A hardware representation for ALGOL 60 using Creed

teleprinter equipment

By J. M. Gerard* and A. Sambles*

This paper describes an ALGOL 60 Hardware Representation for 5-hole paper tape Creed tele-
printer equipment as used with Ferranti Pegasus and Mercury computers. This will be especially
useful to those people expecting a KDF9 with Flexowriter who may wish to test ALGOL pro-
grams, since it has been designed to make the changeover as simple as possible. It also describes
some of the problems of writing an Itemizer (as part of a Translator) to produce from the paper
tape input the separate ALGOL items of a program (Identifiers, Logical Values, Delimiters,

Numbers and Strings).

Introduction

The Hardware Representation which we shall describe
was devised with several objects in mind. First, and
most important, in spite of the extreme inadequacy of
5-hole paper tape, the teleprinted program should be as
legible as possible. Secondly, it should agree with the
KDF9 Flexowriter character set wherever this is pos-
sible. Thirdly, the number of letter shift and figure
shift characters necessary should be minimized. We feel
that the representation described below fulfils these
requirements as well as can be expected.

The Hardware Representation

The actual details of this representation are as follows.

(1) Underlined basic symbols. Precede with Asterisk,
e.g. begin is *BEGIN

(2) Boolean Operators — *NOT
A *AND
\\/ *OR
D> *IMP
= *EQV

(3) Semicolon [

(4) Assignment = .=

(5) Base 10 o v

(6) Exponentiation T *POW

(7) Colon T

(8) Integer Divide *DIV

(9) Arithmetic Relations
As on the printer except:—

< *>=
< F>

(10) Bracket Subscripting [*(
1)

(11) String Quotes N
9

(12) Delimiters already

provided . + — ===k, ()

* Now at University of London Computer Unit.

The reasons for the choices

(1),* (2) and (8) are as the KDF9 character set.
Although some readers may feel that */ is preferable to
*DIV for -- this would only cause confusion in the
change over to KDF9. In any case this symbol appears
so infrequently that it is pointless to quibble over it.

(6) follows a suggestion by B. Higman (1962), and
(11) follows an Elliott Brothers suggestion (Elliott
Brothers, 1962).

(3) ., for ;. Although it may appear better to have
a single character to represent semi-colon we found no
suitable character, as all the available characters were
illegible and/or easily capable of misinterpretation. The
choice of ., was made because of its similarity to semi-
colon and its effective separation of statements.

(4) .= for := . Here, again, the similarity between
.==and := was a strong factor. The only single character
worth considering was — and besides being very small
on the teleprinter it is liable to misinterpretation in such
statements as X — Y, which could be read as ¥ :- X.

(5) v for ;5. The obvious choices here were + and n.
since we should strongly prefer a character on figure
shift. The choice of ¢ in preference to n was quite
arbitrary. Though there is no apparent similarity
between » and ;, we feel this will be immaterial in
practice, since it will be used so often that it will rapidly
become familiar, and it has no suggestive misinter-
pretation.

(7) — for : . This was chosen because the main use
of colon is for labels and array declarations, and here —
is found very suggestive in practice. The alternative of

. was rejected because we consider — better in view of
its suggestive nature, and because has too much
similarity to ., .

(9) *> for << and *> for <. These were chosen
in preference to such alphabetic representations as *LESS.
*LESEQ, since the latter require letter shift and are
clumsy and difficult to read. It may be noted from the
specimen program below that their meaning is quite
clear when a space is left at each side of them.

T We have since learnt that KDF 9 Flexowriter will have an
underlining key for ALGOL basic symbols.

¥202 Iudy 61 U0 1senb Aq 66£91£/8E€/P/G/8101E/|UlWoo/WOo0 dno-ojwapeoe//:sdiy wolj papeojumoq

Hardware representation for ALGOL 60

(10) *(for [and) for]. We chose these in preference
to alphabetic representations for the same reasons as
above. Although it may seem better to use *) for] we
found that in practice this led to a meaningless jumble
of characters. The asterisk is naturally read as attri-
butable to the pair of brackets as a whole.

We have left n as an escape character.

To prevent possible errors we allow on either
figure or letter shift to be the same, and leave to the
[temizer the task of discovering whether it is a full stop
or a decimal point.

Spaces are allowed anywhere, for legibility.

e 9

A specimen program

To demonstrate what the teleprinted program looks
like, we give the following ALGOL program, using
KDF9 ALGOL Input and Output. This program
illustrates all the points mentioned above.

*BEGIN *INTEGER N.,
READ (N).,

of ITN into IT and reads the next tape character into
ITN. “Shift” puts the next tape character into ITN.
but leaves IT unchanged.

The first difficulty encountered was what action to
take when a “‘skip” or non-significant character may be
present in ITN. This involves the idea of keeping count
of lines for use in error printouts, and also of using a
store SH for keeping a record of whether we are on
letter or figure shift at present. The action is best
explained in Fig. 1, a “Skip Action” flow diagram, to
be entered when ITN may contain a skip character
(except inside string quotes). It may be noted that the
line counter “COUNT” is increased by one when we
meet a sequence of skip characters containing at least
one line feed, and a failure occurs when a CR but no
LF occurs in the sequence.

Another difficulty we encountered was the elimination
of comments after comment and end . We allowed an

*COMMENT TO NORMALIZE A VECTOR.,

*BEGIN *ARRAY V* (1 — N)., *INTEGER 1., *REAL
MAX .= 0.,
*FOR I .=~ 1 *STEP I *UNTIL N *DO
BEGIN READ (V(1)).,

MAX.,

*IF ABS(MAX) *> ABS(V*(1)) *THEN MAX .- V*(I)

*END MAXIMUM VECTOR ELEMENT IN MAX.,

*IF MAX = 0 *THEN *GOTO FAIL.,

*FOR 1 .= 1 *STEP 1 *UNTIL N *DO

BEGIN V(I) .= V¥(1)/MAX,,
*IF V¥(I) *> v — 8 *AND V*(I) > —v —8
THEN V(I) .= 0

*END.,

WRITE TEXT (ENORMALIZED VECTOR?)., WRITE CR(3).,

*FOR I .= 1 *STEP 1 *UNTIL N *DO
*BEGIN WRITE (£—D.DDDDDDv—DD? ,V¥(1)) .,
WRITE CR

*END.,
*GOTO OUT ..

FAIL—WRITE TEXT (£ZERO VECTOR?)

*END .,

OUT - *END

The Itemizer

In writing this we had two main aims. First, that any
program which appears correct on the printed version
of the input tape shall be interpreted correctly. This
necessitates treating dot as the same on either figure or
letter shift, and ignoring spare figure or letter shifts, etc.
Secondly, the itemizer shall manage without having to
store anything of the previous tape characters. This is
possible if we have two stores, one for the last significant
tape character (IT) and one for the next character on
tape (ITN). By significant tape character we mean not
one of LS, FS, LF, CR, Space (outside of strings), Erase.
Connected with these we have two subroutine opera-
tions, “Next” and *“Shift.” “Next” puts the contents

339

IN

[EXAMINE ITN

T T T T
FS tha& Ls OTHER LF cR

e

SHIFT

[exaMiNE 1TN]

eRASE
[s#e=o] | [shat]

COUNT =COUNT# | FAIL

—
LF OTHER FS SPACE L§ |

f—;ﬁ :
[examine 17N]

T T
OTHER Fs LE s

v
ouT Fig. 1.—*‘Skip action’’ flow diagram

¥202 Iudy 61 U0 1senb Aq 66£91£/8E€/P/G/8101E/|UlWoo/WOo0 dno-ojwapeoe//:sdiy wolj papeojumoq

Hardware representation for ALGOL 60

extension of ALGOL 60 by permitting comment to

appear after any ALGOL item, instead of just after ; or
begin as stated in the ALGOL 60 report [Naur, et al.,

(1960)]. This was partly because it was easier than
checking if the previous item to a comment was begin

or ; . On meeting comment the itemizer puts out the

first. ALGCL item subsequent to the first semi-colon
after this comment (unless this item is also comment).

We found further difficulty in the elimination of
comments that may be written after end . When we had

recognized a termination symbol (i.e. *END or
*ELSE) we were left with a comma, D or E in ITN.
Normally, on being entered from the translator the
itemizer examines the next tape characters starting with
the contents of ITN until it builds up an ALGOL item.
In this case such a procedure would be wrong and we
devised the following method to bypass this normal
action, at the same time obtaining information as to
which termination symbol is to be put out. This uses a
machine word which is set negative in these circum-
stances, its magnitude indicating which termination
character was used.

The identification of symbols preceded by asterisk is
carried out by a dictionary method after preliminary
elimination of *(, *> and *>. That is, the first two
significant characters after the * are compared with IF,
DO and OR; if there is no check then the first three
significant characters are compared with AND, END,
FOR, etc. Finally the first nine significant characters
are compared with PROCEDURE. If there is still no
check a failure occurs. If, during this process, a signi-
ficant character other than a letter is read in, a failure
indication is given.

We chose the above method in preference to the alter-
native of letter-by-letter identification, since the latter is
more involved and requires more storage space.

The bracket representation requires that we should
have some special way of recognizing whether a closing
bracket is actually a “)” or a “]””. We considered two
methods for this, both using a bracket counter BC.

In the first case, when ““(” is encountered BC has one
added; when “[” is met BC := BC x 2%+ 1. On
meeting)" we first test whether BC is zero and if so
fail, since this bracket is then unmatched. If not we
subtract one from BC and test the five least-significant
digits to see if they are all zero. If so we put out “]”
and do BC := BC/2%, otherwise we put out “)”’. With
a two-word store of 96 bits this allows 18 nested square

References

Elliott Brothers (London) Limited (1962).
HigMAN, B. (1962).
NAUR, P., et al. (1960).

340

brackets with 31 nested round brackets between any two
consecutively nested square brackets. Failure occurs
when this limit is violated. The method is both quick
and relatively simple, allowing in the extreme case
18 x 31 nested brackets.

The alternative method uses BC as a push-down store,
inserting a 1 for “[” and a O for “(”. On meeting ‘)",
the itemizer removes the available bit and examines it.
If 1 then it puts out ““]”’; if O then it puts out **)”. This
is preceded by a check on surplus closing brackets using
a second counter OBC, initially zero, which is increased
by 1 at every opening bracket and decreased by | at
every closing bracket. When this is examined as above
and found to be zero a failure is given. This allows a
nest of at least 48 brackets of any kind when BC is a
single 48-bit machine word.

We feel that the choice between these two methods
depends to a large extent on the facilities available on
the particular computer used.

The fail action puts out the line number of the failure
together with a failure number which indicates the type
of error. On meeting a failure the itemizer ceases to
send information to the translator, but continues to
examine the program to detect any further errors. We
feel that this action, although simple, gives sufficient
information to the programmer to enable him to trace
the errors.

Conclusion

We realize that at first sight the Hardware Repre-
sentation may appear unsatisfactory in some respects.
We would point out, however, that it was derived after
a considerable amount of discussion and testing of ideas
on a teleprinter. We feel that it is as good as possible
with the available equipment. Unless some substantial
improvement can be found we think it would benefit
all concerned if this representation were to be generally
adopted.

Acknowledgements

The work described here was carried out while the
Authors were vacation students at the National Physical
Laboratory, and this paper is published by permission
of the Director of the Laboratory. The authors wish to
thank Mr. M. Woodger for reading the manuscript and
for his valuable assistance at all times while the above
work was being carried out.

“The Elliott 803 ALGOL Programming System,” list CS 134.
“Towards an ALGOL Translator,” Annual Review of Automatic Programming, Vol. 3.
“Report on the algorithmic language ALGOL 60,” Numerische Mathematik, Vol. 2, p. 106.

¥202 Iudy 61 U0 1senb Aq 66£91£/8E€/P/G/8101E/|UlWoo/WOo0 dno-ojwapeoe//:sdiy wolj papeojumoq

