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We present a lightweight lossless compression algorithm for realtime sensor networks. Our proposed
adaptive linear filtering compression (ALFC) algorithm performs predictive compression using
adaptive linear filtering to predict sample values followed by entropy coding of prediction residuals,
encoding a variable number of samples into fixed-length packets. Adaptive prediction eliminates
the need to determine prediction coefficients a priori and, more importantly, allows compression to
dynamically adjust to a changing source. The algorithm requires only integer arithmetic operations
and thus is compatible with sensor platforms that do not support floating-point operations. Significant
robustness to packets losses is provided by including small but sufficient overhead data to allow each
packet to be independently decoded. Real-world evaluations on seismic data from a wireless sensor
network testbed show that ALFC provides more effective compression and uses less resources than an
alternative recent work of lossless compression, S-LZW. Experiments in a multi-hop sensor network
also show that ALFC can significantly improve raw data throughput and energy efficiency. We also
implement the algorithm in our real sensor network, and show that our linear prediction based
compression algorithm significantly improves data reliability and network efficiency.
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INTRODUCTION

be worth spending between roughly 4000 (Chipcon CC2420)

Wireless sensor networks have attracted significant interest from
the research community for a broad range of applications [1-3].
Several recent applications involve high data rate signals, such
as monitoring industrial plants [4], volcano hazards [5, 6] and
civil structures such as buildings or bridges [7, 8]. For these
high rate applications, collecting high-fidelity data subject to
the limited radio bandwidth available to sensor nodes presents
akey challenge. In addition to the limited physical bit rate of the
radios used in low power platforms, radio links may experience
frequent packet losses due to congestion, interference, and
multipath effects. These problems are exacerbated over multi-
hop routing paths. There is a fundamental tradeoff between the
network size and the total quantity of raw signals that can be
collected.

Data compression is an important tool to maximize data
return over unreliable and low rate radio links. For example, it
has been shown in [9] that in some applications a compression
computation yielding only a single byte of data reduction may

and 2 million (MaxStream XTend) cycles of computation.

Sensor networks have some significant limitations such as
limits on computational capability, memory and packet size,
as well as high packet loss rates and small energy supplies.
Those constraints present significant challenges in designing
compression schemes for sensor networks.

At present, sensor nodes (e.g. MICAz, TelosB) usually have
relatively modest computational capabilities and do not support
floating-point arithmetic, thus requiring a low-complexity
compression approach that can operate in real time without the
use of floating-point operations. Even on platforms that support
floating-point arithmetic (e.g. iMote2), it may be desirable to
avoid such calculations to reduce power consumption.

Simultaneous transmission from multiple nodes through
multi-hop relays within a network can lead to congestion, colli-
sion and high packet losses, demanding a compression scheme
that allows packets to be decompressed even when preceding
packets have been lost. Lossless compression is frequently
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demanded by science users to preserve fidelity of critical data
(e.g. earthquake data). But packet losses may be unavoid-
able in realtime high-fidelity sensor networks due to limited
bandwidth or node mobility. Motivated by this, some sensor
network applications are designed to provide reliable delivery
of critical data and best-effort delivery of non-critical data.

Many sensor platforms employ hardware that uses the IEEE
802.15.4 standard and limits the maximum packet size to
128 bytes. The TinyOS operating system sets the default data
payload length to 29 bytes and many systems recommend a
packet size of no more than 90 bytes. Providing independently
decodable packets under such limitations requires that increased
attention be paid to overhead information included with
each packet.

In this paper, we present a lightweight compression scheme
for sensor networks, called adaptive linear filtering compression
(ALFC). Our intended application is compression of seismic
data, but this method may work well for other data types.

Our method relies on adaptive prediction, which eliminates
the need to determine prediction coefficients a priori and, more
importantly, allows the compressor to dynamically adjust to a
changing source. This is particularly important for seismic data
because the source behavior can vary dramatically depending on
seismic activity. Predicted sample values are used to losslessly
encode source samples using a variable-length coding scheme.
We map each sample value to a non-negative integer and
then encode the resulting sequence using Golomb codes.
This general strategy is used in the Rice entropy coding
algorithm [10, 11] and the LOCO-I image compressor [12],
among myriad other applications. We also alter the prediction
approach for the first few samples in the packet so that it does
not rely on sample values in preceding packets.

To eliminate floating-point operations, we make use of
rational approximations to real-valued quantities used in linear
prediction.

We have implemented and evaluated the proposed algorithm
in a multi-hop sensor network testbed with a seismic data feed.
The testbed experiments show that our ALFC algorithm can
significantly increase the quantity of received data and energy
efficiency, and provide better performance compared with a
recent alternative approach [9] in the literature. Partial results
of this paper were published in [13, 14]. Our new contributions
include Section 4.3, which evaluates the performance of ALFC
in a recently deployed sensor network on Mount St. Helens
volcano. The results show that ALFC performs effectively not
only on the lab testbed, but also in the active volcano field, where
the seismic data is highly dynamic.

The rest of the paper is organized as follows. In Section 2,
we review related work on predictive lossless seismic data
compression and data compression in sensor networks. We
introduce our proposed linear prediction, packetization and
entropy coding algorithm in Section 3, and present our
evaluation experiments in Section 4. Finally, we conclude our
paper and present potential future research in Section 5.

2. RELATED WORK
2.1. Predictive lossless seismic data compression

Lossless predictive compression generally consists of a
prediction stage, where each sample value is predicted based on
past sample values, and a coding stage, where an entropy coding
method is applied to losslessly encode prediction residuals
(the difference between predicted and actual sample values).
A variety of different approaches for the prediction and entropy
coding stages have been used in the literature for lossless
compression of seismic data.

The least complex predictors include simply using the
previous sample value for prediction, as in the approaches
described in [15], or using linear prediction with fixed
coefficients determined a priori, as in [16]. Better performance
can be obtained at the expense of higher complexity by selecting
prediction coefficients separately optimized for each block of
samples, as is done in [17, 18] for two different source models.
More sophisticated prediction approaches in the literature
include the use of a 20-stage adaptive recursive least squares
lattice adaptive filtering approach [19], several repeated stages
of adaptive linear prediction using gradient adaptive lattice
filters on very large blocks of samples [20], and a source
model designed to incorporate structural system information
when external exogenous input information is available [21].
Mandyam et al. [22] make use of a somewhat more conventional
adaptive linear filtering approach, as in our approach. Unlike our
sensor network application, however, the work of Mandyam
et al. [22] is applied to much larger blocks of data (each
at least 14 000 data samples), and employs somewhat higher
complexity prediction, requiring more arithmetic operations
and making use of floating-point prediction coefficients.

For lossless encoding of prediction residuals, approaches
include a method introduced in [23] based on arithmetic
coding and used in [16, 18-22]. Slightly lower compression
effectiveness is provided by the simpler bi-level coding
approach described in [17]. The bi-level coding method has
similar complexity to our approach, which relies on Golomb
codes, but note that selecting the coding parameters to obtain the
best performance from bi-level coding assumes knowledge of
the standard deviation of the prediction residuals being encoded
in the block. Even lower complexity ad hoc entropy coding
approaches can be found in the compression methods described
in [15].

The most significant differences between our approach
and these related works are our design requirement that
packets can be decompressed independently as a means of
dealing with potentially high packet losses, and the constraints
imposed by small packet size and limited computational
capabilities. Higher computational capabilities would permit
higher complexity compression approaches, e.g. performing
a least-squares optimization to determine optimal prediction
coefficients, optimizing the filter prediction order for each
packet, using floating point coefficients, or using arithmetic
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coding. The use of relatively short packets means that
the problem of efficiently encoding overhead information
(e.g. to indicate coding parameters or prediction coefficient
information) becomes more significant than in typical seismic
data compression scenarios. We also note that nearly all of
the other approaches encode a fixed number of samples into
variable-length encoded units, while our approach encodes a
variable number of samples into fixed length packets.

2.2. Compression in sensor networks

The literature includes many papers on data compression for
sensor networks, though many of these approaches have not
been evaluated in real sensor network testbeds.

Much prior work focuses on exploiting high spatial
correlation in data from fixed sensors in dense networks. In
[24, 25], distributed source coding approaches are used to
exploit data dependencies between nodes in a sensor network.
The approach in [24] minimizes the amount of inter-node
communication for compression using both a quantized source
and correlated side information within each individual node.
This is a good approach in principle, but the degree of correlation
with the side information is essential to the performance of the
algorithm and normally not well known in practice. In [25],
an intelligent data gathering node determines the degree of
correlation between data from different source nodes, and based
on this information tells each data node the allowable amount
of compression. Each data source node executes a very simple
compression algorithm that allows correlation between sources
to be exploited even when the node does not have access to
data from neighboring nodes. Note that experiments in [25]
were performed using light, temperature and humidity sensors,
and it is unclear how well this compression approach would
work in the presence of seismic events, when the nature of the
data dependency between nodes might change dramatically and
without warning. Yu et al. [26] investigate a tunable compression
scheme in sensor networks, which exploits spatial correlation
between sample data. It trades the computation cost against
communication cost by tuning the compression complexity. The
authors propose a flow model and the approaches for deciding
the optimal flow for both shortest path tree (SPT) and minimal
Steiner tree (MST), based on different data correlations and
relative computation costs.

Several methods have been proposed using wavelets and
their variants in analysing and compressing the sensed data.
Ganesan’s DIMENSIONS [27] was one of the first systems
addressing multi-resolution data access and spatio-temporal
pattern mining in a sensor network. In [27], nodes are
partitioned into different clusters and organized in a multi-level
hierarchy. Within each cluster, the cluster head performs a two-
dimensional wavelet transformation and stores the coefficients
locally. These coefficients are passed to the next level in the
hierarchy for wavelet transformation at a coarser resolution.
While it demonstrates promising results, it relies on two key

assumptions that limit its general applicability: (i) that nodes
are distributed in a regular grid and (ii) that cluster heads can
always communicate with their parents. Wagner [28] proposed
an architecture for distributed wavelet analysis that removes
the assumption about grid regularity. Moreover, Ciancio and
Ortega [29] propose an algorithm for performing the wavelet
transformation by tracing through the path in the minimum
spanning tree and applying the wavelet filter along the path.
It minimizes inter-node communication by transmitting partial
coefficients forward and updating future sensors until the full
coefficients are computed. This approach implicitly assumes
that the path will be sufficiently long, so that wavelet analysis
will be effective. Pattern er al. [30] propose SenZip, an
architectural view of en route compression, which can interact
with the routing components and makes use of 2D wavelet-
based compression. SenZip allows for distributed compression
configuration in each sensor node for routing based on the given
aggregation tree. But aggregation node must wait for all the data
from its children set before it can compute the partial coefficient,
which introduces a non-negligible delay under the heavy
traffic.

While several authors propose compression algorithms based
on spatio-temporal correlation, some recent works do not
assume any correlation based on spatial relationship of sensor
nodes or on temporality between data packets. As such, they
are more general and are better equipped to handle the sorts of
low-correlation situations common to mobile sensor networks.
Baar and Asanovi [31] develop an energy-aware lossless
compression algorithm and shows that radio communication
is the major contributor to power consumption. It shows that
sending a single bit is equivalent to performing several hundred
addition operations. When profiling such usage, it becomes
obvious where the most energy can be saved, and that is in
reducing the number of bits sent over the radio. Sadler and
Martonosi [9] propose and evaluate a family of basic lossless
compression algorithms, S-LZW, based on LZW ([32] and
tailored to static and mobile sensor networks and applicable to a
wide range of applications. The authors discuss additional steps
for transforming or preconditioning the data to further reduce
energy consumption. S-LZW with Mini Cache (S-LZW-MC)
is an extension that makes use of a cache of the most recently
used entries. This additional cache serves as an appendix to
the standard S-LZW dictionary, under the assumption that the
sensor’s incoming data tends to be repetitive over short intervals.
The S-LZW-MC with Burrows—Wheeler transform (BWT) or
structured transpose (ST) variations provide increased overall
energy savings [31]. In the dictionary-based methods such as
LZW and its extensions, senders and receivers maintain the
same hash-indexed dictionary, either static or dynamic, and
take the same symbol to represent the incoming data strings.
However, as discussed by Baar and Asanovi [31], some packets
may get lost during transmission and the dictionary may lose
synchronization. Packet loss throughout the sensor network can
be prohibitive for S-LZW compression algorithms that depend
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on the reliable reception of preceding packets for decompression
to be possible.

Some recent works also adopt linear prediction coding to
data compression in wireless sensor networks. Puthenpurayil
et al. [33] examine the performance of different variations of
the linear predictive coding compression algorithm on differ-
ent hardware configurations, but this algorithm is not robust
to packet losses on unreliable networks. Huang and Liang
[34] apply second-order linear prediction with coefficients
determined a priori based on training data. Compression is
applied in sensor networks to humidity sensor data using
small (29-byte) packets. Rather than employing a compression
scheme that allows independent decoding of packets to provide
robustness to packet losses, they assume that lost packets will
be re-transmitted as many times as needed. Alippi et al. [35]
consider the problem of microacoustic/seismic data compres-
sion in wireless sensor networks. An algorithm is employed to
automatically detect events, and no data are transmitted unless
an event is detected. Prediction approaches considered are
limited to (at most) taking the differences between successive
samples. Compression is performed on blocks of 512 samples,
which is fairly large compared with our application.

3. ADAPTIVE LINEAR PREDICTION
COMPRESSION

In this section, we describe our linear predictive compression
approach, originally presented in [13]. We model a sensor as
a one-dimensional data source that produces integer-valued
samples x1, x, .... The instrument has a dynamic range of b
bits, and without loss of generality, we may assume that each
sample value is in the range [—2°~!, 26~ — 1]. In our intended
application, the source is a single component seismometer with
instrument dynamic range of b = 16 bits. Each node has
relatively modest computational power, and so our compression
approach must have relatively low complexity. Encoded sample
values are transmitted using fixed-length packets, and so we
would like to losslessly encode as many samples as possible
in each packet. A significant additional problem is that packets
are often lost on the channel. For this reason we impose the
additional constraint that the decoding of a received packet must
not depend on the contents of other packets. We assume that
time stamp information is already included with each packet,
so the decoder can properly synchronize received sample values
once they are decoded. Our compression approach relies on an
adaptive linear prediction of sample values and entropy coding
of prediction residuals.

3.1. Prediction

3.1.1. Adaptive linear prediction
We maintain a running estimate of the mean input signal value
[4;. This estimate is used to compute a de-biased version of the

source samples
di = x; — ji;.

We apply Mth order adaptive linear prediction to the de-biased
signal d;. L.e. the predicted value d; is a linear combination of
the preceding M de-biased values,

M
dAl' = ij -di_j = W’irlli. (1)
j=1

Here w; = [w, wa, ..., wy]" is a vector of weight coefficients
that are adapted to the source and w; = [d;—1, d;—», ..., di_y]”
is the vector of the preceding M de-biased sample values. The
predicted sample value is

Xi = [k +d;.
The estimation error, or prediction residual, is
e = X; —fi =d,‘ —d,'.

The prediction X; is used to losslessly encode x; using a variable
length coding scheme described in Section 3.3. The entropy
coding procedure takes into consideration the fact that x; is an
integer while x; is usually not.

After encoding x;, we use the sign algorithm [36] to update
the weight vector:

Wil =W; +a-u; -sign(e;)
and we update the mean value estimate via
Riv1 = ki + B - (i — ;).

Here « and B are parameters that control the adaptation of the
weight vector and mean estimate to the source statistics.

It might seem more natural to perform mean estimation
as part of the sign algorithm instead of as a separate step.
Under this alternative, one could define extended vectors w; =
[w, i, ..., wh I andw] = [k, x;_1, Xi—2, ..., Xi—p]" where
k is some fixed constant. Then we could predict the value
of sample x; directly as £/ = w/ u,. We do not adopt this
alternative approach because the prediction of the first sample
value in a packet becomes less straightforward and because
compression effectiveness becomes somewhat more sensitive
to parameter selection.

3.1.2. Prediction using integer arithmetic

To eliminate floating-point operations in the basic algorithm
of Section 3.1.1, we use rational approximations to real-valued
quantities to produce a version of the algorithm that requires
only integer arithmetic. Specifically, the real-valued quantities
d;, %, i, e; and w; are approximated using rational values:

di = D; 2%,
% = X2k,
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i = /2",
e = E,‘/ZR,
1
Ww; = 2_RW’

Here R is some fixed integer, ﬁi, )A([, Q,-, E; are integer
variables, and W; is a vector of integers. The value of R
effectively controls the resolution at which linear prediction
calculations are performed; we use R = 14 in our experiments.
Since the sample values being predicted are integer-valued,
compression effectiveness should not be highly sensitive to
the value of R used, provided that R is not so large that
arithmetic overflow occurs. In this version of the algorithm,
we perform round-off operations that result in d; being integer-
valued, and, consequently, u; being a vector of integers. The
adaptation parameters o and B are chosen to be @ = 274,
B = 278 for some integers A and B so that the multiplication
needed to perform the updates can be accomplished via bit-shift
operations.

Each iteration of the integer version of the prediction
algorithm consists of the following steps:

(i) Compute .
D; = Wu,. )
(i) Compute ) . .
X,’ = D,‘ + Q,’.

(iii)) Encode the integer sample value x; using the rational

predicted value %; = X;/2R.
(iv) Compute the (integer) de-biased value d;

di = x; — [ + 2571 = 1) /2%
(v) Compute the prediction error
E; =d; - 28 — D;.

(vi) Update the weight vector

Wit = Wi +sign(E)[2%w; + 24" — DD /24,

where I denotes a vector of ones, and the floor operation
is applied to each component of the vector.
(vii) Update the mean value estimate:

Qi1 = — (i —x; - 2R 42871 —1))28).

3.2. Encoding into independent packets

To ensure that samples in a packet can be decoded without
requiring preceding packets to be available to the decoder, we
make the following modifications at the start of each packet:

(i) We place encoded quantized versions of (i; and w; at the
beginning of each packet. The values of i; and w; are
set to these quantized versions in both the encoder and
decoder. Quantization is uniform, using some numbers
Q,, bits of resolution for the value of f; and Q,, bits for
each component of w;.

(i) We alter the prediction approach for the first M samples
in the packet so that it does not rely on sample values in
the preceding packet.

‘We describe these modifications in further detail below.

3.2.1. Quantization

The range of possible values of fi; is, at least in principle, equal
to the range of possible sample values x;. This range is uniformly
partitioned into 29# bins, and the index of the quantizer bin
containing the value of [i; is encoded in the packet using Q , bits.
The quantizer index could be encoded a little more efficiently
using a variable length code since smaller magnitude values of
[1; are presumably more likely than larger magnitudes, but we
did not investigate such a scheme.

Each component of w; is clipped as needed to ensure that
its magnitude does not exceed some cap 2¢ (we use C = 2
in our experiments). Each component is then quantized using a
uniform quantizer with 22 bins spanning the range [—2¢, 2€].
We make use of a simple variable length coding scheme to
exploit the fact that the components of w; are usually non-
increasing in magnitude and alternating in sign, i.e.

1) |wy] = |wy| > |w3| > ...
(i) sign(w;) = (—1)/*!

We say that a quantized weight vector is ordinary if it satisfies
these conditions.

We use a single bit to indicate whether the quantized weight
vector is ordinary. If it is not ordinary, the weight components
are sent uncoded using an additional M - Q,, bits. If the weight
vector is ordinary, we encode |w;| directly using Q,, — 1 bits,
and for j > 1, we encode the value of |w;| using [log, |w;_{]]
bits. In our experiments on seismic data, the quantized weight
vector was ordinary more than 90% of the time.

3.2.2. Predicting the initial samples in a packet

Since the procedure for decoding a packet cannot depend on the
contents of another packet, for the first M samples in a packet
we must modify the regular prediction approach since we do not
have enough data to perform the calculations of equations (1)
or (2) directly. Instead, we do the following:

(i) The first de-biased sample value in a packet is predicted
to be zero. That is to say, for the first sample, prediction
makes use of the quantized bias estimate but not the
weight vector.

(i) For subsequent samples in the packet, when the
calculation in equations (1) or (2) would require the use
of samples from the preceding packet, the first de-biased
sample value is repeated enough times to artificially
produce M de-biased sample values to fill the vector u;.

(iii)) Updates of the weight vector w; (or W;) are not
performed for the first M samples in a packet, during
which time this modified prediction strategy is in effect.
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3.2.3.  Packet overhead and parameter tradeoffs
Compression-related packet overhead consists of the
following:

(i) The quantized value of i; (encoded using Q,, bits)
(i) The quantized value of w; (encoded using at most
M - Q, + 1 bits)
(iii)) The value of an index indicating which variable length
code was used to encode prediction residuals (using
[log, b1 bits); see Section 3.3.

We summarize the tradeoffs involved in selecting compres-
sion parameters:

(i) Higher order prediction (a larger value of M) allows for
more accurate prediction, but increases the number of
components of w;, thus generally increasing the amount
of overhead used to encode w; at the start of each packet.

(ii) Higher resolution quantization of fi; and w; (i.e. larger
values of Q,, and Q,,) increases prediction accuracy but
also increases packet overhead.

(iii) Larger adaptation step sizes (larger values of o = 274,
B = 27 8) allow faster initial adaptation and adaptation
to a dynamically changing source, but provide worse
steady-state performance when the source is not rapidly
changing. In our experiments, we set A = 15 and
B =8.

3.3. Entropy coding

Source sample values are collected in a buffer. After each source
sample arrives, we determine whether the encoded bit cost of
the samples in the buffer exceeds the available space in the
packet. If not, then we proceed to the next sample. Otherwise,
we encode the samples in the buffer (excluding the newest one)
using the entropy coding procedure described in the remainder
of this section and reset the buffer to contain only the newest
sample.

Thus, with the arrival of each new sample, we must determine
whether the accumulated samples fit within a packet. Since the
coding option used for a packet can change as new samples
arrive, explicitly computing the encoded length of the samples
in the buffer is not always as simple as incrementing an encoded
bit count with the cost of the new sample. The obvious brute-
force approach is to simply apply the entropy coding procedure
to the samples in the buffer.

Fortunately, we can often avoid the brute-force calculation
by bounding the encoded bit cost to quickly identify cases
where the packet can accommodate the accumulated samples.
For example, the entropy coding procedure guarantees that the
average bit cost to encode n samples is no more than 7 - b bits.
As another example, if we have computed the bit cost to encode
the first (n — 1) samples, we can bound the cost to encode n
samples based on a bound on the incremental cost to encode
a single sample. We omit further details of our approach to
bounding the encoded bit cost.

Our entropy coding problem then is to efficiently encode
a length-n sequence of integer-valued samples x; given real-
valued predictions x;. To do this, we map each sample value to
a non-negative integer and then encode the resulting sequence
of non-negative integers using a Golomb code. This general
strategy is used in the Rice entropy coding algorithm [10, 11]
and the LOCO-I image compressor [12], among myriad other
applications.

3.3.1. Mapping

It is sensible to refine the predicted value %; to take into account
the fact that the true sample value x; is an integer and is
constrained by the instrument dynamic range. Accordingly, we
define

[)21] = min{max{round(fi)’ xmin}a xmax}’

where X, = —2°71 and x;x = 27! — 1 are the minimum and
maximum possible sample values. We use this refined prediction
to calculate the integer-valued prediction residual

e = x; — [Xi].

We map the signed integer quantity ¢; to a non-negative integer
fi using a slight variation on the mapping used in [10, 11]:

2lei] =6
fi=1 -
lei| +6

if e;] <0,

otherwise.
Here we define
0= mln{[fz] — Xmin> Xmax — [)ez]}

and
5 _ 1, sign(;) = sign(%; — [%]),
! 0  otherwise.

This mapping is invertible and ensures that f; € [0, 22 — 1], i.e.
fi is a non-negative integer with dynamic range that matches
that of the original source. More significantly, the mapping
assigns smaller magnitude residuals e; to smaller values of f;.
Since smaller magnitude prediction residuals should occur more
frequently than larger magnitudes, we would like to encode f;
using a variable length code that assigns shorter codewords to
smaller integers, such as the codes that we discuss next.

3.3.2. Variable length coding

For positive integer m, the mth Golomb code [37] defines
a reversible prefix-free mapping of non-negative integers to
variable length binary codewords.

We restrict our choices to codes for which m = 2* for some
non-negative integer k. As noted in [37], coding in this case
becomes especially simple. The codeword for the integer j
consists of the unary representation of | j/2%] (that is, | j/2¥]
zeros followed by a one) concatenated with the k least significant
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bits of the binary representation of j. Following the convention
of [12], we refer to this special case as a Golomb-power-of-2
(GPO2) code with parameter k.

The samples in a packet are either all sent uncoded, using
b bits for each sample, or they are all encoded using the same
GPO2 code with some fixed parameter k. The coding option
selected is explicitly encoded as part of the packet overhead,
as described in Section 3.2.3. For a source with b-bit dynamic
range, the cost of using code parameter k > b — 1 is always at
least as large as the cost of sending the samples uncoded [38].
Thus, in our application, when we use a GPO2 code, it must
have parameter k satisfying

O0<k<b-2

This gives us (b—1) GPO2 code choices, along with the uncoded
option, so our selected code can be indicated using [log, b1 bits
of overhead.

The coded samples do not usually perfectly fill a packet;
following the last encoded sample in the packet, any remaining
unused bits in the packet (fill bits) are set to zero. Because each
GPO2 codeword begins with a unary-encoded value, these fill
bits will never be mistaken for a coded sample value, and so the
decoder can correctly determine the number of samples encoded
in the packet.

We now turn our attention to the problem of selecting a
coding option that efficiently encodes some number n of non-
negative integers fi, f», ..., f,. The traditional solution to this
problem is the Rice algorithm’s brute-force approach: explicitly
compute the coding cost of each option and select the best one
[10, 11]. But it was shown in [38] that the brute-force approach
is unnecessarily complex; if we simply compute the sum

n
F=Yf
i=1

then the mean value F/n allows us to narrow the possible
optimum code choices to at most three candidates. Furthermore,
by simply comparing this mean value to a list of pre-defined
thresholds, we can perform code selection in a way that gives
compression effectiveness that is quite close to that obtained
under an optimum code selection. !

Our code selection procedure uses the following steps (further
details and mathematical background can be found in [38]):

(i) If the mean value F/n is sufficiently large, the
fi are sent uncoded. Specifically, we first check if
F/n > uj1/22" — 1 (ul,~23637). If this condition
is satisfied, then the uncoded option is selected.
Otherwise, proceed to the next step.

I'The Rice algorithm also differs from our coding problem in that the Rice
coder encodes a fixed number of samples into a variable number of encoded
bits, whereas in our problem we encode a variable number of samples into
fixed-length packets.

(ii) Compute K as follows. If F/n+ % <1 then
K = 0; otherwise, K is the unique non-negative
integer satisfying 25 < Fn + ;5 <2K+1. This can be

implemented in C source code as:

for (K=0; (n<<(K+1l))<= F+(N*49>>7); K++)

7

(iii) Assign k = min{K, b — 2}.

(iv) Compute the bit cost of using the GPO2 code with
parameter k to encode f1, f2,..., fy. If this cost
exceeds the uncoded cost (which is n - b bits) then we
use the uncoded option; otherwise, we select the GPO2
code with parameter k.

Analysis in [38] shows that the GPO2 code parameter k
selected under this strategy is always within one of the optimum
parameter values. Our experiments with seismic data samples
suggest that the increased bit rate due to occasional suboptimum
code selection is negligible.

3.4. Numerical example

In this section, we will present a numerical example to illustrate
each step of the ALFC compression procedure. Here we use
parameter values A = 15, B = 8§, R = 14, M = 3. The initial
weight vectoris: {wy, wy, w3} = {1.5, —1.25, 1.0}. As stated in
Section 3.1.2, the rational approximation to real value is adopted
to generate only integer arithmetic. Suppose the incoming
samples are: X = {xg, x1, X2, x3, ...} = {90,94,92, 124, .. .}.
The first M de-biased values are {dy, d;, d»} = {—4, 2, 0}. Next,
we will illustrate how to apply ALFC to compress the specific
value of sample i, here we select i = 4.

In the first stage, we demonstrate how to predict a sample
value.

1. Applying equation 2, we compute D; =WiTu,- =
Z?’IZI 2Rw;-d;i_;j= — 139264. The first M sample
predictions are slightly different from the rest samples
in the packet, thatis, if i < j, d;_; = dp.

2. We update the input mean estimate from the previous
estimate and the last arrived sample: fZ,- = fl_ - 2R —
L1 -2 = xiog - 2R 42871 — 1) /28] = 9624 —
256 = 1572 608. The last estimate of mean input value
[i—1 = 96.And the last arrived sample value x; _; = 92.

3. We can compute the )A(i = ﬁ,» + Qi = 1433344 and
the x; = )A(i /ZR = 87.48. Here, we get our prediction

sample value of 87.48.

4. We compute the integer de-biased d; = x; — L(Q,- +
2R=1 _1)/2R] = 28. Here the current sample value
X = 124.

5. We compute the prediction error: E; = d; - 2R — bi =
598016.

6. We need to update the weight vector for the next sample
prediction, if we have collected more than M samples:
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Wi =W, +sign(E)) - Q% + 247 = DD /24| =
{24574, —20481, 16384}7 . If the i < M, then we do
not update the weight vector.

Next, we demonstrate how to do the mapping and encoding
based on the predicted sample value. First, we round the
predicted value: [X;] = min{max{round(X;), Xmin}, Xmax} = 87.
Here, the predicted value has been rounded down from 87.48
to 87. Second, we calculate the prediction residual: e; =
x; — [%;]1 = 37, which is smaller than 6 = 32680. Third, we map
the integer residual to a non-negative integer f; = 73. Fourth,
suppose we finally select the k = 5 according to the k selection
procedure. f; is encoded as two parts: unary representation of
001 and binary representation of last five least significant bits of
01001. Therefore, the final output of encoded value is 00101001.

In the decompression procedure of ALFC, we first decode
the parameters in the beginning of each packet. And we can
start to do the prediction in the same way as compressor does,
generating predicted value. Finally, we can losslessly restore
the real sample value based on the decoded prediction residual
and the predicted value in decompressor.

4. EXPERIMENTS AND EVALUATIONS

We have conducted compression evaluations on a real sensor
network testbed including several sensor nodes. One such node
is pictured in Fig. 1. The core component of each node is an
iMote2 sensor mote, a new generation hardware platform for
wireless sensor networks.

The iMote2 CPU core frequency can be configured to operate
from 13 to 416 MHz. In our evaluation, we configured the
PXA271 processor on the iMote2 to operate in a low voltage
(0.85V) and low frequency (13 MHz) mode to conserve energy.
An MDA320CA sensor board is connected to the iMote2
through a serial peripheral interface, and a low-pass filter with
cut-off frequency of 100 Hz is added to the sensor board to
reduce noise.

FIGURE 1. A sensor node in OASIS [6] project.

To provide real data sets to the node for compression
evaluation, we wired the sensor connectors to a PCI-DAC6703
(Digital Analog Converter) board installed in a PC. The PCI-
DAC6703 provides 16 channels of 16-bit analog output and
eight digital I/O bits. We read real data sets from an archive and
wrote them to the PCI-DAC6703 board. In this way the PCI-
DAC6703 simulated real sensor data during the experiments.
To form a multi-hop network, we set the radio power to level 2,
which is the lowest setting.

In our compression experiments, we use the following U. S.
Geological Survey (USGS) seismic data sets:

1. FEQ: Frequent earthquake swarm data from the old
dome, collected on 26 September 2004.

2. LLA: Low-level activity, some rockfalls in crater,
collected on 20 July 2007.

3. NS: Noisy storm with rain, wind, flood and mudflows,
from the station on the crater floor, collected on 6
November 2006.

4. S-H: High-quality (i.e. high signal-to-noise ratio)
seismic data collected on 10 August 2009 from a
geophone seismic sensor.

5. S-L: Low-quality seismic data collected on 10 August
2009 from a seismometer sensor.

The instrument dynamic range of original data set of FEQ, LLA
and NS are 12 bits, which include useful data for evaluating
event trigger algorithms and compression algorithms. And the
dataset S-H and S-L are 16-bit data. The data streams injected
into the testbed are regenerated as 16-bit sample based on the
source seismic data.

Users of ALFC compression must select the values of several
parameters described in Section 3. To observe the impact
of parameter choices, we measured the compressed bit rate
obtained under different choices of parameter values using the
S-H seismic data set as input to the testbed. And the S-H was
chosen as the test set because it is representative of the data
we expect to see in our application. Here we fix R = 14
and M = 3. Section 4.1 presents further evaluations when
the prediction order M is varied. We set the radio packet
payload to 56 bytes, which represents a compromise between
larger packets, which tend to be more vulnerable to corruption
during radio transceiving, and shorter packets, which spend a
larger fraction of their payload on overhead and thus yield less
effective compression.

As discussed in Section 3.1.2, smaller values of A and B
result in faster adaptation to a dynamically changing source, but
lead to worse performance on a steady-state data input. Table 1
compares the performance of some different combinations of
A and B. Of the combinations considered here, A = 15 and
B = 8 has the best compression performance and relatively less
standard deviation, which is the deviation of the bit rate over
the packets in the data set. So we use these values for all further

Zhttp://oasisvalve.vancouver.wsu.edu:8080/valve3/.
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TABLE 1. Impacts of different parameter selections

Compressed bit Standard

A B rate (bits/sample) deviation
4 8 16.86 0.327
8 8 11.24 0.482
15 8 6.52 0.894
20 8 8.38 0.650
15 4 7.38 0.638
15 15 17.92 0.341
15 20 17.92 0.327

Bold values indicate the number of max value, which is also the
output of desired parameters.

TABLE 2. Impacts of different quantization resolutions

Compressed bit Standard

Ou Ow rate (bits/sample) deviation
5 5 14.87 0.661
5 11 16.00 0.000
10 10 7.38 0.248
11 5 6.52 0.765
15 15 6.85 0.468

Bold values indicate the number of max value, which is also the
output of desired parameters.

results hereinafter. Finally, Table 2 shows the performance of
some different combinations of quantizer resolution parameters
Q, and Q,. We select 9, = 11, Q,, = 5, because this
combination produces the lowest compressed bit rate of the
values evaluated.

4.1. Compressed bit rate and resource usage

We also compare the compression performance of ALFC
with the S-LZW compressor presented in [9], which is a
recently developed compressor developed for sensor networks,
discussed in Section 2.2. S-LZW is a dictionary-based
compressor that partitions input data into small blocks to achieve
a balance between dictionary size and the ‘hit’ rate, i.e. the rate
at which matches are found in the dictionary. Both ALFC and
S-LZW are low-complexity lossless compression algorithms
that are designed for sensor networks and do not depend on
dependencies between nodes in the network. S-LZW-MC-BWT
can achieve the best compression among the relevant S-LZW
variations.? It is worth keeping in mind that dictionary-based
methods such as S-LZW variations are much less robust to
packet losses than ALFC.

3Sadler and Martonosi [9] also introduce the S-LZW-MC-ST variation, but
this compressor assumes that the pattern of the data to be compressed is known in
advance and attempts to reorder the data to improve compression performance.
Since we assume no such advance knowledge, we make no comparisons with
this variation.

Table 3 lists the compressed bit rates achieved on all the
data sets using the S-LZW-MC-BWT compressor with different
mini-cache sizes, and for ALFC with different prediction orders.
It is important to note that in each of our experiments, the input
data are first low-pass filtered within the node (as described
above) before the lossless compression algorithm is applied.
This step has the effect of reducing high frequency noise, and
thus presumably improves compression effectiveness.

Over the range of parameters evaluated, ALFC demonstrates
an advantage in compression effectiveness for all the data sets.
Both compressors provide much better compression on the
better-behaved SS data set. The volatile data in the seismic data
set reduces the MC’s hit rate in S-LZW-MC-BWT, and reduces
the accuracy of linear prediction in ALFC. Interestingly, on the
low quality seismic data set, first-order prediction outperforms
the higher order prediction in ALFC.

We next compare the code size and memory usage of
the algorithms. The default memory usage of S-LZW-MC
is about 2kB, which is smaller than other compression
algorithms presented in [9]. Our ALFC implementation uses
even less memory: 768 bytes, which makes it truly lightweight
and suitable for resource-constrained sensor nodes. Our
ALFC implementation also has smaller code size of 19.4kB,
compared with 32 kB required for S-LZW-MC. S-LZW-MC-
BWT has even larger code size because it includes also a
Burrows—Wheeler transform. Computation cost comparisons
between S-LZW-MC-BWT and ALFC are somewhat less
direct because the former is implemented on an 8 MHz TI
MSP430 processor (with 10kB RAM and 48kB on-chip
flash memory) while the latter is implemented on the iMote2
running at 13 MHz. Prediction order was observed to have
little impact on the compression speed of ALFC. Compared
with S-LZW-MC-BWT, our ALFC implementation provides
slightly slower but more effective compression. Fig. 2 shows
compression effectiveness and computation cost of our ALFC
implementation for the different data sets.

Figure 2 shows the compressed bit rate of ALFC when the pre-
diction order M varies. ALFC performs better on the S-H data
set than on S-L data sets, with an average compressed bit rate
of 7.08 bits per sample. For the FEQ data set, M = 5 achieves
the best compressed bit rate of 6.96 bits per sample. Fifth- order
prediction also delivers the best performance for the LLA data
set. For the NS data set, the compressed bit rate of M = 3 is
9.30, which is 11.7% better than that of M = 4. M = 1 also
performs better than M = 4, suggesting that higher order linear
prediction is not worth the added overhead on some data sets.

Besides the compressed bit rate, we also evaluate local energy
savings under ALFC, i.e. the energy saved when nodes use
compression and transmit compressed packets rather than raw
packets. Here we take into account the energy for computation,
memory access and radio communication. The iMote2 uses a
CC2420 radio transceiver.* Fig. 3 shows that for all of the test

“http://focus.ti.com/lit/ds/symlink/cc2420.pdf.
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TABLE 3. Average compressed bit rate (bits/sample) using S-LZW-MC-BWT and our linear predictive algorithm.

S-LZW-MC-BWT

Proposed algorithm

Mini-cache size

Prediction order M

Data set 8 16 32 64 1 3 4 5

FEQ 8.74 8.51 8.19 8.06 7.69 7.66 8.74 6.96
LLA 9.12 8.96 8.67 8.58 9.20 8.70 9.47 8.42
NS 10.62 10.56 10.50 10.37 941 9.30 10.53 9.94
S-H 8.51 8.42 8.16 7.90 7.76 6.52 7.55 6.48
S-L 10.59 10.62 10.53 10.37 9.15 9.72 9.90 9.94

Bold values indicate the number of max value, which is also the output of desired parameters.
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FIGURE 2. Comparison of compressed bit rate and computation cost.

data sets, sensor nodes with ALFC consume less local energy
than when no compression is used. For the seismic data sets
from volcanos, fifth-order prediction minimizes local energy
consumption. The figure also indicates that the local energy
saving depends on the dynamics of the source data.

4.2. Network throughput and energy efficiency

The S-LZW-MC-BWT implementation of [9] partitions an
input data sequence into 528-byte blocks that are each
compressed independently. When relatively short packets are
used (as in our experiments using 56-byte packets), a single
block will almost always be too large to be transmitted using
a single packet, and the loss of a single packet will render
all subsequent packets for that block. By contrast, ALFC
allows each packet to be decompressed independently and thus
provides much more robustness to packet losses in this scenario.
Thus, in amobile or lossy sensor network with a high packet loss
ratio, we would expect the effective data delivery ratio of ALFC
to be higher than that of S-LZW-MC-BWT. In Section 4.1, we
showed that the ALFC has better compression performance than
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FIGURE 3. Normalized local energy consumption is the ratio of
energy consumption with compression against the energy consumption
without compression.

that of S-LZW-MC-BWT. Reduced data transmission implies
less network energy consumption as well.

In this section, we evaluate the performance of our ALFC
algorithm in a multi-hop environment using various seismic data
sets with varying network traffic. The testbed consists of five
sensor nodes arranged in a multi-hop topology, shown in Fig. 4.
The routing protocol is an enhanced version of MultihopLQI in
TinyOS-1.x. The underlying MAC protocol is the default MAC
protocol in TinyOS-1.x, which is a CSMA-based MAC protocol.
A desktop PC is connected to the sink node to collect upstream
data from all sensor nodes. The data injected into sensor nodes
for our tests is from the FEQ data set, which contains 30 000
packets of continuous seismic data. The payload of each packet
is 56 bytes. The injected data rate into each node ranges from
5.4 t0 20.8 kbps. The duration of experiments ranges from 10 to
40 min, and results are averaged over five repeated experiments.

We first evaluate the energy saving in a network environment.
Improved compression yields reduced transmissions, thus
resulting in lower energy consumption from radio transceivers.
In addition, for a given amount of raw data, increased
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FIGURE 4. Topology of the multi-hop sensor network testbed.

3 —4

compression reduces network load, which leads to fewer
collisions and thus fewer retransmissions. We observed from
Fig. 2 that fifth-order prediction provides the most effective
compression among alternatives evaluated, and thus minimizes
energy consumption over the network. Fig. 5a shows that the
margin becomes even larger with increasing data rate. When
the data rate is 20.8 kbps, the energy consumption without
compression is as high as 2.5, which is almost twice that of
ALFC with fifth-order prediction. Thus, we see that in this
case compression significantly reduces energy consumption by
reducing the total amount of transmissions.

We further evaluate the network efficiency by measuring the
packet delivery ratio and energy efficiency. Packet delivery ratio
refers toratio of the successfully decompressed raw data packets
at the gateway against the initially collected raw packets at
sensor nodes. When the network is not saturated (e.g. the data
rate from 5.4 to 10.8 kbps), the delivery ratio of compressed
data flow is slightly lower than the case without compression.
This is because compressed packets encode more raw data
samples than uncompressed packets, and thus the loss of each
compressed packet results in the loss of a larger number of
samples. However, as the data rate increases, the network
becomes saturated and congested, more packets are dropped
due to buffer overflow or transmission collision. When the data
rate increases from 10.8 to 14.1kbps, the delivery ratio of the
uncompressed data flow quickly drops from 0.92 to 0.69, while
that of the compressed data flow only drops slightly from 0.9 to
0.8. It can be seen in Fig. 5b that fifth-order prediction provides
the best delivery ratio of 0.74 at the data rate of 20.8 kbps, while

—

(b)

that of the uncompressed data flow is only 0.5. The problem of
buffer overflow failure and channel failure due to collision is
mitigated by compression. This demonstrates the importance
of using an effective compression algorithm to support high
data-rate sensor networks.

Finally, we evaluate energy efficiency, which refers to the
number of delivered bits per energy unit. It can be calculated
based on the delivery ratio divided by the network energy
consumption. Using fifth-order prediction, the energy efficiency
index drops slowly from 2.4 to 1.0 as we increase the data rate
from 5.4 to 20.8 kbps. Because of packet loss and network
congestion, the energy efficiency of the data flow with no
compression applied suffers from a sudden drop at the data
rate of 10.8 kbps, and keeps decreasing to 0.2 at the data rate of
20.8 kbps. Fig. 5c indicates that, on average, energy efficiency is
improved by more than a factor of two by our ALFC algorithm
compared with the uncompressed case.

4.3. ALFC in a field network

We evaluated ALFC not only in the lab testbed, but also in a
field network deployed for volcano monitoring. The OASIS [6]
project deployed 15 stations on Mount St. Helens volcano in
the summer of 2009 to monitor volcanic activities. ALFC is
applied to mitigate the difficulty in collecting real-time high-
fidelity signals given the limited bandwidth.

4.3.1.  System configuration

Figure 6 depicts the deployment map of 15 stations around
the crater of Mount St. Helens volcano. The full coverage of
deployed sensor network reaches a diameter of about 6 miles,
and it covers not only the crater area of volcano, but also some
of the flank areas. The whole sensor network is divided into two
subnetworks by allocating different radio channels. The first
and second network branches are comprised of nodes 0-6 and
nodes 7-14, respectively. Nodes 0 and node 7 serve as the sink
nodes for their respective branches. The nodes form a multi-hop
network with the topology shown in Fig. 7. To visualize the real
time network topology and sensor data, we built an end-to-end
system for the OASIS project. Two deployed branch networks
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FIGURE 5. The performance evaluation based on the FEQ data set in a multi-hop network with varying data rate: (a) network energy consumption,

(b) delivery ratio and (c) energy efficiency.
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FIGURE 7. OASIS deployment topology.

are in charge of collecting real time high fidelity data. One
gateway relays the data stream to a database through a 50-mile
microwave link. In our lab, a customized version of the TinyOS
SerialForwarder tool forwards the data between the sensor
network and the Internet. Multiple end clients may connect
to it, access the sensor data stream, and control the network
in real time. The ALFC decompressor is conducted inside the
SerialForwarder, so that the output is the decompressed data
stream, which makes the ALFC compression transparent to end
clients.

Each node collects data from several sensors, including
seismic data, infrasonic data and lightning data, as well as
GPS data. We also collect additional data to assess network
performance, such as link quality index (LQI), received signal
strength index (RSSI), parent ID, battery voltage, etc. All of
these data streams are logged into the volcano analysis and
visualization environment (VALVE) database for permanent
storage. VALVE provides web interfaces allowing on-demand
visualization of history sensing data from any location on the
Internet. Based on the collected data, the deployment topology
can be viewed in real time. The LQI and RSSI shown in Fig. 7
are retrieved from the collected data, and they are valuable for
network diagnosis.

4.3.2. ALFC evaluation in volcano

Mount St. Helens is one of the most active volcanos in the
world, and the seismic data are highly dynamic, and tend not to
yield much compression. In Fig. 8, the vertical bars illustrate the
average compressed bit rate of the seismic data on each sensor
node from a typical 4-h continuous data stream. Nodes 0, 7 and
5 are not included in Fig. 8. The sink nodes (0 and 7) have
no seismic sensors, while transmissions from node 5 cannot be
received by other nodes, and thus node 5 is not connected to the
network. An observable margin in the compressed bit rate can
be found in node 1. Node 1 has an averaged compressed bit rate
of about 7.44, which is 22.7% better than other nodes. That is
because node 1 uses a high-fidelity geophone seismic sensor
which produces data with lower noise levels than the other
sensor nodes which use three low-cost MEMS accelerometers.
According to the data collected by our deployed network, the
deviation of the noise readings from an accelerometer is in
the range of 0-100, while that from a geophone sensor is
0-20. Moreover, the standard error on node 1 indicates that
compressed bit rate experiences a fairly large fluctuation. This
is because node 1 is deployed in a much more seismically active
spot, where much more seismic activity occurs. According to
the data logged in our database, node 1 experienced about 60
seismic events in this 4-h period, while other nodes only have
approximately 16 seismic events or fewer.

Figure 9a shows the compressed bit rate averaged over
blocks of 280 samples at nodes 1 and 6, which are the two
nodes experiencing the most seismic events, and Fig. 9b plots
the seismic waveform data at these nodes. We make two
observations from this figure. First, the bit rate is consistently
much lower (typically by more than two bits/sample) at node
1 than at node 6. This difference is due to the lower noise
level at node 1, as explained above. Second, the spikes in the
compressed bit rate at the two nodes have correlation with the
seismic events observable in Fig. 9b, though the correlation is
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FIGURE 8. Averaged compressed bit rate of each node based on a
4-h seismic data stream.
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geophone seismic sensor of node 1 has lower noise level.

not the exact match due to the fact that bit rate is calculated
every 280 samples.

The results above show that ALFC performs effectively
in a field network deployed on an active volcano that
generates highly dynamic seismic data. The results also show
the significant impact of sensor noise level on compression
performance for the ALFC algorithm.

5. CONCLUSION AND FUTURE WORK

We have presented a lightweight lossless compression algorithm
based on adaptive linear prediction of sample values and
entropy coding of prediction residuals. The relatively low
overhead of linear prediction makes it suitable for real-time
high-fidelity compression. Decompression does not rely on
previously received packets, hence compression is highly robust
to packet losses. We have also evaluated our approach on a real
sensor network testbed by injecting real seismic data sets, and
in the field on an active volcano.

We note two areas for potential improvement. The first
improvement would be to devise a more effective strategy
for encoding overhead information than the one currently
employed. Along these lines, we could envision strategies
for joint quantization and encoding of overhead information.
For example, we might want to alter the quantization of w;
depending on the magnitude of the bias estimate or the value
of the GPO2 parameter k. Second, the algorithm would clearly
be more practical if it were able to adaptively choose quantizer
resolution based on observation of the data, rather than requiring
user intervention to make this selection.
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