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In recent times, there has been increasing interest in storing data securely in the cloud environment.
To provide owners of data stored in the cloud with flexible control over access to their data by other
users, we propose a role-based encryption (RBE) scheme for secure cloud storage. Our scheme allows
the owner of data to store it in an encrypted form in the cloud and to grant access to that data for
users with specific roles. The scheme specifies a set of roles to which the users are assigned, with each
role having a set of permissions. The data owner can encrypt the data and store it in the cloud in
such a way that only users with specific roles can decrypt the data. Anyone else, including the cloud
providers themselves, will not be able to decrypt the data. We describe such an RBE scheme using
a broadcast encryption algorithm. The paper describes the security analysis of the proposed scheme
and gives proofs showing that the proposed scheme is secure against attacks. We also analyse the
efficiency and performance of our scheme and show that it has superior characteristics compared

with other previously published schemes.
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1. INTRODUCTION

Cloud computing has attracted much attention in recent times
because of its ability to deliver resources such as computing
and storage to users on demand in a cost-effective manner. Due
to the continuous growth in the amount of digital information
that needs to be stored, there is a clear incentive for the service
providers to explore outsourcing of users’ data to the cloud.
Potentially there could be several benefits to storing data in
the cloud. The cloud can provide a scalable high-performance
storage architecture, and can help us to significantly reduce the
cost of maintenance of individual services.

Since the public cloud1 is an open platform, and can be
subjected to malicious attacks from both insiders and outsiders,
the need to protect the privacy and security of the data in the
cloud becomes a critical issue. An important aspect when the
data are stored in the cloud is: who is able to access and view
the data? Consider the scenario where a user (the owner of the
data) uses a cloud service provider to store his/her data such
as photos in a cloud. Several security requirements can arise

1In this paper, when we use the word cloud, we are referring to a public
cloud.

in such a scenario. The user (owner of the data) may wish
to restrict which other users are able to access and view the
data. For instance, a user may want to allow the photo studio
(where the user wants to print the photos) and his/her family to
access and view the photos stored in the cloud but not anyone
else. This places restrictions on the type of users (e.g. outsiders)
accessing and viewing the photos. Later, if the user finds another
photo studio that prints the photos cheaper, then the user may
want to revoke the access permission for the photos from the
previous photo studio, and grant the permission to the new one.
Moreover the user (owner of the data) may not want the cloud
provider to view the photos that the user is storing in the cloud.
Here the cloud provider can include the employees of the cloud
provider organization (that is, the insiders). The greater the
sensitivity of the data stored in the cloud, the more stringent
are the security requirements on the outsiders and insiders. For
instance, storage of electronic patient records in a healthcare
system would warrant such stringent security needs.

One approach is to use cryptographic techniques to encrypt
the data before storing it in the cloud. This would allow only the
users who have access to the key(s) to decrypt the data and to
view the data in the plain form. The problem of achieving secure
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access to data stored in the cloud is transformed into the problem
of access to keys. Some form of access control is then needed to
determine who can have access to keys. For instance, in the case
of online patient records, a patient can encrypt his/her medical
record and then store it in the cloud. The patient can then specify
an access control policy that describes who can access and view
the record. For instance, this could be his/her doctor, appropriate
medical specialist(s) as well as some selected family members.
Then we require a secure way of achieving key distribution to
these selected users, who can have the access to view the data
according to the access control policy. The users who are not
allowed by the access control policy cannot view the data as
they will not have the key.

Moreover this restriction also applies to the cloud providers
themselves. That is, the cloud providers themselves are
subjected to these controls, thereby ensuring that they do not
have access to stored information in their cloud without the
explicit granting of the access privilege by the owner. This
situation is different from traditional access control systems,
where access control enforcement is carried out by a trusted
party, which is usually the service provider. The cloud provider
may not be trusted due to the distributed nature of the cloud
computing architecture. Hence, users cannot rely on the service
provider in the cloud environment to enforce the access control.
In fact, the cloud providers themselves may wish to have such a
feature to prove (to the owner of the data) that they do not have
access to (or the ability to modify) the plain data and hence
reduce their liability. Furthermore, there must be mechanisms
for allowing new users to be added who can access the data as
well as for removing (revoking) users from accessing the data
in the cloud.

A trivial solution is that the owner can employ a broadcast
encryption (BE) scheme to encrypt the private data and
distribute the decryption key to the users, with whom he/she
wishes to share the data, via a secure channel. However, in
the real world, there could be a large number of owners who
may want to store their private data in the cloud as well as
a large number of users who may want to access the stored
data. If a user needs to obtain a key for each owner who wants
him/her to access the private data, the number of keys that
each user needs to keep could become very large. Furthermore,
when the owner wants to revoke the permission from existing
users, a new key needs to be distributed to all the users who
are not revoked, to decrypt future messages. This would lead to
significant inefficiencies in the implementation of a large-scale
system and poor performance.

In this paper, we propose a hybrid scheme that combines
access control with cryptography and key distribution to address
security requirements for data storage in the cloud. We refer
to our hybrid scheme as role-based encryption (RBE) as it
involves the use of cryptography with role-based access control
to simplify security management. The owner of data encrypts
the data in such a way that only the users with appropriate
roles as specified by a role-based access control policy can

decrypt and view the data. Recall that the central notion of
role-based access control is that permissions are associated
with roles, and users are assigned to appropriate roles, which
simplifies the management of permissions. Roles are created
for the various subsets of users based on users’ responsibilities
and qualifications. A role manager is used to assign a role to a
user, or revoke a role from a user. The owner of data can grant
permissions to the roles while adding new data, and can also
revoke the permissions from the roles on some existing data
as needed. Even the cloud provider (who stores the data) will
not be able to see the content of the data if the provider is not
given the appropriate role. A user is able to join a role after the
owner has encrypted the data for that role, and the user will
be able to access that data from then on, and the owner does
not need to re-encrypt the data. A user can be revoked at any
time (e.g if he/she is found to be malicious), in which case the
revoked user will not have access to any future data encrypted
to this role.

In addition, our RBE scheme is able to deal with role
hierarchies, whereby roles can inherit permissions from other
roles. In the hierarchical structure of roles, a role can have
sub-roles. If a role A inherits all the permissions that role
B has, then we say role A is a predecessor role of role B,
and role B is a successor role of role A. We will also show
how our scheme is able to deal with a user belonging to
multiple roles in an effective manner. A significant feature of
the proposed scheme is that the decryption key size still remains
constant, regardless of the number of roles that the user has been
assigned to.

In this paper, we construct such an RBE scheme using a BE
mechanism described in [1]. In our scheme, the ciphertext and
the decryption key that the user needs to keep is constant in size,
and the user can be revoked from the role without affecting the
owners and other users of the same role.

The paper is organized as follows. In Section 2, we briefly
describe related works that are relevant for our proposed scheme
in this paper and consider their limitations. Section 3 gives
the definitions of the proposed RBE scheme and describes the
security properties of the scheme and the assumptions made.
In Section 4, we describe our RBE scheme using ID-based BE
mechanism given in [1]. We give an analysis of the security and
performance of our scheme in Section 5. In Section 6, we discuss
some design aspects that can be optimized to achieve efficient
practical implementation of our scheme. Finally, Section 7
concludes the paper.

2. RELATED WORK

In recent years, several schemes have been proposed that use
cryptographic techniques to enforce access control such as those
used for securing outsourced data on semi-trusted servers given
in [2–4]. These schemes transform the access control into a key
management problem, and use some form of hierarchical key

The Computer Journal, Vol. 54 No. 10, 2011

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/54/10/1675/634755 by guest on 09 April 2024



Enforcing Role-Based Access Control in the Cloud 1677

management scheme [5]. However, these solutions have several
limitations. For instance, if there is a large number of users
and owners involved, the overhead involved in setting up the
key infrastructure can be very high. In addition, when a user’s
permission is revoked, all the remaining users in the same role
will be affected and their keys need to be changed, which makes
these schemes impractical.

Another approach involves the use of the technique called
attribute-based encryption (ABE). The first ABE scheme was
proposed in [6], in which ciphertexts are labeled with sets of
attributes and private keys are associated with access structures
that control which ciphertexts a user is able to decrypt. Hence
this scheme is also referred to as key-policy ABE or KP-ABE.
In KP-ABE scheme, the owner of the data does not have the
control over who is allowed to access the data. The owner must
trust the key-issuer who issues the appropriate keys to grant or
deny access to the appropriate users.

To overcome this drawback, another form of ABE scheme
was introduced in [7]. This scheme works in the reverse manner
where the user keys are associated with sets of attributes and
the ciphertexts are associated with the policies. Hence, it is
referred to as the ciphertext-policy ABE (CP-ABE) scheme.
The authors claim that their scheme is conceptually closer
to role-based access control, but they do not provide a clear
description as to how this can be achieved in terms of the
characteristics associated with role-based access such as role
hierarchies and constraints. Some variations of the CP-ABE
schemes have been proposed such as in [8–10] with features
such as chosen ciphertext attack (CCA) secure solution and
constant size solution. However once again, these schemes have
other disadvantages in practice such as the ability to achieve
revocation. That is, revocation of a user’s key will affect the
keys possessed by all the other users, which makes such schemes
inefficient in practice.

As an aside, in this paper, we will show how to enforce
the RBAC policies using CP-ABE. First we associate the role
with a policy of a set of attributes, and we say that a user
belongs to the role if this user has the keys for all the attributes
in the set for the role. To define a role A that inherits the
permissions from another role B, we simply associate role A

with a policy that contains the policy for role B. When the
owner wants to encrypt a message to a role, he/she simply
uses the CP-ABE scheme to encrypt the message under the
policy of the role, and all the users in the role will be able to
decrypt as they have the keys for all the attributes in the policy.
The ABE scheme that we used in comparison refers to this
approach.

Recently, another scheme has been proposed in [11] that
considers a hierarchical role-based access control model.
However, this scheme once again lacks the ability of user
revocation, and the size of the ciphertext increases linearly with
the number of all the predecessor roles.

The RBE scheme that we propose in this paper overcomes
these limitations.

3. PRELIMINARIES

In this section, we first introduce the BE technique and the
definitions of our RBE scheme. Then, we describe the security
properties of our RBE scheme. Finally, we review the basic
cryptographic principles that will be used throughout the paper.

3.1. Broadcast encryption

The concept of BE was introduced by Fiat and Naor [12]. In BE
schemes, a broadcaster encrypts messages and transmits them to
a group of users who are listening in a broadcast channel. Then
they use their private keys to decrypt the transmissions. While
encrypting the messages, the broadcaster can choose the set of
users that is allowed to decrypt the messages. Following this
original scheme, many other BE schemes have been proposed
such as [13–15]. These schemes require public parameters for
every user, and every time a user wants to join or leave the
system, the public parameters need to be updated.

ID-based BE. In 1984, Shamir [16] suggested the possibility
of a public key encryption scheme in which the public key can
be an arbitrary string. In 2001, Boneh and Franklin introduced
an ID-based encryption (IBE) scheme, in which the sender can
use the identity of the receiver as the public key to encrypt
the messages. An ID-based BE scheme (IBBE) is defined in a
similar way. In an IBBE scheme, the system does not need to
have any preset parameters for every user, and a broadcaster
only needs to know the identity of the user if this user is
allowed to decrypt the messages. In this case, one user joining
or leaving the system will not affect any other user. Moreover,
the users do not even need to have the decryption key at the
time when the messages were encrypted. They can obtain their
keys afterwards. Several IBBE schemes have been proposed
subsequently in [17–19].

3.2. Formulation of RBE framework

Our RBE scheme consists of the following parties: a set of
owners who store their private data in the cloud, a set of users U
whom the owners may wish to share the private data with, a set
of roles that these users can have, the associated role managers
RM and a group administrator GA. In this paper, we will assume
that there exists a single authority GA who has the authority to
generate the keys for the users and the roles. In a subsequent
paper, we will consider the extension of this scheme to multiple
group administrators.

We define the following algorithms for our hybrid RBE
scheme:

Setup (λ): takes as input the security parameter λ and outputs
a master key mk and a group public key pk. mk is given to
GA, and pk is made public.

CreateRole (mk, IDR): an algorithm executed by the GA, on
input of a role with its identity IDR , generates the role secret
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skR and returns a set of public parameters pubR of the role
and an empty user list RUL that will list all the users who
are entitled to that role.

CreateUser (mk, IDU ): an algorithm on input of the identity
IDU of a user, executed by the GA, returns the decryption
key dk to the user.

AddUser (pk, pubR , U , IDU ): an algorithm executed by the
role manager RM, on the request of joining the role from
the user, updates the role’s public parameter pubR and the
user list RUL if the user qualifies the role.

Encrypt (pk, pubR , M): an algorithm executed by the owner
to encrypt the private data M outputs the ciphertext C to
be stored in the cloud.

Decrypt (pk, pubR , dk, C): an algorithm executed by the user
to decrypt the ciphertext in the cloud outputs the plain text
M if the user has the permission to access the data, and
results in ⊥ otherwise.

RevokeUser (pk, pubR , U , IDU ): an algorithm executed by
the role manager RM and the GA, on input an identity IDU

of the user U , removes U from the RUL and updates the
role’s public parameters.

We assume that the cloud provider provides an underlying
service to store the system public parameters and all the role
public information. The GA is a trusted party who creates the
roles and the keys for the users. We assume that the master secret
mk is securely stored by the GA, and the GA can communicate
with the Role Manager RM and users via a secure channel.When
GA answers to the request CreateUser, it returns the generated
information to the user via the secure channel.

The Role Manager (RM) is a trusted party per role and it
manages the set of users in a given role. It can assign the role to
a user if the user qualifies for the role, or exclude a user if the
user is found to be malicious. When adding a user to a role, RM
needs to verify the user’s qualifications and determine whether
the user can have this role. When a user resigns from a role or is
removed from a role, RM revokes the role permissions for that
user. We assume that there are some standard authentication
mechanisms available that can be performed between the RM
and a user. We will not consider these in this paper but they are
being addressed as part of the implementation of the proposed
scheme.

Users have the access to the ciphertext stored in the cloud.
They are given appropriate decryption keys by the GA when
they join the system. The users possess some credentials that are
used to prove to an RM that they have appropriate qualifications
to join a role. Users are able to use their decryption keys
to decrypt the ciphertext, and we assume that the users are
responsible for keeping their decryption key secure.

3.3. Security properties of RBE

Here are some of the important security properties that are
achieved by our RBE scheme.

(i) Roles can be defined in a hierarchy, which means a role
can have sub-roles (successor roles). The users in a role
are able to decrypt the messages that are encrypted for
its sub-roles, including any successor roles of its sub-
roles.

(ii) The owner of the data can encrypt the private data to
a specific role. Only the users in the specified role or
predecessor roles are able to decrypt the data.

(iii) Users who are not entitled to the specified role or
predecessor roles will not have the ability to decrypt and
reveal the private data. Even the cloud provider (who
stores the data) will not be able to see the content of the
data if the provider is not given the appropriate role.

(iv) A user is able to join a role after the owner has encrypted
the data for that role, and the user will be able to access
that data from then on, and the owner does not need to
re-encrypt the data. A user can be revoked at any time
(e.g if he/she is found to be malicious), in which case
the revoked user will not have access to any future data
encrypted to this role.

Selective-ID Security: Our RBE scheme splits the
encryption into two levels to avoid re-encryption when adding
a new user into a role. Hence the security of our scheme is
built on the standard notion of selective-ID security with an
additional round. We say that our RBE scheme is semantically
secure (IND-sID) if no polynomially bounded adversary A has a
non-negligible advantage against the challenger in the following
scenario:

Init: The adversary A first outputs a set {ID1, . . . , IDk} of
identities that he wants to attack (with k ≤ q).

Setup: The challenger takes a security parameter λ and runs
the Setup algorithm. It gives the group public key pk to the
adversary A, and keeps the master key mk as secret.

Phase 1: The adversary A adaptively issues queries q1, . . . , qm

where query qi is one of:

(i) Create user query (IDUi
). The challenger runs algorithm

CreateUser to generate decryption key dki correspond-
ing to the identity IDUi

, and sends dki to the adversary
A.

(ii) Add user query (IDUi
, IDR). If IDR has not been

issued a query, the challenger first runs the algorithm
CreateRole to generate the role public parameter PubR

corresponding to the identity IDR . Then the challenger
runs algorithm AddUser on input of the identity IDUi

to
update the role public parameters PubR . It then sends the
updated version of PubR to the adversary A.
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Challenge: When the adversary A decides that Phase 1 is
over, it outputs two equal length plaintexts M0, M1 and
user identities IDU on which it wishes to be challenged,
where IDU did not appear in any query in Phase 1. Now
the challenger runs the algorithm AddUser on input of the
identity IDU and a role public to update the role public
parameters PubR . Then the challenger picks a random bit
b ∈ {0, 1}, and runs the Encrypt algorithm to encrypt Mb

and returns the ciphertext C and PubR to A.

Phase 2: The adversary A adaptively issues more queries
qm+1, . . . , qn where query qi is one of:

(i) Create user query (IDUi
|IDUi

�= IDU ). Challenger
responds as in Phase 1.

(ii) Add user query (IDUi
, IDR|IDUi

�= IDU ). Challenger
responds as in Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1},
and wins the game if b = b′.

Revocable-ID Security: We define the selective Revocable-
ID security of our scheme as follows. Since the revoked user has
the ability to access the role secrets that were generated before
the user has been revoked, we let the adversary A have the
ability to query about the role secrets generated at any period of
time except the one used at the challenge time. We still use the
standard notion of selective-ID security, and define the sRID
security of our scheme by the following scenario between an
adversary A and a challenger.

Init: The adversary A first outputs a set {ID1, . . . , IDk} of
identities that he wants to attack (with k ≤ q).

Setup: The challenger takes a security parameter λ and runs
the Setup algorithm. It gives the group public key pk to the
adversary A, and keeps the master key mk as secret.

Phase 1: The adversary A adaptively issues queries q1, . . . , qm

where query qi is one of:

(i) Create role query (IDRi
). The challenger runs the

algorithm CreateRole to generate role secret skRi

corresponding to the identity IDRi
. Then it re-randomize

the role secret and sends sk′
Ri

to the adversary A.

Challenge: When the adversary A decides that Phase 1 is
over, it outputs two equal length plaintexts M0, M1 and an
identity IDR on which it wishes to be challenged, where
IDR did not appear in any query in Phase 1. Then the
challenger picks a random bit b ∈ {0, 1}, and runs the
Encrypt algorithm to encrypt Mb and returns the ciphertext
C to A.

Phase 2: The adversary A adaptively issues more queries
qm+1, . . . , qn, where query qi is one of:

(i) Create role query (IDRi
). Challenger responds as in

Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1},
and wins the game if b = b′.

3.4. The bilinear pairings

Let G1, G2 be two cyclic additive groups of prime order p, and
GT be a cyclic multiplicative group of prime order p. g and h

are two random generators where g ∈ G1, h ∈ G2. A bilinear
pairing ê : G1 × G2 → GT satisfies the following properties:

(i) Bilinear: for a, b ∈ Z
∗
p we have ê(ga, hb) = ê(g, h)ab.

(ii) Non-degenerate: ê(g, h) �= 1 unless g = 1 or h = 1.
(iii) Computable: the pairing ê(g, h) is computable in

polynomial time.

3.5. Security assumptions

A General Decisional Diffie–Hellman Exponent (GDDHE)
assumption has been given in [1], and it can be proved to have
generic security with the GDHE assumption given in [20].

Let p be an integer prime and let s, n be positive integers.
Let P, Q ∈ Fp[X1, . . . , Xn]s be two s-tuples of n-variate
polynomials over Fp and let f ∈ Fp[X1, . . . , Xn]. We write
P = (p1, p2, . . . , ps) and Q = (q1, q2, . . . , qs), and the first
components of P, Q satisfy p1 = q1 = 1. For a set �, a function
h : Fp → �, and a vector x1, . . . , xn ∈ Fp, we write

h(P (x1, . . . , xn))

= (h(p1(x1, . . . , xn)), . . . , h(ps(x1, . . . , xn))) ∈ �s.

We use similar notation for the s-tuple Q. Let G, GT be
groups of order p and let ê : G × G → GT be a non-
degenerate bilinear map. Let g ∈ G be a generator of G1 and
set g1 = e(g, g) ∈ GT .

We say that a polynomial f ∈ Fp[X1, . . . , Xn] is dependent
on the sets (P, Q) if

f =
s∑

i,j=1

ai,jpipj +
s∑

i=1

biqi, where ai,j , bi ∈ Zp.

Definition 3.1 (GDDHE Problem). (P, Q, f )-GDDHE
Problem in G is defined as follows: Given a random T ∈ GT

and the vector

H(x1, . . . , xn) = (gP(x1,...,xn), g
Q(x1,...,xn)
1 ) ∈ G

s
1 × G

s
T

decide whether T = gf (x1,...,xn).

We use similar notation for the s-tuple R, and define a
(P, Q, R, f ) − GDDHE assumption that extends GDDHE

Problem to the case with pairwise distinct roots. The security
of our scheme is based on this assumption.

Definition 3.2 ((P, Q, R, f)-GDDHE Problem). Let
(p, G1, G2, GT , ê) be a bilinear map group system and let g and
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h be the generator of G1 and G2, respectively, and v = ê(g, h).
Solving the (P, Q, R, f ) − GDDHE problem consists, given

g, gγ , . . . , gγ 2n

, h, hγ , . . . , hγ 2n

,

(gP (x1,...,xn), hQ(x1,...,xn), vR(x1,...,xn))

and K ∈ GT , in deciding whether K is equal to ê(g, h)f (x1,...,xn)

or some random element of GT .

4. OUR RBE SCHEME

In this section, we propose our hybrid RBE scheme, and the
scheme is designed as follows:

Setup (λ): Generate three groups G1, G2, GT , and an bilinear
map ê : G1×G2 → GT . Choose random generators g ∈ G1 and
h ∈ G2, a random value t ← Z

∗
p, two secret values s, k ← Z

∗
p

and select two hash functions H1 : {0, 1}∗ → Z
∗
p, H2 : GT →

Z
∗
p. The master secret key mk and system public key pk are

defined as

mk = (s, k, g),

pk = (w, v, y, gk, h, hs, . . . , hsq

),

where w = gs, v = ê(g, h), y = gt

and q is the maximum number of involved users and roles.
CreateRole (mk, IDR): To create a role with identity IDR ,

where {IDR1 , . . . , IDRm
} are the identities of all the predecessor

roles of role R, the role manager RM first outputs an empty
role user list RUL and chooses a random secret value r ← Z

∗
p.

Then RM computes

K = vr, W = w−r

and sends K to GA via a secure channel. After receiving K , GA
first generates the role secret skR

skR = g
1

s+H1(IDR)

and computes the role public parameters as

A = h(s+H1(IDR))
∏m

i=1(s+H1(IDRi
)), B = Ak,

S = skR · yk · yH2(K) = g
1

s+H1(IDR)
+t (k+H2(K))

.

CreateUser (mk, IDU): When a user with identity IDU is
added to the system, GA simply computes the user secret

dkU = g1/(s+H1(IDU ))

and gives dkU to the user U .
AddUser (pk, pubRi

, N , IDUk
):A user Uk with identity IDUk

wishes to join the role Ri , and assume that Ri already has a set
N of n users, where Uk /∈ N . RM first computes

Vi = h
ri ·(s+H1(IDUk

))
∏n

j=1(s+H1(IDUj
))
.

Then RM adds IDUk
into RUL and outputs the role public

information

(IDRi
, Ai, Bi, Wi, Vi, Si, RUL).

Encrypt (pk, pubRx
, M): Assume that the owner of the

message M ∈ GT wants to encrypt M for the role Rx . Given

pk = (w, v, y, gk, h, hs, . . . , hsm

), the owner randomly picks
z ← Z

∗
p and computes

C1 = w−z, C2 = y−z, C3 = Ax
z, C4 = M · v−z.

The owner outputs the ciphertext

C = 〈C1, C2, C3, C4〉.
Decrypt (pk, pubRi

, dkUk
, C): Assume role Rx has a set R

of predecessor roles, and the set M = Rx ∪ R has m roles
{R1, . . . , Rm}. Ri ∈ R is one predecessor role of Rx , and there
is a set N of n users {U1, . . . , Un} in Ri , and the user Uk ∈ N
who is entitled to the role Ri wants to decrypt the message M .
Uk computes

M ′ = C4 ·
(

ê(C1, h
pi,M(s))ê(C2, Bx)ê

×
(

Si

yH2(Ki)
, C3

))1/
∏m

j=1,j �=i H1(IDRj
)

,

where

Ki = (ê(dkUk
, Vi) · ê(Wi, h

pk,N (s)))
1/

∏n
j=1,j �=k H1(IDUj

)

and

pi,M(s)

= 1

s
·
⎛
⎝ m∏

j=1,j �=i

(s + H1(IDRj
)) −

m∏
j=1,j �=i

(H1(IDRj
))

⎞
⎠ ,

pk,N (s)

= 1

s
·
⎛
⎝ n∏

j=1,j �=k

(s + H1(IDUj
)) −

n∏
j=1,j �=k

(H1(IDUj
))

⎞
⎠ .

RevokeUser (pk, pubR, N , IDU): To revoke a user Uk from
a role Ri which has a set N of n users, and Uk ∈ N . The role
manager RM first removes IDUk

from role user list RUL and
chooses a random value r ′

i ← Z
∗
p. Then RM computes

K ′
i = vr ′

i , W ′
i = w−r ′

i ,

V ′
i = h

r ′
i ·
∏n

j=1,j �=k(s+H1(IDUj
))
,

and sends K ′
i to GA via a secure channel. Suppose {R1, . . . , Rm}

are all the existing roles in the system, GA then chooses a
random secret value t ′ ← Z

∗
p, computes

y = gt ′ , Sj = g
1/(s+H1(IDRj

))+t ′(k+H2(Kj ))
, 1 ≤ j ≤ m

and publishes all these values.
The role public information now changes to

(IDRi
, Ai, Bi, W

′
i , V

′
i , S

′
i , RUL).

Correctness: To check the correctness of the scheme, now we
show that M = M ′. Assume that dkUk

is a valid decryption key
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for identity IDUk
of user Uk in the system, and Uk is the member

of role IDR which the message was encrypted to.
First, we look into the computation of Ki :

K∗
i = ê(dkUk

, Vi) · ê(Wi, h
pk,N (s))

= ê(g1/(s+H1(IDUk
)), h

ri
∏n

j=1(s+H1(IDUj
))
) · ê(w−ri , hpk,N (s))

= ê(g, h)
ri

∏n
j=1,j �=k(s+H1(IDUj

)) · ê(g, h)−ri ·s·pk,N (s)

= ê(g, h)
ri ·∏n

j=1,j �=k H1(IDUj
)
.

Then we have

Ki = (K∗
i )

1/
∏n

j=1,j �=k H1(IDUj
) = ê(g, h)ri = vri .

Next we verify:

K∗ = ê(C1, h
pi,M(s)) · ê(C2, Bx) · ê(Si · y−H2(Ki), C3)

= ê(g−zs, hpi,M(s)) · ê(g−zt , h
k

∏m
j=1(s+H1(IDRj

))
)

· ê(g1/(s+H1(IDRi
))+kt , h

z
∏m

j=1(s+H1(IDRj
))
)

= ê(g, h)
−zs·pi,M(s)+1/(s+H1(IDRi

))·z ∏m
j=1(s+H1(IDRj

))

= ê(g, h)
z·∏m

j=1,j �=i H1(IDRj
)
.

Thus, we have

M ′ = C4 · (K∗)1/
∏m

j=1,j �=i H1(IDRj
) = Mv−z · ê(g, h)z = M.

In the earlier-mentioned scheme, the owner of the message is
able to specify a role R and encrypts the message M to this role.
Only this role R and the roles that are predecessors of the role R

can decrypt the message with their role secrets or randomized
role secrets. For an individual role, the randomized role secret
is encrypted in such a way that only the users in the role have
the ability to decrypt the randomized role secret, and therefore
are able to recover the message M . Clearly a user who cannot
decrypt the randomized role secret cannot learn anything about
the content of the message.

Note that the encryption has been split into separate levels.
The role manager can add new users without changing the
randomized role secret, which means that new users will be
able to decrypt the message that was encrypted before he/she
was assigned to this role, and the owner does not need to re-
encrypt the message. On the other hand, when revoking a user,
a role manager will need to have the GA re-randomize the role
secret, so that this user cannot use the previous randomized role
secret to decrypt messages any more, but no other roles will be
affected by the changes to this role.

Let us now illustrate the scheme using some simple example
scenarios.

4.1. Example scenarios

In this section, we give two small examples to illustrate the
proposed RBE scheme (see Fig. 1).

FIGURE 1. Hierarchical RBAC.

In Fig. 1a, the role R1 is the predecessor role of role R2, and
the role R2 is the predecessor role of role R3. GA generates role
public parameters pubRi

for each role, where pubRi
contain

the identities of all the predecessor roles. When a user (owner
of data) wishes to encrypt a message M for role R3, pubR3

will be used as the public key. Since pubR3
includes the

identities of R1 and R2, the message M is also encrypted for role
R1 and R2.

When a user U1 in role R1 wants to decrypt the message,
he/she only needs to use the user decryption key dkU1 and the
public parameters pubR1

of role R1 to decrypt the ciphertext.
In this case, when the role manager wants to assign the role to
a new user, RM only needs to update the pubR1

.
Figure 1b illustrates a situation whereby the role R1 is the

predecessor role of two roles R2 and R3, and both R2 and R3

are predecessor roles of the role R4. Firstly, GA generates role
public parameters for each role. Note that pubR4

will have the
information for the identities of R1, R2 and R3. Whenever a user
encrypts a message M for role R4, all the users in R1, R2 and
R3 will be able to decrypt the message. Here we can see that
the size of pubR4

remains constant regardless of the number of
roles that inherit from it.

When adding a new role to the system, or removing an old
role, only the successor roles will be affected. In Fig. 1b, if
GA wants to remove R3 from the hierarchical structure, only
the pubR4

will need to be updated, and R1 and R2 will not be
affected.

Returning to our healthcare scenario, assumeAlice is a patient
who wants to store her health record in an online personal health
record (PHR) cloud server, so that she can easily share the
information with other people she chooses. Now let us assume
that Alice wishes to allow her doctors to access her PHR but
not the nurses in the practice. In our hybrid RBE scheme, we
first create the roles for Doctor and Nurse, and each role public
key contains an encrypt form randomized role secret that can
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be used to decrypt the messages encrypted to the role itself.
Alice simply encrypts her PHR to the role Doctor, and stores
the ciphertexts in the online PHR cloud server. Assume that
John is a doctor, and Jane is a nurse. Each of them will be given
a decryption key.

Since Alice’s PHR was encrypted to the role Doctor, John
can use his decryption key with the public parameters of role
Doctor to decrypt the randomized role secret of Doctor, and
hence decrypt the Alice’s PHR. Because Alice’s PHR was not
encrypted for the role Nurse, Jane cannot use role Nurse’s
public parameters to decrypt the ciphertexts; so she will learn
nothing about Alice’s PHR. Let us assume that Tom is one of
the technicians who is maintaining the service of the cloud.
Although Tom can access the ciphertexts stored in the cloud, he
cannot use any role public parameters to decrypt, as he is not
assigned to any role.

Now assume that the hospital has created a new role Staff,
which is a successor role of role Doctor and Nurse. Let us
assume that all the staff in the hospital will be added to this
new role. The role Doctor and Nurse do not need to update their
public parameters. If Alice has a message encrypted to the role
Staff, John and Jane can both use their keys with the public
parameters of role Doctor and Nurse to decrypt the Alice’s
message separately. When a new doctor joins the hospital, only
the role Doctor needs to update the public parameters, and all
the other roles will not be affected.

5. ANALYSIS OF OUR RBE SCHEME

5.1. Security analysis

In this section, we analyse our scheme to show that it is selective-
ID secure(IND-sID) and revocable-ID secure(sRID).

Theorem 5.1. The proposed RBE scheme is IND-sID secure
against active adversary under the GDDHE assumption in the
Random Oracle Model.

Suppose A is an attacker that wins the following game with
probability AdvRBE

IND-sID. Then we construct another attacker B
that solves the GDDHE problem.

Let q be the maximum number of identities of users and
roles that the adversary can query, U = {IDU1 , . . . , IDUn

} and
R = {IDR1 , . . . , IDRm

} are the set of users’ and roles’ identities,
respectively, that the adversary will issue the queries. B will
be given g0, g

s
0, . . . , g

s2n

0 , h0, h
s
0, . . . , h

s2n

0 , where s is a random
number chosen by the challenger. We define the following
polynomials:

(i) g1(x, k) = ∏k
i=1(x + H1(IDRi

));
(ii) g2(x, k) = ∏k

i=1(x + H1(IDUi
));

(iii) f (x) = g1(x, m) · g2(x, n);
(iv) f1(x, i) = f (x)/(x + H1(ID

∗
Ri

)), where i ∈ [1, m];
(v) f2(x, i) = f (x)/(x + H1(ID

∗
Ui

)), where i ∈ [1, n].

Init: The adversary A first outputs a set {ID1, . . . , IDk} of
identities that he wants to attack (with k ≤ q).

Setup: Adversary B will set the following values to generate
the system parameters,

g = g
f (s)

0 , h = h0, w = g
s·f (s)

0 ,

v = ê(g, h) = ê(g0, h0)
f (s),

y = gt = g
t ·f (s)

0 , where t
R← Z

∗
q

Then B defines the public key as pk =
(w, v, y, gk, h, hs, . . . , hsq

), and creates the role parame-
ters

A = h
∏m

i=1(s+H1(IDRi
)) = h

g1(s,m)

0 ,

B = hk
∏m

i=1(s+H1(IDRi
)) = h

k·g1(s,m).

0

Phase 1: The adversary A adaptively issues queries
q1, . . . , qm,

(i) If A has not issued the query on IDUj
, B computes the

user decryption key as

skUj
= g

1/(s+H1(IDUj
)) = g

f2(s,j)

0 .

(ii) If A has issued the query on IDUj
, B then computes the

role public parameters for role with IDRi
as follows to

assign the role to the user, t is the number of the users
currently in the role

Ki = vri , Wi = w−ri = g
−ri ·s·f (s)

0 ,

Vi = h
ri ·∏t

j=1(s+H1(IDUj
)) = h

ri ·g1(s,t)

0 ,

and

Si = yH2(Ki) · g1/(s+H1(IDRi
)) · gkt

= yH2(Ki) · gf1(s)+kt ·f (s).

As we use the ID-based BE to encrypt the re-randomized
role secret, and this IBBE scheme has been proven to be
secure in [1], we assume this to be the case here as well; so
the adversary will learn nothing about Si here.

Challenge: Once A decides that Phase 1 is over, it publishes
the identity IDRi

of the role to which it wishes to encrypt
the message and two messages M0, M1 on which it wishes
to be challenged. Then B simulates Encrypt algorithm by
constructing the ciphertext for the messageMb for a random
b ∈ {0, 1} as,

C1 = w−z = g
−z·s·f (s)

0 , C2 = y−z = g
−z·t ·f (s)

0 ,

C3 = Az = h
z·g1(s,m)

0 , C4 = Mb · ê(g0, h0)
−z·f (s).
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Phase 2: The adversary A adaptively issues more queries
qm+1, . . . , qn, which does the same as the steps in Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1},
and wins the game if b = b′.

Then we have

Advgddhe = 1

2
(Pr[b = b′|real] + Pr[b = b′|rand]) − 1

2

= 1

2

(
1

2
+ AdvRBE

IND-sID

)
+ 1

2
· 1

2
− 1

2

= 1

2
· AdvRBE

IND-sID.

Theorem 5.2. Our RBE scheme is selective Revocable-
ID secure against active adversary under the GDDHE

assumption in the Random Oracle Model.

Suppose A is an attacker that wins the following game with
probability AdvRBE

sRID . Then we construct another attacker B that
solves the GDDHE problem.

Let q be the maximum number of identities of roles that the
adversary can query, R = {IDR1 , . . . , IDRm

} is the set of roles’
identities that the adversary will issue the queries. B will be
given g0, g

s
0, . . . , g

s2n

0 , h0, h
s
0, . . . , h

s2n

0 , where s is a random
number chosen by the challenger. We define the following
polynomials:

(i) f (x) = ∏m
i=1(x + H1(IDRi

));
(ii) g(x, i) = f (x)/(x + H1(IDRi

)), where i ∈ [1, m].
Init: The adversary A first outputs a set {ID1, . . . , IDk} of

identities that he wants to attack (with k ≤ q).

Setup: Adversary B will set the following values to generate
the system parameters:

g = g
f (s)

0 , h = h0, w = g
s·f (s)

0 ,

v = ê(g, h) = ê(g0, h0)
f (s),

y = gt = g
t ·f (s)

0 , where t
R← Z

∗
q .

Then B defines the public key as pk =
(w, v, y, gk, h, hs, . . . , hsq

), and creates the role parame-
ters

A = h
∏m

i=1(s+H1(IDRi
)) = h

f (s)

0 ,

B = hk
∏m

i=1(s+H1(IDRi
)) = h

k·f (s)

0 .

Phase 1: The adversary A adaptively issues queries
q1, . . . , qm,

(i) If A has not issued the query on IDRi
, B computes the

role secret and re-randomizes as

skRi
= g1/(s+H1(IDUi

))+kt = g
g(s,i)+kt ·f (s)

0 .

(ii) If A has issued the query on IDRi
, B then re-randomizes

the role secret as

skRi
= g1/(s+H1(IDUi

))+kt ′ = g
g(s,i)+kt ′·f (s)

0

and update the system public parameter y to

y = gt ′ = g
t ′·f (s)

0 .

Challenge: Once A decides that Phase 1 is over, it publishes
the identity IDRi

of the role to which it wishes to encrypt
the message and two messages M0, M1 on which it wishes
to be challenged. Then B simulates Encrypt algorithm by
constructing the ciphertext for the messageMb for a random
b ∈ {0, 1} as,

C1 = w−z = g
−z·s·f (s)

0 , C2 = y−z = g
−z·t ·f (s)

0 ,

C3 = Az = h
z·f (s)

0 , C4 = Mb · ê(g0, h0)
−z·f (s).

Phase 2: The adversary A adaptively issues more queries
qm+1, . . . , qn, which does the same as the steps in Phase 1.

Guess: Finally, the adversary A outputs a guess b′ ∈ {0, 1},
and wins the game if b = b′.

Then we have

Advgddhe = 1

2
(Pr[b = b′|real] + Pr[b = b′|rand]) − 1

2

= 1

2

(
1

2
+ AdvRBE

sRID

)
+ 1

2
· 1

2
− 1

2

= 1

2
· AdvRBE

sRID .

Chosen-Ciphertext Security: Our security definitions and
proofs are in the chosen-plaintext model. However, our scheme
can be extended to the chosen-ciphertext model by using a
standard transformation in [21]. Let E be a probabilistic public
key encryption scheme, and Epk(M; r) be the encryption of
M using the random bits r under the public key pk. A hybrid
scheme Ehy is defined in [21] as

Ehy

pk (M) = Epk(δ; H(δ, M))‖G(δ) ⊕ M,

where H and G are two hash functions H : MSPC×{0, 1}n →
{0, 1}n, G : MSPC → {0, 1}n and δ is randomly chosen from
MSPC. Fujisaki and Okamoto [21] show that if E is a one-
way encryption scheme, then Ehy is a chosen ciphertext secure
system (IND-CCA) in the random oracle model. Since semantic
security implies one-way encryption, this result also applies if
E is semantically secure (IND-sID-CPA).

Now we apply this generic conversion to our proposed CCA
secure RBE scheme and the chosen-ciphertext secure RBE
scheme is as follows:

Setup (λ): Same as in the original RBE scheme with two
additional hash functions H3 : GT ×{0, 1}n → Z

∗
p, H4 : GT →

{0, 1}n.

The Computer Journal, Vol. 54 No. 10, 2011

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/54/10/1675/634755 by guest on 09 April 2024



1684 L. Zhou et al.

CreateRole (mk, IDR): Same as in the original RBE scheme.
CreateUser (mk, IDU ): Same as in the original RBE scheme.
AddUser (pk, skRi

, N , IDUk
): Same as in the original RBE

scheme.
Encrypt (pk, pubR , M): Assume that the owner of the

message M ∈ {0, 1}n wants to encrypt M for the role Rx . Given
pk = (w, v, y, gk, h, hs, . . . , hsm

), the owner randomly picks
δ ← GT , sets z = H3(δ, M) and computes

C1 = w−z, C2 = y−z, C3 = Ax
z, C4 = δ · v−z.

The owner outputs the ciphertext

C = 〈C1, C2, C3, C4, H4(δ) ⊕ M〉.
Decrypt (pk, pubR , dkUk

, C): Let C = 〈C1, C2, C3, C4, C5〉
be a ciphertext. The user first computes δ as in the original
scheme, and then computes

M = C5 ⊕ H4(δ)

RevokeUser (pk, skR , N , IDU ): Same as in the original RBE
scheme.

5.2. Scheme efficiency

Our scheme has several distinct advantages compared with the
schemes that are earlier mentioned in the Related Work in
Section 2.

5.2.1. Size of ciphertext and decryption key
Our scheme has constant-size ciphertext and decryption key.
That is, the size of the ciphertext and decryption key is
independent of the number of roles and users in the system,
and it will not increase when new roles are created or more
users join the system. These are significant features when it
comes to development of large-scale systems. In comparison,
for the schemes given in [2, 7], the size of the ciphertext is
linearly proportional to the number of users, which make these
schemes inefficient in practical systems where there can be a
large number of users. Furthermore, in these schemes, when a
user has multiple roles, multiple copies of the keys or ciphertexts
are required for a single user in every role, while in our scheme,
no matter how many roles that a user have, the size of keys and
ciphertexts remain constant. The scheme in [11] has reduced
the size of the ciphertext to be linearly proportional to the depth
of the role hierarchy. However their scheme is not able to deal
with user revocation, and the ciphertext size is still not constant.

5.2.2. User management
The schemes mentioned in the Related Work in Section 2 all
assume the existence of a single trusted party who manages the
role memberships of the users. In this case, this single trusted
party needs to verify the qualification of the user whenever
a role wishes to add a new user. However, in the real world,

TABLE 1. Comparison of schemes.

Our scheme [2] [7] [11]

Ciphertext length O(1) O(n) O(n) O(m)

Encryption complexity O(1) O(1) O(n) O(n)

Decryption complexity O(n) O(1) O(n) O(n)

Computation round(s)
in decryption

1 m m 1

Users revocation Yes Yes Yes No
Users affected in a

revocation
0 n n

whether a user is entitled to a role or not is usually decided
by different entities who are responsible for validating the
users’ qualifications for different roles. In our scheme, the role
memberships of the users are no longer decided by a single
trusted party. Instead, they are controlled by role managers, who
could be different for each role. This is more natural and reflects
the situation in practice.A role manager can add or revoke a user
without having to gain admissions from other parties, including
the trusted party.

As mentioned earlier, in our scheme, a role manager RM can
exclude the user from accessing future encrypted data. In [11],
once the user obtains the decryption key, the manager cannot
revoke the user’s permission even if the user does not qualify
for the role, as the decryption relies on the hierarchical structure
of the roles. Unless the predecessor roles have changed, the
user can always decrypt the messages. In addition, when a
user has been excluded in our scheme, the other users of the
same role will not be affected. In the scheme described in [2],
as the key structure had been constructed based on the access
matrix, when a user is removed from the access matrix, the key
management structure needs to be updated as well. This in turn
will change the keys of all the other users. In the scheme [7],
as the ciphertext is associated with the hierarchical structure,
the system parameters need to be re-generated every time a
user’s permission is revoked, which results in all the other users
having to update their keys. In our scheme, when a user is
excluded, we can see that only the roles need to update their
public information.

5.2.3. Computations
Table 1 shows a comparison of our scheme with the other
schemes in [2, 7, 11]. The Table assumes that there are n users of
the same role and there are m roles between the role of the user
and the specified role for the encryption in the role hierarchical
structure.

The decryption algorithm in our scheme only requires one
round of computation, while in [2, 7], the user needs to compute
the secrets of all the roles (nodes) that are on the path from the
entitled role to the target one in the policy tree.
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As shown in Table 1, though the scheme in [2] is
computationally more efficient in terms of decryption, the
complexity of role creation, user grant and revocation operations
is linearly proportional to the number of authorized users.
This makes the scheme not scalable in practice. Moreover,
the number of computation rounds in decryption is linearly
proportional to the number of roles in between in the role
hierarchical structure. However our scheme, with its constant
size ciphertext and decryption key, is more efficient for
large scale systems, and the decryption only requires one
computation round. Comparing our scheme to the other two
schemes in [7, 11], our scheme has similar performance but has
constant size ciphertext and decryption key. Furthermore, our
scheme also supports dynamic user revocation while the other
two schemes do not. Effective dynamic user revocation is a
fundamental requirement in most practical systems.

6. DISCUSSION

In this section, we briefly consider some aspects that
can be optimized in the implementation of the proposed
RBE scheme.

6.1. Preventing malicious cloud provider

When an owner of the data wants to encrypt private data, he/she
needs to obtain the system public parameters w, v ∈ pk and
role public information AR ∈ pubR from the cloud in order to
run the Encrypt algorithm. This process can be susceptible to
a man-in-the-middle attack because a malicious cloud provider
can return the pub′

R of another role R′ instead of the real pubR

of the role R that the owner wants to encrypt the private data
with. If this is done, then the malicious cloud provider will be
able to reveal the content of data without the knowledge of the
owner.

In order to prevent this kind of attack, we propose the
following: first we make the GA return system parameters w, v

together with the decryption key to the user while executing the
CreateUser algorithm. Then we let GA sign the value AR under
the identity of role R using an appropriate ID-based signature
scheme (e.g. [22, 23]), and return the signature sig(AR, IDR)

along with AR . Upon receiving AR in running the Encrypt
algorithm, the owner should verify the signature corresponding
to the identity of the role, which he/she wants to encrypt the
private data to, before sending the ciphertext to the cloud. If the
verification fails, it means that the value AR is not the public
information of the specified role R and the owner should not
use it to encrypt the data.

6.2. Decrypting previously generated messages

After executing the RevokeUser algorithm in our RBE scheme,
the role public information pubR is updated to prevent the
excluded user from decrypting any future messages. However,

the Decrypt algorithm uses pubR , which means the messages
encrypted before executing RevokeUser algorithm cannot be
decrypted even by the existing users of the role because the
pubR used to decrypt the previously generated messages has
been replaced.

We can allow for this and enable decryption of previously
generated messages in our RBE scheme by simply creating the
indices for the ciphertext C and role public information pubR .
When RM runs the AddUser or RevokeUser algorithm to create
or update pubR , the algorithm will create a unique index for
pubR , and insert it in the cloud rather than replacing the previous
pubR . When an owner of the data is encrypting the private data,
the Encrypt algorithm can be modified to attach the index of the
latest version pubR to the ciphertext C.

When a user wants to decrypt a ciphertext C, he/she can
ask the cloud provider to return the ciphertext C and pubR

of the role. The cloud provider can easily choose and return
the corresponding pubR according to the index included in the
ciphertext C.

Moreover, the role public information’s update in
RevokeUser algorithm requires the changes in the public
parameter S of all the roles in the system, and it could be ineffi-
cient when there is a large number of roles. However, this work
can be delegated to a trust authority by GA without giving out
the master secret. Such an approach is being addressed as part
of the implementation of the scheme.

6.3. Optimizing decryption strategy

In our RBE scheme, let us assume that m is the number of
predecessor roles of a specific role, and assume that there are
n users in the same role with the user who runs the Decrypt
algorithm. The Decrypt algorithm requires the expansion of
two polynomials of m+ 1 and n+ 1 degrees, respectively. This
calculation could be time-consuming if m and n are very large
numbers.

We note that these two polynomials remain the same in the
decryption of two different messages if the identities of roles
and users are not changed. Therefore, in the implementation, the
user can keep these values as auxiliary information to help with
decrypting messages. These values only need to be re-calculated
when the predecessor roles of the specific role are changed or
the permission is revoked from another user in the same role.

In addition, the user needs the system public pk =
(w, v, gk, h, hs, . . . , hsq

) to calculate the expansion of the poly-
nomials, which is inefficient in practice because downloading
the pk every time could cost network traffic if q is a very large
number. We can then utilize the computing power of the cloud
to do the polynomial expansion because calculating them does
not require any secret values, and the cloud only needs to return
the result of the polynomial expansion to the user, which can
markedly simplify the work for the user as well.

More precisely, in the decryption algorithm, the user in role
R1 wants to decrypt the message that is encrypted to role R2, and
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R1 inherits all the permissions of R2. When the user retrieves
the ciphertext from the cloud, the cloud computes the value of
hpi,M(s) and hpk,N (s) for the user and returns them to the user.
This user can keep two auxiliary values (AuxR, AuxU), where

AuxR = hpi,M(s), AuxU = H2(Ki).

If a user wants to decrypt other messages that are encrypted to
role R2 in future, AuxR can be reused in Decrypt algorithm, and
user only needs to ask the cloud to re-calculate the value when
one or more predecessor roles of R2 are changed. Similarly, user
can reuse AuxU to decrypt any future messages, and AuxU only
needs to be re-calculated when one or more users are excluded
from R1. This ‘caching’ strategy can improve the decryption
performance substantially as the user only needs to compute
three pairings most of the time.

6.4. Implementation issues

In this subsection, we briefly discuss some issues related to the
implementation.

After the users have been given the decryption keys (when
they join the system), the users should take the responsibility to
store their secret keys safely. If a user’s secret key is revealed to
others, other parties will have the ability to decrypt any data on
behalf of the actual user. If a user discovers that his/her secret
key has been revealed to other users, he/she should report this
to all appropriate role managers immediately and request that
this user’s identity be excluded from the role.

Before a user is included into a role, the role manager will
need to authenticate the user so that the role manager can be
convinced that the user qualifies for the role. We have not
considered the authentication mechanisms in this paper; we
have assumed that such mechanisms exist and assume that the
role manager will assign the role only to the qualified users in
the system.

In our scheme, the cloud platform is only used for storage
purposes. The encryption and decryption computations do not
occur in the cloud; hence the original private data from the
owner and the secret key of a user will not be given to the cloud.
Even if the cloud may be involved in the decryption algorithm,
the computations in the cloud will not involve any secret values
from either the owners or the users.

In our RBE scheme, the system public pk is stored publicly
in the cloud, and can be retrieved by any user, who has access to
the cloud, to encrypt the data. However, in the case where a user
needs to identify the original source of the data, we can simply
employ an ID-based digital signature scheme (e.g. [22, 23]),
and have the owner sign the ciphertext. Then the ciphertext can
be stored along with its signature. When a user wants to decrypt
the ciphertext, he/she will need to verify the signature to check
if the ciphertext is correctly signed by the owner from whom
the user is expecting the data.

7. CONCLUDING REMARKS

In this paper, we have considered security requirements for
storage of information in the cloud and proposed a hybrid RBE
scheme that combines role-based access control with encryption
to address them. We have constructed a specific RBE scheme
using the BE scheme described in [1]. We have conducted
security analysis of our scheme and have given proofs to show
that our scheme is secure against adaptive attack and revocable-
ID attack. We have discussed the performance and efficiency of
our scheme and have compared it with other previously related
work. We have shown that our scheme has several superior
characteristics such as constant size ciphertext and decryption
key, efficient user revocation and user management, and the
ability to handle role hierarchies. We have also considered
some aspects that can be optimized to achieve efficient
implementation.We believe that the proposed scheme is suitable
for large scale systems, especially in the context of achieving
user-centric secure information storage in a cloud computing
environment. To provide further administrative convenience and
scalability, we are currently developing an administrative model
for our RBE scheme.
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