Input and output for ALGOL 60 on KDF 9

By F. G. Duncan

1. Introduction

The absence from the ALGOL 60 Report (Naur, ed.
1960) of any explicit reference to the ideas of *““data” or
“results” for a program has led to the situation where
almost every implementation has its own peculiar
mechanism for input and output. The ALCOR group,
for example, have two standard procedures built into
their computers which when activated read and print a
number in standard form. The MC-translator (Dijkstra,
1962) has similar provisions. The DASK user (Jensen
et al., 1960) has at his disposal a much more elaborate
set of standard procedures which give very fine control
over the appearance of the printed sheet of results.
These DASK procedures, however, are not procedures
in the strict ALGOL sense, since their treatment of
parameters goes beyond that prescribed by the Report.
The Elliott scheme (Hoare, 1962) provides input-output
facilities of considerable power, but they are based on a
structure which is additional to that of ALGOL itself.
The system described by McCracken (1962) is likewise
an extension of ALGOL 60. (Incidentally, the state-
ment in the first sentence of his section 8.3 is not true;
not all ALGOL input-output systems are based on the
approach he describes.)

2. Principles of the KDF 9 system

For KDF 9 we have set out to keep entirely within the
spirit and letter of the Report. The foundation of the
scheme is “code procedures” with bodies in KDF 9
User Code. Code procedures are foreseen by the
Report as follows:

(i) In the section on procedure declarations, a
procedure body is defined syntactically thus:

(procedure body)::=(statement>|{code> (5.4.1)
Semantically:
“5.4.6. Code as procedure body.

It is understood that the procedure body may be
expressed in non-ALGOL language. Since it is
intended that the use of this feature should be
entirely a question of hardware representation,
no further rules concerning this code language
can be given within the reference language.”

(ii) In the section on procedure statements:
*“4.7.8 Procedure body expressed in Code.
The restrictions imposed on a procedure statement
calling a procedure having its body expressed in
non-ALGOL code evidently can only be derived
from the characteristics of the code used and the

341

intent of the user and thus fall outside the scope
of the reference language.”

(iii) Strings can be operated on only by procedures
with bodies in non-ALGOL code (4.7.5.1).

The first point to notice is that it is only the procedure
body which can be in non-ALGOL code; a code proce-
dure has a normal ALGOL heading. Provided the
action of a procedure is understood, it is of no conse-
quence to the user whether the procedure body is in
code or in ALGOL; the procedure heading contains its
identifier, formal parameter list, and specification part.
The call of a procedure is written in exactly the same
way whether the body of the declaration is in code or in
ALGOL. Thus no knowledge of “‘code” is required of
KDF 9 ALGOL users.

On the other hand, in order to write code procedures
one needs to know both KDF 9 User Code and ALGOL,
but not—and this is the second point—any details of
the inner workings of the ALGOL Compiler. In fact.
this scheme is implemented with two entirely different
compilers, so one cannot make use of the special proper-
ties of either. A code procedure can be accepted by
either the Whetstone interpretive compiler or the
Kidsgrove optimizing translator (see Duncan, 1962).

We have extended the User Code to allow references
to ALGOL formal parameters within a code body, and
both compilers have been provided with a mechanism
for recognizing formal parameters and effecting actual-
formal replacement.

Three forms of reference are permitted:

‘@’ : fetch the (current) value of @ to the top cell
of the nesting store; a is a formal parameter
specified as a simple variable or array, called
by name or value, or a string.

—‘@’ : assign the value in the top cell of the nesting
store to a; a is specified as a simple
variable called by name or value.

Ja’ : jump to label a; a is specified as a label.

The actual-formal replacement mechanism is powerful
enough to allow the call of expressions by name as in
ALGOL proper (cf. example in Duncan, 1962).

The main restrictions on the code bodies are that
formal parameters may not be specified as switches or
procedures, and that communication between a code
body and its ALGOL context is solely through the
parameter list; there is no other access to non-local
variables.

If this point of code procedures has been somewhat
laboured, the excuse is that our input-output scheme is

¥202 Iudy 61 U0 1senb Aq 2091 /L 1E/P/G/8101e/|ulWwoo /w00 dno-ojwapeode//:sdiy woli papeojumoq

Input and output for ALGOL 60 on KDF 9

founded on procedures, and is not a fixed part of the
compiler. Consequently, the scheme can be extended or
reduced without effect on the compiler, and this can be
done by anyone with a knowledge of ALGOL and KDF 9
User Code. The procedures we provide with our ALGOL
library, to be described later, are, we hope, adequate
and convenient for most users; but those with special
requirements have the means of setting up a scheme
suited to their own needs. (A request for reading auto-
matically generated tapes has already been made.)

3. KDF 9 input-output mechanisms

Before describing the procedures, the method of use
of KDF 9 input-output equipment (*“‘peripheral devices”)
should be sketched. (Fuller descriptions are available in
English Electric reports.)

Whether on the single-program or time-sharing
version of KDF 9, each program, including the ALGOL
compiler and the object program, is controlled by a
master program called the ‘‘director.” The director
is responsible, among other things, for controlling the
operation of peripheral devices. In particular, it indi-
cates to the operator which reader is to be used for read-
ing in the program, and during execution it ‘“‘allocates”
to the program such peripheral devices as may be called
for; in the case of magnetic-tape input it will search for
a tape with a specified label (‘‘identifier”’) and inform
the program on which unit that tape is to be found.

It follows, therefore, that in wusing input-output
devices on KDF 9 a program must:

(a) ask the director to “‘allocate” to it the appropriate
devices;

(b) use these devices;

(¢) after use, inform the director that these devices
are no longer required.

In ALGOL terms, therefore, one must not only provide
procedures for “‘actually doing the work,” but also for
obtaining and abandoning a particular device. Since
there may be several devices of a particular kind, input-
output procedures should normally have a parameter
for the device number; but in special cases, for the
convenience of the user, this may be absorbed, as it
were, into the procedure identifier.

4. Standard format input-output procedures

There is clearly a need for simple procedures to read
or print numbers without requiring a format to be
specified.

The procedure for reading a single number in this
way is substantially the same as that used in the compiler
itself for reading an ALGOL number. It will read, for
example, any of the numbers in section 2.5.2 of the
Report, recognizing the end of a number by the appear-
ance of some symbol other than a digit, sign, decimal
point, or subscript. ten. It goes without saying that it
checks that the combination of characters read is a
meaningful number and within the range allowed by the

342

implementation (for KDF 9, numbers of type integer
have up to 40 bits, including sign ; numbers of type real
have an 8-bit exponent and 40-bit mantissa—the form
required for floating-point operations).

The procedures for printing a single number give a
number of type integer as a signed, 12-decimal-digit,
integer, and a number of type real as a standard floating-
decimal number of the form ¢ od, where ¢ is a signed
number in the range 1 < ¢ << 10 to 11 decimal places,
and d is a two-digit signed integer.

Each output number is terminated with a “‘new line”
character. A sheet of results, therefore, has one number
to a line. If it is required to read an output tape, the
“new line” characters can serve as convenient separators.

With the input procedure existing both as an ordinary
procedure (called by a statement) and as a function
(called within an expression) we have available the
input-output facilities of both the ALCOR-convention
and the MC-translator.

5. Procedures allowing fine control over appearance of
output

S.1. The layout of a number

The number of parameters needed to describe the
appearance of a number on a printed sheet can easily be
made to run into double figures.

For example: number of significant figures,
treatment of sign,
fixed or floating point, and if the latter,
treatment of exponent,
number of decimal places,
spacing of digits,
Zero suppression,
termination, and so on.

However, a *‘picture” is more convenient to the user
than a string of parameters.
We might have
‘ddd- dddsddd’

(where d stands for ““digit” and s for ““space”).
Numbers printed with this format are:
+123-456 789
—001-234 567

Zero suppression is achieved by writing n as the
leading digit:
‘+ndd- dddsddd’

+123-456 789
—1-234 567
+0-123 456

Note that the sign is “‘shifted down” and that a non-
significant zero in the units position is not suppressed.
Other treatments of the sign are permitted: *“— causes
+ signs to be suppressed, and ““+” causes the sign to
appear always in the same column.

Returning to the example, one might want to print
only a certain number of significant figures, say five:

*~+ndd- dd0s000°

This gives:

¥202 Iudy 61 U0 1senb Aq 2091 /L 1E/P/G/8101e/|ulWwoo /w00 dno-ojwapeode//:sdiy woli papeojumoq

Input and output for ALGOL 60 on KDF 9

+123-45

—12-345
—1-2345
—0-123 45
—0-012 345
—0-001 234, etc.

For ‘‘floating-decimal” output, one would write a
format with one digit before the decimal point and
followed by an exponent part such as ,—dd (it cannot
have more than two digits).

One might wish to precede a number by a sequence of
spaces, or to ‘‘terminate’ it with, say, one or more
“new line” characters, or a TAB character, or a semi-
colon, or a “‘new page” character. The layout can
accommodate these requirements.

This gives:

5.2. Establishing a layout

The scheme sketched above appears to be adequate
for most situations, but it has been criticized on the
ground that it needs too much writing—that it is absurd
to write ‘ddd ... every time one writes an output
statement. But, of course, one need not write ‘ddd . ..
every time. If a particular layout is standard in a
program one can build it into a procedure thus:

procedure OUT(x): value x; real x;

write (‘ndd- ddddd’, x):

Then the statements pi:— 3-1415926536: OUT (pi):
3-14159 to be printed.

However, there is a strong case for separating the
establishment of a layout from its use, not only for the
programmer (as in the method just indicated). but for
the computer at “‘run time.” In our scheme this is
achieved by means of a procedure for associating an
integer with each format:

would cause

integer procedure format (string): string string:
comment the value assigned to format defines the
layout described by string in a form convenient
for the write procedure:;

11 = format (*dd-dddd’); . . .
write (f1.x); write (f1,y): ...

5.3. Opening and closing **devices”

The KDF 9 user may be concerned with monitor type-
writer, paper-tape readers and punches, card readers and
punches, printers, and magnetic-tape units in varying
combinations. For ALGOL, each “*device” has a two-
digit number; the first digit represents the c/ass of device
(e.g. 2 for paper-tape reader), and the second is the
programmer’s ‘‘serial number within class”—the director
determines which actual machine is given this number.

To get a device from the director, one should call the
procedure “‘open’:

procedure open (device number); value device number;
integer device number

comment makes the device available to the program.
and reserves main store space for a double buffer.
For an input device, fills the first half of the buffer:
KDF 9 ... ALGOL;

Magnetic tape is the exception to this rule (cf. section 3
above). A tape is obtained by writing the tape label as
a string parameter for the tape-finding procedure.

To abandon a device to the director, one should call
the procedure *‘close”:

procedure close (device number); value device number:
integer device number

comment for an output device, puts out the current
buffer contents and abandons the device:

KDF 9 ... ALGOL;

5.4. The “‘read™ and ““write” procedures

These are the procedures for ““actually doing the work.”

real procedure read (device number):

value device number

integer device number

comment no format is specified—this is the same
procedure as described in the previous section.
It is called as a function designator to allow both
reals and integers to be read by the same
procedure. Thus:

x 1= read (20) and i := read (20). In the
KDF 9 implementation no loss of digits occurs
in transferring from real to integer if the number
is within the limits specified;

KDF 9 ... ALGOL;
procedure write (device number, layout, quantity).

value device number, layout, quantity ;

integer device number, layout; real quantity ;

comment /ayout is a value produced by a call of the
integer procedure format. Quantity is an arith-
metic expression. Transfer from integer to real
is of course invoked automatically, according to
the rules of ALGOL: in the KDF 9 implementa-
tion there is no loss of digits if the number is
within the permitted range

KDF 9 ... ALGOL;

6. Alarm printing

If the procedure “‘write” is presented with a number
which cannot be printed within the specified layout, the
current contents of the output buffer are printed, and
then the offending quantity is printed according to the
“standard” layout described earlier.

For example, suppose the layout ‘sssdddd:;’ is used
three times, then the layout ‘sssdddd: ¢’, and all this
repeated. Since ¢ means new line, the page layout is
as follows:

1234; 5678,
7890; etc.

9012: 3456,

¥202 Iudy 61 U0 1senb Aq 2091 /L 1E/P/G/8101e/|ulWwoo /w00 dno-ojwapeode//:sdiy woli papeojumoq

Input and output for ALGOL 60 on KDF 9

Now suppose the next number to be converted happens convention are already, as it were, contained within the
to be —1, instead of 1234. KDF 9 scheme.
The page now appears thus: Programs written within Bottenbruch’s system can be
...1234; 5678; 9012; 3456; transferred simply for KDF 9 if one regards, e.g.
- 7890; read (a, b, c, .. .);
—1-00000000000,, + O
5678; 9012; as an abbreviation for, e.g.
3456; 7890; 1234; 5678; ete. a = read (20); b:= read (20); ¢:— read (20); . . .
Note that the wrong number stands out from the (Bottenbruch states, section 39, that the ALGOL
correct results. After an alarm printing the normal report allows code procedures to have variable
printing is resumed in such a way that the grouping of numbers of parameters. Much as I would like to be
the numbers on the page is as it would have been had able to interpret the Report in this way, it seems clear
there been no error. to me that the call of a code procedure must have the
same number of parameters as its declaration—it is
7. Output to the different devices only the procedure body that is not in ALGOL!)
The procedure “write,” when sending output infor- The scheme described by McCracken (1962), and the

mation to a printer, does as described for paper tape,
it produces punchings which will give rise to the expected
layout on paper. For magnetic tape, the output is as
to the printer, since the printer can be run separately Acknowledgements
from magnetic tape.

Procedures for binary output to, and input from,
magnetic tape are being provided.

Elliott scheme (Hoare, 1962), would require trans-
formation of a non-trivial nature.

The author would like to thank particularly Dr.
Peter Naur and Professor W. L. van der Poel for helpful
discussion and encouragement on this topic. (The
DASK scheme was drawn upon shamelessly for the
) layout descriptions of section 5.1.) Discussion with

Input and output procedures for matrices under Messrs. D. H. R. Huxtable, B. Randell, L. J. Russell,
control of the Denison Matrix Scheme (Denison, 1962) and L. R. Hodges, besides ensuring the feasibility of the
are quite distinct from the procedures described above. scheme with the two different compilers, did much to

8. The matrix scheme

They are not discussed in the present paper. improve it. Further discussion will no doubt allow
— .) further improvement.
9. A note on compatibility with other input-output systems The paper is published by permission of The English

The facilities of the MC-translator and the ALCOR Electric Co. Ltd.

References

ALCOR Convention (1961). Elektronische Rechenanlagen, Vol. 3, p. 206.

BoTTENBRUCH, H. (1962). “‘Structure and Use of ALGOL 60, Journal of the ACM, Vol. 9, No. 2, April 1962.

DEeNISON, S. J. M. (1962). “A proposed ALGOL 60 matrix scheme,” Paper presented at IFIP Congress 62, Munich, Sept. 1962.

DuKSTRA, E. W. (1962). A Primer of ALGOL 60 Programming, Academic Press, London.

Duncan, F. G. (1962). “Implementation of ALGOL 60 for the English Electric KDF 9, The Computer Journal, Vol. 5, p. 130.

Hoarg, C. A. R. (1962). “Report on the Elliott ALGOL Translator,” The Computer Journal, Vol. 5, p. 127.

JEnseN, J., JENseN, T., MonDRrup, P., and NAUR, P. (1960). A Manual of the DASK ALGOL Language, Regnecentralen,
Copenhagen.

MCcCRACKEN, D. (1962). A Guide to ALGOL Programming, John Wiley, New York.

NAUR, ed. (1960). ‘“Report on the Algorithmic Language ALGOL 60, Regnecentralen, Copenhagen; modified by WoOODGER,
ed. (1962) “Supplement to the ALGOL 60 Report” in ALGOL Bulletin No. 15. Regnecentralen, Copenhagen. (Note: The
Report as modified by the Supplement has appeared as an official IFIP publication, and is reproduced by permission on
p. 349 of this issue of The Computer Journal.)

344

¥202 Iudy 61 U0 1senb Aq 2091 /L 1E/P/G/8101e/|ulWwoo /w00 dno-ojwapeode//:sdiy woli papeojumoq

