The Elliott ALGOL input/output system

By C. A. R. Hoare

A description of the method of specifying input and output in ALGOL programs run on the
National-Elliott 803 and the Elliott 503 digital computers.

Introduction

The first aim of the input/output system adopted in the
Elliott implementation of ALGOL is simplicity. It is
essential that an ALGOL programmer can learn to use
the system with a minimum of instruction. The second
aim is convenience of notation, and, in particular, the
avoidance of unnecessary repetition of the words “print”
and “read” in the case of multiple input and output.
Thirdly, sufficient flexibility in format control must be
allowed to satisfy the requirements of scientific users.

It soon becomes clear that ALGOL procedure facilities
are insufficiently powerful to allow the fulfilment of all
these aims. We have therefore introduced new forms of
statement into the language, the read statement and the
print statement. This, of course, may involve loss of com-
patibility, but we hope that this inconvenience will be out-
weighed by the other advantages of the proposed system.

Outline of the system

Print and read statements in Elliott ALGOL begin
with the words print and read (printed in bold type here,
but underlined in a handwritten program), followed by a
list of variables or arithmetic expressionswhose values are
to be read in or put out; the successive operands of print
and read statements are separated by commas, thus:

read Xx,y, z;

print x —ypy -4z x ¥ p+2—z —101 X x;
The data tape to be read in by the read statement may
be punched thus:
30
20
11

and the results produced by the print statement would be:

21
591
—3030

However, if x, y and z had been declared as real variables,
the results would have been printed differently:

21-000000
591-00000
—3030-0000

The rules for the punching of ALGOL input tapes are
very simple; numbers may be written in any of the
forms allowed in ALGOL, and followed by some
character or string of characters not allowed in a number.
A space or change to a new line will also terminate a
number. The string of characters which terminates a
number serves merely to separate that number from its
successor, and is otherwise ignored.

H

345

Each number printed appears on a new line, with
eight significant digits. In the case of integers, leading
zeros are suppressed, and, if negative, the minus sign is
floated; real numbers, however, always appear with
their full set of digits, with a decimal point in the
appropriate position. This style of printing is called the

freepoint format.

Additional facilities

The last section gives the minimum necessary infor-
mation to enable the ALGOL programmer to read in
data and punch out results. It is obvious, however, that
the programmer is going to require more than this basic
minimum, and his first additional requirement is the
output of alphabetic messages and headings. This may
be done by enclosing the characters to be put out in the
ALGOL string quotes, and putting the resulting string
as one of the operands in a print statement. The Elliott
hardware representations for string quotes are £ and ?.
and an example of their use is:

print £ Statistical Analysis?,
hbar, £ cm. = average height?,
whar, £g = average weight?,
rho, £ = correlation?:

This will produce output as follows:

Statistical Analysis

5406 cm. = average height
4312 g. = average weight
81604522 = correlation

The next requirement is the suppression of the change
to a new line which normally occurs before each number
in the output. The purpose is that when the print
statement is obeyed repeatedly, the results will appear in a
tabular form for easy comprehension. The desired effect
may be achieved by use of the so-called setting procedure
“same line”,* which should appear in the list of a
print statement immediately before the first number to
which it is to apply. For example, in the statement:

print n, same line, hbar, wbar, £ ?, rho;

the n will be printed as before on a new line; the other
operands will appear on the same line, so that on repeated
execution of the statement a table of the following form
will be produced:

1 5406 4312 -81604522
2 4980 3019 - 78344106
3 5199 3192 -80463291

* For the 803 this is written as one word ‘“‘sameline.”

¥202 Iudy 01 uo 1senb Ag 90191 £/S1E/P/G/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



The Elliott ALGOL inputfoutput system

Format setting procedures

The occurrence of same line in a print statement is
in effect a procedure statement, which calls a standard
procedure to set a marker to indicate that all numbers
subsequently put out by the print statement shall not
be preceded by a change to a new line. This marker
is automatically cleared at the end of the print statement,
so that the setting of a marker in one part of a program
cannot possibly interfere with output of other parts of
the program. The restriction of the scope of a setting
procedure to the print statement in which it occurs is
the standard rule in format control of the Elliott system,
and applies to all the format-setting procedures described
in this section.

The first requirement in format control is to change
the number of digits put out, either to economize in
column space and avoid spurious accuracy by reducing
the number of digits, or to achieve greater range by
increasing the number of digits. The method of con-
trolling the number of digits is different for integers and
real numbers. For integers we use the setting procedure
digits (E), and for real numbers the setting procedure
freepoint (E). In both cases E stands for an arithmetic
expression specifying the number of digits to be printed,
inclusive of suppressed zeroes in the case of integers.
As in the case of same line the effect of these setting
procedures extends to all numbers of the appropriate
type occurring subsequently in the list of the same print
statement; if two incompatible settings are encountered
in the same list, the scope of the first one extends only
as far as the second.

The second requirement of format control for real
numbers is the alignment of the decimal point in tabular
presentations, or the use of an exponent part to indicate
the scale of a number. Elliott ALGOL provides the
format-setting procedures aligned (E, F)—E digits
before the point, F digits after—and scaled (E)—E
significant digits followed by decimal exponent.

The third requirement of format control is change of
input or output device. In the absence of contrary
indication, all input is read from the first tape reader,
and all output takes place on the first tape punch. To
change this, the name of the required device should be
written as a setting procedure in the list of a print or
read statement: the accepted names are:

reader (n)

punch (n)

typewriter

lineprinter
Note that the use of a lineprinter involves no extra
complication for the programmer, since the adminis-
tration of buffer areas, etc., takes place behind the
scenes.

There are a number of other convenient format-
setting methods provided in Elliott ALGOL. They are
fully described in the Elliott ALGOL programming
guide, which may be obtained on request, and I shall
not give a further description here. But it must be

346

emphasized that the use of the Elliott system is possible
even without any knowledge whatsoever of these methods
of changing the format. This is made possible by the
system of so-called presumed settings which apply to
every number for which the programmer has not made
an explicit contradictory setting statement. The effect
of the presumed settings has been described in the first
part of this paper.

Advanced facilities

It has hitherto been assumed that format-setting pro-
cedures will normally be used among the operands of a
print statement, and that they will thereby be effectively
quarantined from other print statements. It is, however,
possible to put a format setting outside a print statement,
in the ordinary text of the program, in which case it
applies to all printing subsequently executed, except that
which comes under the control of a contradictory format
setting inside a print statement. This provides a method
by which the programmer can, in effect, change the
presumed settings, if he does not like those provided.

A second possibility is that of writing format specifi-
cations separately from the print statement which uses
the format. This will appeal in particular to users of
FORTRAN, and is sometimes convenient. The format
specification should take the form of a procedure
declaration, with the required format setting instructions
occurring outside a print statement in the procedure body.
When this procedure is called from inside a print state-
ment, the required formats will apply to all subsequent
numbers in the list, but the effects will be quarantined
from other print statements in the same way as normal
format settings.

Finally the Elliott system may be used to help in the
printing of quantities other than reals, integers, and
strings. The printing of sterling quantities, matrices,
etc., will normally be achieved by writing a procedure
(or subroutine). The aim in writing this subroutine is
to allow the user to retain full or partial control over the
format. This may be done by including the programmed
output procedure among the list of a print statement,
preceded by the specification of the required format, e.g.

print n, m, aligned (4, 3), outmatrix (A);
print quantity, order number, digits (4),
outsterling (price);

In these examples it is assumed that outmatrix and
outsterling are the names of the procedures which
put out the elements of the array 4, and the pounds,
shillings and pence corresponding to the integer price.
In the first example, the elements of 4 will be printed
in the aligned format, with four digits before the point
and three digits after. In the second case, price may
be held as an integral number of pennies, with a maximum
of £999 19s. 11d.; it is to be printed in pounds, shillings
and pence. Note that shillings and pence will be printed
to two significant digits in the normal way, so that the
“digits (4)” will apply only to the £ section of the output.

¥202 Iudy 01 uo 1senb Ag 90191 £/S1E/P/G/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



The Elliott ALGOL inputfoutput system

Conclusion

This paper gives a brief outline of the input and out-
put system available with Elliott ALGOL. It has been
designed to be used very simply in simple cases, and yet
to possess enough flexibility to cover the vast majority
of more complicated cases.

The system will sometimes be unable to cater for the
user with unusual requirements, and we therefore have

References

made available some facility for inserting machine-code
instructions in an ALGOL program. But we hope that
this facility will only rarely have to be used.

Acknowledgement
This paper is published by kind permission of Elliott
Brothers (London) Ltd.

HoArg, C. A. R. (1962). *“‘Report on the Elliott ALGOL translator,” The Computer Journal, Vol. 5, p. 127.
ELLIOTT BROTHERS (LONDON) LTD. (1962). The Elliott ALGOL Programming Guide.

Summary of discussion

Mr. C. A. R. Hoare: In reply to a question by Mr. Buxton
(Whitworth Gloster Aircraft), Mr. Hoare said that format pro-
cedure identifiers such as “‘new line,”” “digits (n),” etc., were
reserved identifiers and did not need to be underlined. Like
other reserved identifiers, they could be declared for other
purposes in any program.

Dr. D. W. Scott (/nternational General Electric, Paris):
Please describe methods for reading or printing:

(1) a single element of an array, ¢.g. x[j]; and

(2) all members of an array, e.g. x[j1,j = n until m.

Mr. C. A. R. Hoare:

(1) Include x[/] in the list of a print or read statement;
(2) for j: - n step until 12 do read x[/].

Mr. H. J. Richards (/BM (U.K.) Ltd.): Why include in
ALGOL such obviously machine dependent words as “‘type-
writer,”” “‘card reader™?

Why not

Read (n) list
Write (n) list
as in FORTRAN 1V where n denotes a logical unit?

Mr. Hoare: The procedure declaration in ALGOL provides
a very easy method of changing the meanings of reserved
identifiers. To run a program which mentions a card punch
on a machine with only a lineprinter, for example, write

begin procedure card punch; lineprinter, {prograniy
end

Mr. B. R. Taylor (Ministry of Aviation): How easy is it to
define the end of a data list, using a warning character
punched on the data tape?

Mr. Hoare: A standard procedure ‘‘buffer” makes it
possible at any time to test the last character read on any
device. This will usually be the character which has ter-
minated the last number input. For example, if the ends of
the rows of a matrix (read on reader 1) are signalized by an
asterisk, the statement

if buffer (‘*°, 1) then go to end of row,
may achieve the required effect.

Mr. R. M. Paine (CEIR (U.K.) Lid.): (1) You may have
a matrix of 30 X 5 but only wish to output 20 x 4. How
do you specify these dimensions in your print statement?

(2) You may wish to combine elements of two matrices in
printing—how do you specify this?

347

(3) How do you read in only selected fields from punched
cards by statements in your read format?

I think you should provide at least as good facilities for
input/output as exist in FORTRAN, which itself is by no
means perfect in this respect. A single figure on a line is not
good enough; quite complicated layout should be allowed
and be easy to specify. The appearance of the printed page
is important in many jobs.

Mr. Hoare: (1), (2), (3) All these tasks may be programmed
very simply in ALGOL, using loops. (4) The use of “‘same-line”
has been explained in the paper, and presents little difficulty.

I do not think there is any point in introducing too many
new notations specially for input and output. The reason
why FORTRAN input and output is so complicated is that
FORTRAN attempts time sharing of on-line peripheral
transfers.

Mr. F. G. Duncan (in a subsequent written contribution):
In answer to these questions and remarks, the most important
thing to bear in mind is that the KDF 9 system is based on
procedures and is not a fixed part of either compiler. It
follows, therefore, that requirements which are not met by
our own “‘standard” set of procedures can be provided for
by the user himself.

(1) The selection of the elements to be printed would be
effected through ALGOL for statements. A whole
matrix, on the other hand, would be printed by a simple
statement. In our matrix scheme each matrix carries
its dimensions as part of itself; therefore in a print
matrix procedure statement no specification of dimen-
sions is necessary.

(2) Again, this is a question of selecting, through ALGOL
programming, the numbers to be printed. The problem
introduces no difficulties as far as printing is concerned.

(3) The detailed answer to this rather vague question
depends on many things, such as whether the format
of the cards is determined by punchings on the cards
themselves, or described in the program. The basic
procedure is to read one number or field from a buffer;
the card reader itself reads a whole card at a time.
Thus the problem is the simple one of ignoring
unwanted numbers or fields. If any number is liable
to be divided between fields, an ad hoc procedure seems
indicated.

-~

¥202 Iudy 01 uo 1senb Ag 90191 £/S1E/P/G/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



Discussion

Reference to the text of my paper will show that I agree
entirely with Mr. Paine’s closing remarks.

Mr. J. A. Fotheringham (Ferranti Ltd.): Do you have any
trapping procedure in your input routines for spurious or
illegal characters, so that the programmer can program his
own warning characters ?

Mr. Hoare: No, but there are ways of programming
warning characters as indicated in the answer to an earlier
question.

Mr. K. A. Redish (University of Birmingham): Since the
dominant consideration in the design of ALGOL is that it
should be universal, in some sense, will the two authors
explain why they have not constructed identical conven-
tions ?

Mr. Hoare: It is certainly undesirable to have a divergence
in methods of specifying input and output in ALGOL.
Unfortunately, at the time when a conference of ALGOL
implementors was arranged, it was found that we had adopted
radically different approaches to the problem. We con-
sidered that the convenience of the user was the most
important factor, while Mr. Duncan was more interested in
keeping to the letter of the syntax of the ALGOL report.

The most striking advantage of our system is that input
and output of several numbers may be specified without
repeating the words “print” and “‘read.”” This is, of course,
impossible if these are procedures, since an ALGOL pro-
cedure can only have a fixed number of parameters.

Mr. F. G. Duncan: It is indeed a great pity that the two
systems have so little in common. The fundamental cause of
the difference lies of course with the ALGOL report itself,
which gives no guidance on questions of input and output.
(Whether it should have said anything on this subject is
another story.) On the other hand, it does suggest procedures
with bodies in non-ALGOL language, and this is the basis of
the KDF9 scheme. We have not seen the need for any
special structure for input-output statements; the ordinary
ALGOL structure seems perfectly adequate. To this extent,
therefore, we plead ‘“‘not guilty.” This, though, is not the
whole point. Even if two implementors had agreed to use
code procedures and keep within the ALGOL forms, I doubt
whether, with different machines, they could write coded
procedures with identical functions. Perhaps they could as
far as format specifications are concerned, but some machines,
like KDF9, introduce the need for ‘‘hardware-oriented”

procedures, such as those concerned with allocation of
peripheral devices, which are meaningless for other machines.

There is a great diversity of input-output devices in the
world today. There is no language for describing what they
all do—even COBOL does not try to cope with curve plotters
or knitting machines. Perhaps ALGOL is wise in saying
nothing, for, as acertain Dutch professor has rightlysaid, “‘only
by absolute silence can one preserve complete generality.”

Mr. H. J. Richards (/IBM (U.K.) Ltd.): Your format
resembles very closely the COBOL ‘“‘picture.” I think the
ALGOL school should at least study the work of the COBOL
school for ideas in this area.

Mr. F. G. Duncan: In designing the KDF 9 formats, we
have drawn mainly upon the work done for DASK. The
COBOL report has not, to my knowledge and memory,
provided us with any new ideas.

There must be many people working on ALGOL who have
tried to get to grips with the COBOL report. I have been
involved in some quite intensive work to see whether ALGOL
needs to be extended to cope with so-called ‘‘commercial”
problems, and I have consulted the COBOL report as part
of this work.

One cannot take over the COBOL ideas into an ALGOL
scheme for many reasons. In any case they would need to
be extended in order to deal adequately with such notions as
floating-point and significant figures, without which it is
impossible to produce decently laid out results.

I sympathize with the questioner’s concern that there is
divergence between the ALGOL and COBOL *‘schools.”
I hope the day will come when this thoroughly artificial
distinction between ‘‘scientific’” and *‘business™ programming
languages is removed. It seems a long way off.

Mr. B. Randell (Aromic Power Division, English Electric
Co. Ltd.) (who has co-operated in the work described by My.
Duncan): An important feature of the system being imple-
mented in KDF9 ALGOL is that any user can extend the
system in any way that he pleases by declaring new pro-
cedures. These procedures, whose bodies can be in ALGOL
in User-code will work both on the program-testing compiler,
which runs interpretively, and on the optimizing compiler,
which translates ALGOL into machine code. It has been
difficult enough to maintain absolute compatibility between
two such different compilers, and the only way has been to
remain absolutely within the rules of ALGOL 60.

Correspondence

To the Editor,
The Computer Journal.
Sir,
“Print-out of Algol Programs”

Professor E. W. Dijkstra referred, on page 126 of the July
1962 issue, to the MC Algol Flexowriter of which there are
now fourteen examples in Europe. An editorial footnote
refers to one at the Cambridge University Mathematical
Laboratory. Your readers may be interested to know that
this Observatory has a similar Flexowriter, with the same
keyboard and coding, but with some additional facilities.

In considering how .to extend our facilities for originating
and printing Algol programs, we are interested in the IBM
type 72 rotating-head electric typewriter. The construction

348

of this machine appears to be inherently suited to punched-
tape input and output, and the design has the advantage that
the fount of characters can be changed in a few seconds, by
simply exchanging the rotating type-head. The correspond-
ing disadvantage is that at present a whole new type-head
is necessary even if only one character is to be changed.

Since an Algol type-head is not currently offered, it will be
necessary to design one. We would be pleased to hear from
anyone who has suggestions about this, or who would share
in sponsoring the initial cost of the necessary pattern.

Yours faithfully,
PETER FELLGETT.

Royal Observatory,
Edinburgh 9.
21 November 1962

¥202 Iudy 01 uo 1senb Ag 90191 £/S1E/P/G/8101e/|ulWwoo/woo dno-ojwapeoe//:sdiy woli papeojumoq



