — b)) L (16)
3 Ria; + Rylas + (a; + ay)b] 4 (17)
"L Ralasey - y’f) s (18)
Rlaf RZ[a% R (af A dy a_%,)b]] T (19)

pre ) Raas(aye, — b7 - ok (20)
’ Roajase, + ajey + ashiey - ab) -y (21)
Ry(Layc? -+ 4b}) — 4. (22)

In these equations there are six adjustable constants,
a, a,, by, ¢;, Ry and R,. 1t follows that, at best, agree-
ment can be obtained up to terms in /43, leaving an error
0(4*). Two further conditions may then be applied.

As an example, one possible solution of egns. (15) to
(18), with truncation error 0(h*), is

a; == 1 -+ 4/6/6 = 1-408 248 29 (23)
a, =1 --4/6/6 —0-591 751 71 (24)
by = - {6 /64 \/[58 20,/6]}/
(6 -+ 24/6)

0-173 786 67 (25)
R, 0-413 154 32 (26)
R, = 1-413 154 32. (27)
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The function corresponding to eqn. (5) is
I kgt = 3(kit)?

Jri(t) o2k k) (28)

which tends to —0-8 as ¢ -> oo. It can be shown that
there is no two-stage process with truncation error 0(/*)
for which (1) — 0 as 1 — .

Many alternative processes can be developed on the
lines just given. If stability is the first consideration, it
is possible to have a two-stage process for which
(1) —» 0 as r—- oo, provided that a truncation error
0(/1%) is acceptable. An example is obtained with

CV22.b (V2 D)2
Cy 0, R[ = 0-. RZ l.

a; - a, |1

(29)

Finally, if the constants are allowed to be complex,
it is possible to obtain further processes. For example,
consider the process defined by

k, = hid(x. )+ aAlx, )k, (30)
X, X, - ARk, (31)
with a; - MU 40, Ry 1L (32)
This has a truncation error 0(/*). and gives
1
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Unfortunately the amount of work involved in the
solution will be roughly quadrupled by the use of com-
plex numbers.

Conclusion

The processes described above have been explored
only cursorily, and it is hoped that this note may stimulate
others to investigate their possibilities.
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Book Review

Digital Computation for Chemical Engineers, by L. LAPIDUS,
1962; 407 pp. (London: McGraw-Hill Publishing Co.
Ltd., 89s; New York: McGraw-Hill Book Co. Inc.)

This is another book mainly about computational methods
in which the author has set out to describe those areas of
computer mathematics which are of importance to the
chemical engineer. Unlike most texts on this subject we find
that the numerical examples have been collected and placed
at the end of each chapter. Almost all these examples have
been processed on digital computers of one sort or another,
and machine times are given together with the programming
system used. Lectures have been given on this material to

(98]

undergraduate and graduate engineers and also to technical
personnel in the chemical industry. About one-fifth of the
book is devoted to worked examples. There are over 450
references.

Chapter | gives a brief introduction to the digital com-
puter. Chapter 2 deals with polynomial approximation and
includes interpolation, integration and differentiation. For
equally spaced data, operators are used to derive Newton’s
forward and backward formulae, Gauss’s forward and back-
ward central-difference formulae, Stirling’s, Bessel’'s and
Everett’s formulae. The throwback of higher differences is
discussed. The Lagrangian formula for unequal intervals is
derived and discussed. Numerical differentiation is treated
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at similar length to interpolation. The Newton-Cotes for-
mulae for integration are derived, and the elimination of
error terms by extrapolation to zero interval using integra-
tion at two different intervals is presented. Integration at
unequally spaced intervals is considered and the formulae of
Gauss for a finite interval of integration and for singly and
doubly infinite limits are given. Quadrature formulae with
various weighting functions are also mentioned. One of the
main examples at the end of this chapter is the consideration
of

b
I, J‘(l — 10x3) ldx

and the comparison of the efficiency for various a and b of
the Trapezoidal rule and the methods of Simpson, Weddle,
Chebyshev and Legendre-Gauss. The author rightly points
out that the ease of integration is closely connected with the
limits @ and b. A study of Table 2.6 shows that for a == 0,
b 10 and interval of integration 0-1, the Trapezoidal rule
gives a more accurate answer than the application of Simpson’s
rule at the same interval. This unusual occurrence is not
explained in the text but a closer examination reveals that
the reason for this is to be found in the cancellation of error
terms. Tables 2.5 and 2.8 show that /y | for the Trapezoidal
rule has a large positive error, whereas /| (o for the Trape-
zoidal rule has a similarly large negative error. The same
cancellation does not take place with Simpson’s rule.

Chapter 3 deals with ordinary differential equations, being
mostly concerned with first-order equations and initial-value
problems. There is a brief mention of boundary-value
problems and a method for dealing with second-order linear
equations with first derivatives absent. A selection of
Runge-Kutta type methods is given and discussed. An
unnecessarily complicated description and analysis of
numerical stability is given. Repetition of the computation
at a reduced interval is advocated for monitoring this type of
integration procedure. No mention is made of the superior
qualities of the Kutta-Merson procedure in this respect (vide
Numerical Solution of Ordinary and Partial Differential Equa-
tions, L. Fox, Ed., Pergamon Press 1962, p. 24). Of the
predictor-corrector methods, Milne’s methods 1 and 2 and
the Adams—Moulton method are treated. Only one applica-
tion of the corrector equation is considered so that the
formulae as given are of mixed type. There is thus no discus-
sion of the convergence of the corrector equations and the
stability analysis given is not, strictly speaking, applicable.
There is no mention of the requirement for ultra-stable
formulae or of Chebyshev methods of integration.

Chapter 4 deals with linear, second-order, partial differential
equations. The treatment is fairly full and up to date. For
the elliptic-type equations in two dimensions, the finite-
difference approximations are developed. Methods of solu-
tion include direct solution and the iterative methods of
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successive over-relaxation, and Peaceman and Rachford’s
alternating-direction procedure. Curved boundaries are
treated. The method of characteristics and finite-difference
representation are both discussed for hyperbolic equations.

Chapter 5 is on linear algebra and begins with an account
of matrices. Various elimination methods are discussed for
equations. The eigenvalue problem is given a thorough
treatment although important work which has appeared in
the last three years is not included.

Chapter 6 deals adequately with roots of equations both
polynomial and transcendental.

Chapter 7 gives methods of approximation for functions
mostly of one variable. Included here are the least-squares
fit and Chebyshev approximation. There is some mention
of continued fraction expansions.

The last chapter on optimization and control deals with
linear programming, giving the simplex solution and a rather
special, though important, case of the control problem. A
linear, sampled-data system is considered in which the control
variables are held constant between sampling instants. The
mathematics is developed to enable the best control action to
be calculated for a quadratic performance index. This last
chapter is more mathematical than computational.

It is apparent from the above that the coverage of computa-
tional topics is fairly full and detailed. There is, however,
not a great deal to justify the second part of the title. Admit-
tedly the examples have a chemical background, but a draw-
back to this is the amount of descriptive matter which has to
be included. The author’s practice of collecting up worked
examples at the end of each chapter does not really come off
in the opinion of your reviewer. The inner workings of
numerical formulae are not fully exposed by the tabulation
of an array of results which again do not form a complete basis
for comparison of the usefulness of alternative procedures.

An important omission from Chapter 2 is the function of
the difference table in error detection.

The reviewer would have expected a more positive approach
on the part of the author to the discussion of particular
chemical engineering problems requiring special computa-
tional treatment. There are many such problems, for example
in distillation. Again, there is the field of conventional
control problems which might have received some attention
in Chapter 3. The collection of a large number of unattached
references at the end of each chapter is of doubtful value. A
short bibliography giving a few selected references on par-
ticular topics would have been much more valuable and
would have eliminated the need for perhaps three-quarters
of the references.

In spite of the criticisms which have been made above, the
book is to be recommended to chemical engineers. There is
no alternative available and the standard of presentation of
the mathematics is high, as is the printing.

H. H. ROBERTSON.
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