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This paper proposes and evaluates a framework for cooperative control of a multi-agent system.
The framework is evaluated on a target-tracking application where a distributed sensor network is
tasked to autonomously observe targets within the environment. The problem of cooperative control
is defined using two distinct levels of cooperation: implicit and explicit. Implicit cooperation is defined
as cooperation through only the exchange of environmental data to compile a common picture over
which to reason locally. For example, in this paper, decentralized data fusion algorithms are used to
build and update a common picture of the target positions and velocities. Explicit cooperation, which
is the main focus of this paper, negotiates the agents explicitly on a joint set of actions to perform.
In this paper, the problem of explicit cooperation is formulated as a distributed optimization, and
a framework to find the joint set of actions is proposed. The framework utilizes two algorithms,
the Max-Sum algorithm, to globally solve a factorizable utility function, and Probability Collectives
(PC), to solve the individual factors of the utility function. The paper presents experimental results
of the two algorithms using a simulated distributed sensor network when the tracking problem is
and is not factorizable. The results show that the proposed framework can efficiently and effectively
enable cooperation in a distributed sensor network. The Max-Sum algorithm provides a distributed
and flexible approach to solve a factorizable utility function, where the PC algorithm was shown to

efficiently solve the individual factors when more than four sensors are required to cooperate.
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1. INTRODUCTION

Cooperation in a multi-agent system (MAS) seeks to achieve
some desired collective effect through the execution of
individual actions. The requirement for cooperation cuts across
a range of civil and military planning and control applications.
Constructing a suitable set of individual decision strategies
can be difficult when there is any degree of complexity in
the required collective behaviour, e.g. coping with a dynamic,
uncertain and hostile environment. In most practical systems,
the decision strategy is determined centrally using a ‘trial and
error’ approach to define the necessary interactions [1]. This
‘bottom-up’ approach can be labourious and, though it can
result in useful systems, provides no guarantees of system
functionality or stability. Consequently, this work adopts a
‘top-down’ framework for achieving cooperation by posing the
problem as distributed optimization.

In the following sections, this paper first outlines the related
work in the area of cooperation applied to a distributed sensor

network. The example target-tracking problem is outlined in
Section 3 with a definition of the varying levels of cooperation
in Section 4. The two levels of cooperation detailed in this
paper, implicit and explicit, are then defined in Sections 5 and
6, respectively. The remainder of the paper is then divided into
two sections, which present the experimental results of the Max-
Sum and Probability Collectives (PC) algorithm to find the joint
action set for the overall factorizable utility function and then
for the individual factors. The conclusions and future work are
then discussed in the final two sections.

2. RELATED WORK

Cooperation applied to a distributed sensor network has
extensively been studied in two main problem settings:
cooperative control of sensor-to-target assignments and
cooperative control of mobile sensor trajectories. The focus
of the current work is on sensor-to-target assignment for a
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multi-target-tracking application, but the techniques described
are equally applicable to cooperative control of a variety of
assets engaged in an information gathering task.

Sensor-to-target assignment problems are characterized by a
number of sensors, each with a restricted view of the world due
to physical constraints. For example, if the world is populated
by several targets, each sensor may only be able to observe one
of the targets in a single time instant. The problem is to assign
sensors to targets in order to maximize some measure of system-
wide performance, such as the combined quality of target state
estimates. A number of studies promote a centralized solution
to the problem by formulating it using linear programming
with suitable constraints [2]. An example of this approach
was reported by Kastella [3], who used mutual information
as a global utility function for managing a group of radar
sensors engaged in airborne target tracking. The sensor-to-target
optimization problem has also been solved in a centralized
fashion using simulated annealing [3] to optimize hundreds
of Doppler radar sensors. However, centralized solutions in
general do not scale very well and are not robust to failures
because they rely on a single centralized processing node.

Distributed approaches have also been applied to the sensor-
to-target assignment problem. Isler et al. [4] refer to it
as a focus-of-attention problem and develop approximate
solutions that exploit sensor geometry and leverage results from
maximal set packing. Horling et al. [5] provide a summary of
MAS architectures and algorithms applied to sensor resource
allocation. Algorithms that exploit the decentralization of
gradient-based search are also outlined in [6]. This study also
employs decentralized Kalman filters to compose the global
utility function. These approaches are highly reliant on the shape
and nature of the objective function that cannot be guaranteed
because it is highly dependent on the sensor model used.

A particularly interesting study of cooperative sensing is
reported by Grocholsky et al. [7]. This work is notable
for distinguishing cooperative solutions based on explicit
negotiation and coordinated solutions based only on observed
information exchange. Although the focus of this work was
cooperative control of sensor trajectories, an example was
also presented for a sensor-to-target assignment scenario [8].
This example used Distributed Data Fusion algorithms and
optimized assignments with respect to information-theoretic
objective functions. It employs a distributed optimization
algorithm known as iterated better response. For continuous
optimization problems, this can be realized by solving a
nonlinear Jacobi equation using a distributed implementation of
sequential quadratic programming [9]. However, this requires
a smooth and differentiable objective function. In practice, it
is often required to introduce heuristics (such as asynchronous
updates, noise terms and randomized update orders) to prevent
oscillations and help escape unstable equilibrium or weak local
optimum solutions.

In summary, although there are many solutions to the
cooperative sensing problem, they often suffer from either

poor scaling (centralized), limiting assumptions (smooth and
continuous cost functions) or unprincipled update mechanisms
(e.g. arbitrary annealing schedules). The prime purpose of this
work is to investigate two powerful distributed optimization
approaches such as the Max-Sum algorithm and PC that do not
suffer from these limitations to enable cooperative decision-
making in a group of agents.

3. TARGET TRACKING APPLICATION

To provide a concrete investigation into cooperative behaviour
in a MAS, a representative problem is required. Owing to
the maturity of the domain, cooperation within a distributed
sensor network was used. Although, all the methods of
cooperation proposed and investigated within this work are
equally applicable to other applications that can be represented
as a MAS.

The agents of interest are sensors that are networked together
and engaged in tracking multiple targets in their environment.
Each sensor can take a resource-constrained action (orientate
towards a particular target in the environment), which results
in measuring the position of a single target. In this scenario,
two or more sensors are allowed to form a coalition and
measure the same target. The overall aim is to select a set
of joint actions (control parameters for each sensor), which
reduces the total amount of uncertainty associated with position
and velocity estimates of the targets across the entire sensor
network. An example of a target-tracking scenario is illustrated
in Fig. 1, which shows three static sensors and three moving
targets, but the framework developed in this paper is not
limited to static sensors. The next section introduces the
problem of cooperative control and defines the varying levels of
cooperation.

FIGURE 1. An example tracking scenario with three sensors (shown
with a limited range by the grey shaded areas) and three targets.
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4. LEVELS OF COOPERATION

Cooperative control in a MAS could be performed using
a multitude of different mechanisms. Figure 2 shows the
high-level processes required by an agent: sensing, inference,
control and actuation. Cooperation could occur at any of
these levels. For example, an agent could directly stream
the output of its sensor to another agent for inference. This
method of cooperation is typically undesirable because of the
communication bandwidth required. This work focuses on two
levels of cooperation, which have been defined as implicit and
explicit cooperation.

For implicit cooperation, the agents share/fuse information
about the environment to compile a common picture. The
agents then reason independently at the control level using
the same common picture of the environment. In this paper,
standard decentralized data fusion (DDF) algorithms (briefly
outlined in Section 5) are used to compile this common picture
of the positional and velocity estimates of the targets in the
environment. As stated later in this work, reasoning over a
common picture can result in the selection of cooperative
actions, but in some situations agents can select conflicting
plans, i.e. both agents try to achieve the same goal ignoring
another.

For explicit cooperation, which is the main focus of the
investigations, the common picture is used to synthesize a
global utility function, which can be used to select a joint set
of actions (control parameters for each sensor). Hence, each
agent will select the action that maximizes the entire system
performance not just their individual performance. Before a
framework to enable explicit cooperation can be discussed,
the next section briefly describes implicit cooperation and the
picture compilation algorithms used in this paper.

5. IMPLICIT COOPERATION

This section defines implicit cooperation including the
picture compilation algorithms used and the local decision
mechanisms. DDF is a robust, modular and scalable solution to
the problem of obtaining common and consistent state estimates

FIGURE 2. Levels of cooperation in a distributed sensor network.

(e.g. target types and positions) across a sensor network [10].
DDF imposes architectural constraints on the sensor network,
which eliminate the conventional notion of a fusion centre
as well as access to full knowledge of the global network
topology by each sensor node. DDF also defines probabilistic
information update algorithms that map a variety of sensor
network architectures. The algorithms are implemented at each
sensor node, to filter and fuse their local data and to assimilate
processed data from the other nodes.

In this paper, the sensor network comprises N stationary
sensors engaged in tracking M mobile targets in their
environment. The sensors implement DDF algorithms to
estimate the dynamic states (position, velocity) of the targets.
Interleaved within each node’s DDF process is a target
assignment algorithm that informs the sensor nodes about which
target to observe, given the constraint they can only observe one-
out-of-N targets at each sensing opportunity. However, two or
more sensors may simultaneously observe the same target. The
DDF algorithm steps are as follows:

Algorithm 1 DDF Algorithm

1. Predict the new target state (x,y,z,vx,vy,vz)
2. Select the control parameters for the sensor (pan angle θ )
3. Measure target state (x,y,z)
4. Communicate target measure to other sensors
5. Wait for communicated messages for X milliseconds
6. Update target states with the received measurement(s)

The DDF algorithms maintain information states about
the targets for computational and communication efficiency.
However, information also provides a direct normative basis on
which to select the control parameters. The key quantity is the
Fisher information matrix, Y(k|k), which is calculated directly
by the information form of the Kalman filter. The notation (k|l)
refers to an estimate at time k conditioned on all observations
up to and including time l.

First in Step 1, each sensor’s information filter predicts the
target state Y(k|k − 1) using a motion model for the specific
target under track. The experiments in this paper assume a linear
motion model with additive Gaussian process noise.

The second step is to select the control parameters θi to
reconfigure the sensor i. A common strategy is to select
the control parameters to maximize the predicted information
Ii,j (k) for sensor i observing target j at time k. Each sensor i

uses its observation model to predict the amount of information,
Ii,j (k), associated with observing each target j at time k. In this
paper, Equation (1) is used to evaluate the sum of the information
(or entropy) over all the targets for a single sensor i using control
parameter θi .

I =
M∑

j=1

(
1

2
log(2πe)9(|Yi,j (k|k − 1) + Iθi ,j (k)|)

)
. (1)
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When sensor i has been manipulated using the control
parameter θi and observed one or all of the targets (in Step 3),
the observed information Ii,j (k) is sent to all other sensors in the
sensor network. The target measurements can be communicated
through a globally broadcast message or propagated across the
network between sensors through a point-to-point protocol.
Each sensor then assimilates its own information about the
target with the information it receives about the target from
its communication channels (it is assumed that the information
can be associated without error). The assimilation equation has
the advantage of being additive in DDF:

Yi,j (k|k) = Yi,j (k|k − 1) +
N∑

i=1

Ii,j (k). (2)

The performance of the sensor network is evaluated by
measuring the uncertainty in the positional accuracy, as in the
following equation:

I =
M∑

j=1

(
1

2
log(2πe)9(|Yi,j (k|k)|)

)
. (3)

In the experiments outlined later in this paper, the DDF
messages are given sufficient time to fully propagate around the
network. Therefore, the DDF layer provides a common state
estimate for the targets at each node in the sensor network.
Notice that the exchange and assimilation of observation
information in DDF couples future sensor-to-target assignment
decisions, leading to coordinated decisions and was defined
earlier as a method of implicit cooperation.

Consequently, the implicit cooperation strategy (commonly
referred to in sensor management as a ‘selfish’or local strategy)
is simply to assign sensors to targets without having the sensors
explicitly negotiate to account for each others’ preferences.
However, negotiation is expected to improve performance at the
expense of additional communication between the sensors. The
following section defines the problem of explicit cooperation
and how it relates to the common picture built using DDF.

6. EXPLICIT COOPERATION

The previous section presented an approach to building and
maintaining a common distributed picture of the position
and velocities of targets within the environment. This section
addresses the problem of selecting the control parameters to
control or reconfigure the sensors to maximize the information
gathered. Typically, the selection of the control parameters is
performed locally such that each sensor maximizes the global
information, given the local measurements possible by this
sensor alone (Equation (1)). In this paper, the aim is to select
the control parameters for all sensors that maximize the sum of
information for all targets across the entire sensor network and
not just a single sensor.

The problem of cooperative control can be defined as a
distributed optimization problem where the utility function U is
defined as the sum of the predicted information over all targets:

U =
M∑

j=1

(
1

2
log(2πe)9(|Yi,j (k|k − 1) +

N∑
i=1

Iθi ,j (k)|)
)

,

(4)
where M is the number of targets, N is the number of sensors
in the network and Iθi ,j is the predicted information for target j

given that sensor i is controlled or configured using control
parameter θi . With regards to the distributed optimization
required for explicit cooperation, there are two aspects of the
utility function that are important.

Equation (4) states that given a set of control parameters
(θi), the agent predicts the information gain (Iθ ) for all
the measurements that could be taken. This utility function
maximizes the positional and velocity estimates of the targets,
but in reality it is likely to include further terms that incorporate
power requirements for sensing, time to execute the action or
probability of acquisition etc.

The addition of further terms are likely to increase the
complexity of the shape and nature of the utility function and
decrease the ability to use standard optimization techniques,
which, for example, rely on a convex structure. The existing
techniques (outlined in Section 2) that address explicit
cooperation as a distributed optimization are either centralized
or rely on a smooth and differentiable utility function. The form
of the utility function is highly dependent on the sensor model
used to generate the predictions of the information gain (I )
and is likely to include discontinuities and irregularities. The
framework proposed in this paper utilizes two algorithms to
optimize the utility function: Max-Sum for the overall utility
function in Section 7 and PC for the individual factors in
Section 8.

7. EXPLOITING FACTORIZATION OF THE
UTILITY FUNCTION

This section outlines a method of efficiently solving the
distributed optimization, to enable cooperation, when the utility
function (as defined in the previous section) is factorizable.
First, a method of factorizing the utility function is discussed
and a method of building a factor graph that utilizes information
from the DDF layer is proposed. This is followed by an
introduction to the Max-Sum algorithm that is used to find the set
of control parameters that maximize the utility function and the
experimental results of applying the technique to the problem
outlined in Fig. 1 are presented.

7.1. Factorizing the utility function

In regard to the distributed optimization required for explicit
cooperation, there are two aspects of the structure of the
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utility function that are important. First, the utility function U

for this application is a summation over the predicted global
information for all targets. In the general case, this is likely
to be true for agents where the result of performing an action
does not directly affect the performance of another agent.
Hence, the utility function can be divided into a smaller set
of factors that could be maximized individually. Factorizing
the utility function to a smaller set of functions reduces the
overall complexity of the optimization process and enables a
distributed approach to be efficiently utilized. Although, it is
worth remembering that this factorization step may result in an
approximation of the actual problem. This is highlighted in the
following example.

Figure 3 shows a sensor network with five sensors
(represented using squares) and three targets (shown with
circles). Each sensor has a limited range (which is shown using
the dotted lines in the figure) and therefore each sensor can only
observe a subset of the targets in the environment. In reality, the
observational range of a sensor is unlikely to be such a sharp
discontinuity in all directions and this process will be harder
in practice than this simple example. Therefore, the resultant
factorized utility function is likely to be an approximation of
the actual utility function but the degree of approximation error
introduced is dependent on the application.

In the example above, the utility function U(θ1, θ2, . . . θN)

can be defined in terms of a summation of the target factors
Uj over only the sensors that can observe that target (j ).
In the example, the utility function can be factorized in the
following way:

U(θ1, θ2, . . . , θN) = UA(θ1, θ2, θ3) + UB(θ2, θ4) + UC(θ5),

(5)
where UB is defined as

1

2
log(2πe)9(|Yi,j (k|k − 1) + Iθ2,B(k) + Iθ4,B(k)|) (6)

when the utility function is to maximize the predicted global
information. This factorization is represented in Fig. 4, where

FIGURE 3. Example sensor network with targets.

FIGURE 4. Example factor graph.

the sensor control parameters θi are represented as circles and
the factors of the utility function are shown as squares. This is
termed a factor graph where the interconnections between the
variables and the edges represent a dependency in the factor.

The definition of UB in Equation (6) highlights the limiting
factor in the decomposition of the utility function. This factor
of the utility function appears to be also composed of a
summation and hence the same rule as before should apply.
Unfortunately, the summation of the predicted track information
(Y(k|k−1)) and the predicted measurement information (I (k))
is surrounded by a determinant. This dictates that |Iθ2,B(k) +
Iθ4,B(k)| does not equal |Iθ2,B(k)| + |Iθ4,B(k)|, therefore, this
portion of the objective function cannot be broken down
into smaller segments and therefore, must be optimized as a
single factor.

Section 8 addresses how to tackle these factors of the
utility function (one that cannot be factorized further) using a
distributed optimization technique based on PC. The following
section addresses how a factor graph of the utility function
can be built and maintained for a tracking application and then
solved to find a globally optimal set of joint control parameters.

7.2. Building and solving the factorized utility function

This section is divided into two parts, first it addresses the
problem of how to build and maintain the factor graph that
represents the utility function and secondly, how the Max-Sum
algorithm can be used to derive the control parameters that
maximize the utility function through a simple message passing
scheme. The ability to use a simple message passing scheme
enables a decentralized approach to be taken.

7.2.1. Communicating observable tracks
This section outlines how the factor graph of the utility
function can be constructed for a tracking application using
the underlying DDF process. The constructor of the factor
graph occurs in two stages: variable nodes and factor nodes.
At initialization, each of the sensors creates a variable node that
represents the control parameter (θi) to be adjusted.

The second stage is to define a single factor (Uj ) for each
target (j ) observable in the entire sensor network. The sensor
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responsible for spawning the original target track is tasked
with managing the factor node for that target. At the end of
the initialization stage, the factor graph for the utility function
exists in the form of both the variable and factor nodes. During
the scenario, the edges of the factor graph must continually
be updated depending on the position of the targets in the
environment.

The key to factorizing the utility function is to identify
the subset of sensors capable of observing the individual
targets. The edges of the factor graph are built using
observation data derived from the underlying DDF layer. The
track measurements, exchanged during the distributed picture
compilation process, are augmented to include the list of targets
that a sensor is capable of observing. This set of observable
targets is used by each sensor to build a mapping between the
target and observable sensors. Each sensor must maintain this
mapping only for those targets (factors) that it is responsible for.
Every time a target moves within or out of range of a sensor,
the underlying factor graph is updated by adding or removing
the corresponding edge. The following section describes how
the factor graph can be used with a message passing scheme
to find the set of variables that result in the maximum
utility.

7.2.2. The Max-Sum algorithm
This paper proposes solving the resultant factor graph using
the Max-Sum algorithm as defined in [11]. The Max-Sum
algorithm, which is a variant of the sum-product algorithm
[24], exploits the factorizable form of the utility function to
efficiently find the maximum control parameters (for only
discrete variables) using a simple message passing scheme. The
Max-Sum algorithm and variants have been exploited in ‘loopy’
belief propagation in Bayesian networks [12]. In this section, the
Max-Sum is adapted to optimize a sensor to target assignment
in a distributed sensor network.

The Max-Sum algorithm computes the maximization of the
utility function by computing summaries at the variable and
factor nodes and sending appropriate messages along the edges
of the factor graph. These messages are split into two types:
messages (Qi→j ) from variable nodes to factor nodes and
messages (Rj→i), in the reverse direction, from factor nodes
to variable nodes. At initialization, and each time the factor
graph is altered, the values of Q and R are set to an initial small
random number, which is used to help break any symmetry
within the optimization.As previously stated, the variable nodes
represent the control parameter (θi) at each sensor (i) and the
function nodes represent the utility (Uj ) for each target (j ). The
messages represent summaries of the utility function available
at the variable and factor nodes and defined as follows:

From variable to function:

Qi→j (θi) = αij +
∑

j ′∈M(i)\j
Rj ′→i (θi), (7)

where αij is a scalar to normalize the value such that

∑
θi

Qi→j (θi) = 0. (8)

From function to variable:

Rj→i (θi) = maxθ ′
j \i

⎛
⎝Uj(θ

′
j ) +

∑
i′∈N(j)\i

Qi′→j (θi′)

⎞
⎠ , (9)

where R is an approximation of the utility function, Q is the
preferences for each control parameter represented by this vari-
able and Uj is the utility for target j as defined by Equation (6).
The function M(i) represents the set of factor nodes that this
variable is connected to in the graph and N(j) corresponds to
the set of variables nodes that this factor node is connected to.
Both M(i) and N(i) are derived from the process in the previ-
ous section using the set of observable targets from each sensor.
The parameter θ ′

j represents the set of all the control parame-
ters from all the sensors involved in observing target j in Uj .
Typically, these factors are solved using a brute-force approach
(the evaluation of the utility of all combinations for all the con-
trol parameters). The scalability of this approach will be highly
dependent on the number of variables (control parameters)
involved in the factor and a comparison between a new method
based on PC and a brute-force approach are presented in
Section 8.

The resultant control parameters are derived from the
marginal function that is calculated by summing the
approximation R. The results from [11] show that, with
sufficient iterations, the marginal function will approximate∑M

j=1 Uj , the utility function. The version of Max-Sum used in
this paper uses a normalization factor (α) to cope with loops in
the graph structure. Recent research by Stranders et al. [13] has
shown a new bounded approach that iteratively removes cyclic
references while maintaining an estimate of the deviation from
the initial (fully connected) graph. The resultant algorithm to
derive the control parameters for a single sensor in a distributed
sensor network is presented in Algorithm 2.

Algorithm 2 Max-Sum algorithm

1. Update the list of sensors that can observe the assigned
track(s)

2. if list of sensors has changed then
3. Rebuild the Factor Graph
4. Initialise function node for the assigned track(s)
5. end if
6. Evaluate the utility function (Uj ) for assigned tracks (j )
7. Exchange Function (R) and Variable Messages (Q) for Y

milliseconds
8. Run the DDF algorithm 1 using the assigned value of the

variable as the control parameter
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7.3. Experimental results

In this section, the performance of a local, centralized and
decentralized (Max-Sum algorithm) strategy is applied to the
target-tracking application. The sensors and targets are arranged
as in Fig. 1 where the sensors are stationary and the targets move
as indicated. Each of the sensors has a limited observation range,
which is shown by the grey areas bounded by the dashed lines.
This scenario was selected because it requires the factor graph
to be modified as the targets move and selection of the optimal
control parameters requires optimization of the utility function
rather than purely the local factors.

All the sensors were initialized with a weak prior as to
the position of all the targets and were given the targets
(factors) they are responsible for maintaining in the factor
graph. The performance of the application was evaluated using
the global information as defined in Equation (3) from one
sensor (the DDF network was given sufficient time to enable
all track measurements to be propagated around the network
before proceeding—hence the picture is common across all
sensors).

The initial results presented in Fig. 5 show the performance
of a local, centralized and decentralized assignment strategy
on the scenario. The local assignment strategy selects the
control parameter (pan angle) that maximizes the total
global information given the measurements taken only by
this sensor. The centralized assignment strategy chooses the
control parameters for all the sensors using a brute-force
approach to find the assignment that results in the maximum
global information for all combinations of assignment. The
decentralized strategy solves each of the factors using a brute-
force approach and then uses the Max-Sum algorithm to derive
the maximum for the utility function.

Figure 5 shows the total global information for all the targets
in the scenario. In the first 10 steps of the scenario, the total
global information increases as the estimate of a target’s position

FIGURE 5. Information over all the targets for each time step of
the simulation for a Local, Centralized and Decentralized assignment
strategy.

and velocity improves in accuracy with each new measurement.
The performance of all the assignment strategies is equivalent
at this stage in the scenario because the targets are initialized
sufficiently close to the sensors to make a local assignment
strategy globally optimal. As all the targets pass through the
centre of the environment, each sensor must handover the
tracked target to another sensor. Depending on the noise in
the individual scenario, the two handover points occur at
approximately time steps 18 and 34. Figure 5 shows that the
local strategy is significantly lower than both the centralized
and decentralized strategies at these handover points in the
scenario. Although the local assignment strategy is based on
a common picture, the control parameters selected require a
conflict resolution to prevent the selection of the same target
and therefore achieve a clean handover.

Given sufficient time (Y in Step 7 of Algorithm 2),
the decentralized approach achieves the same level of
performance as the centralized approach. The performance of
the decentralized approach is then evaluated as the time allowed
to exchange variable and factor messages is reduced. Figure 6
shows the performance compared with the centralized approach
as the negotiation time (period to exchange variable and factor
messages) is adjusted from 50 to 1000 ms (the experiment was
conducted 20 times for each negotiation time).

Figure 6 shows that with only 50 ms of negotiation time,
the Max-Sum algorithm does not have the time to exchange
a sufficient number of messages to find the maximum control
parameters. The high variance in this result is driven from the
initial random preferences used. With only a small number of
messages exchanged, these initial random preferences still have
a pronounced effect. Although, it is worth remembering that
with only a few messages, the decentralized approach achieved
1089 where the local assignment strategy achieved only 1049.
As the negotiation time is increased, the performance of the
decentralized strategy achieves that of the centralized approach.

FIGURE 6. Total Information (sum of the information during the
entire scenario) for a Decentralized assignment strategy as the
negotiation time (Y ) is adjusted.
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8. EFFICIENTLY SOLVING THE INDIVIDUAL
FACTORS

The previous section showed how a factorized utility function
could be solved globally. The solution relies on being able to
break the problem into small enough factors that can be solved
using brute force. In this section, a technique called PC is shown
to solve factors that cannot be solved efficiently using brute-
force techniques. The section begins with an introduction to PC
and then presents the experimental results of PC compared with
a brute-force approach on a target-tracking application.

8.1. Probability collectives

PC is a broad framework for analysing and controlling
distributed systems, with deep theoretical connections to game
theory, statistical physics and optimization [14]. PC algorithms
have been applied with success to a range of benchmark
optimization problems and have been demonstrated for a
distributed flight control application [15].

Typically an optimization problem is solved by manipulating
a set of optimization variables, in a deterministic or stochastic
fashion (e.g. simulated annealing), until some global cost
function of those variables is minimized. PC regards the
variables as independent agents playing an iterated game.
However, what is manipulated by PC is probability distributions
over those variables. The manipulation process seeks to induce a
distribution that is highly peaked about the value of the variables
that optimize the global objective function. This approach has
the following advantages:

(i) it permits a distributed solution in the sense that each
agent’s update at time t is independent of any other
agents’ update at that time [16].

(ii) it can be applied in the same general way regardless
of whether the variables are continuous, discrete, time-
extended, mixtures etc. [17].

(iii) it is robust in the sense that the cost function can be
irregular or noisy [18].

(iv) it provides sensitivity information about the problem
in the sense that a variable with a peaky distribution is
more important to the solution than a variable with a
broad distribution

A key result of PC is that the minimum value of the cost
function can be found by considering the maxent Lagrangian
equation for each agent (variable). This is written as

Li (qi) = gi(qi) − T × S(qi). (10)

Here, qi is agent i’s probability distribution over its actions
denoted by θi ; gi(qi) is the expected cost evaluated with respect
to the distributions of the agents other than i; T is temperature
(or beta which is defined as 1/T ); S(qi) is the entropy associated
with the probability distribution qi . PC algorithms are still being
actively researched and matured, but for the purpose of this
paper, Algorithm 3 is employed to optimize the Lagrangian.

Algorithm 3 PC optimization

1. beta ← betamin

2. repeat
3. iterations ← 0
4. repeat
5. Generate a Sample Block using qi from each agent
6. Evaluate the expected global cost gi(qi)

7. Update qi using gi(qi)

8. iterations = iterations + 1
9. until (iterations > Imax) OR (δqi < qmin for all i)

10. beta ← alpha × beta
11. until beta > betamax

The maxent Lagrangian is convex over the set of product
distributions over the agent’s action space. By operating on qi

in this convex space, we are able to use powerful search methods
for finding function extrema developed for continuous domain
problems, such as gradient descent. Note that while adding
entropy makes the descent easier, it also biases the solution
away from extreme solutions. That bias is gradually lowered by
annealing the temperature T .

The minimization of the Lagrangian is amenable to solution
using gradient descent or Newton updating since both the
gradient and the Hessian are obtained in a closed form. Using
Newton updating and forcing the constraint on total probability,
the following update rule is obtained:

qi(θi) −→ qi(θi) − αqi(θi)
E[G|θi] − E[G]

T

+ S(qi) + ln qi(θi), (11)

where θi is agent i’s action and G is the global cost function. The
parameter α plays the role of a step size since the expectations
result from the current probability distributions of all the agents.
Constraints can be included by augmenting the cost function
with Lagrange multipliers and the constraint functions.

Performing the update involves a separate conditional
expected utility for each agent. These are estimated either
directly if a closed form expression is available or with Monte
Carlo sampling if no simple closed form exists. Monte Carlo
sampling is the most general approach and it is used for the
experimental results described later in the paper.

In Monte Carlo sampling, the agents repeatedly and jointly
i.i.d. sample their probability distributions to generate joint
actions, and the associated costs/utilities are recorded. Since
accurate estimates usually require extensive sampling, the
global cost G occurring in each agent i’s update rule can be
replaced with a private cost gi chosen to ensure that the Monte
Carlo estimation of E(gi |xi) has both low bias, with respect
to estimating E(G|xi) and low variance. Now that the PC
algorithm has been defined, the global cost function G used
to enable cooperative behaviour must be identified.

The function (Uj ) to optimize within PC is dependent on
the factor graph produced in the previous section, but the
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optimization will require communication between all sensors
involved in that factor. Previous research has shown that
the PC algorithm can be implemented using a decentralized
approach [19].

8.2. Experimental results

This section presents experimental results of using PC to find the
set of joint control parameters for the target-tracking problem
outlined in Fig. 1 when the utility function is not factorizable
(without significant approximation errors). The essence of the
target-tracking scenario is the same, but it was altered from the
previous section to allow all the sensors to observe all targets all
the time. Hence, the utility function consists of a single factor.

This section reports performance results, metricated in terms
of the mean global information (defined in Equation (3)), for
three different sensor-to-target assignment strategies: random,

FIGURE 7. Information for a random, selfish (local) and PC strategy
during the target-tracking scenario.

selfish and PC. The performance result is the mean of 50 trials
where noise is applied to both the sensor measurement and the
motion model in the form of process noise. PC uses a block
containing 20 samples with a maximum of five iterations, a
minimum delta of 0.03 to determine convergence and beta
initialized at 0.1, increasing with a rate of 1.5 until beta
reaches 100.

Figure 7 shows the performance of the three different
assignment strategies. The results show that a cooperative
strategy results in similar performance to a local strategy at
the beginning and end of the scenario (as seen in the previous
experimental results). As before, a cooperative strategy results
in higher global information during the middle of the trial when
the sensors are required to perform a handover of the targets.
A centralized solution was conducted but is not presented in
Fig. 7 because the results are the same as the PC assignment.
These results indicate that explicit cooperative strategies are
important in resolving conflicts in sensor assignment.

Therefore, a PC approach can be used to solve a utility
function that cannot be factorized, but how does this compare
with a brute-force approach? Figure 8a shows the performance
of the strategies as the number of control parameters (sensors)
increases and Fig. 8b shows the number of samples required by
a brute-force and PC strategy with different numbers of sensors.

Figure 8a shows that the difference in performance of
an explicit and implicit cooperation strategy (PC and selfish
in this experiment) increases as the number of sensors
increases. Although, the exact improvement is likely to be
highly dependent on precisely the scenario selected. Figure 8b
compares the number of samples required by PC to those used
by a brute-force or optimal approach. The complexity of the
brute-force approach increases exponentially, as the number
of sensors is increased, while the complexity (samples used)
of the PC algorithm remains relatively constant. These results
show that when relatively few sensors (control parameters) are

FIGURE 8. (a) The sum of the information during the scenario for different strategies (random, selfish or local, PC, brute-force or optimal) with
varying numbers of sensors. (b) Comparison of the total number of samples required for a optimal (brute-force) and PC strategy with varying
numbers of sensors.
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involved in the factor, then a brute-force approach is suitable
but when factors involve more sensors (approximately four
and above) then a more scalable approach, such as PC, is
essential.

9. CONCLUSIONS

This paper has proposed a framework for cooperative control
and the performance evaluated on a simulated target-tracking
application. The problem of enabling cooperation in a
distributed sensor network was then defined in terms of a
distributed optimization and the limitations with the existing
approaches discussed. Cooperation between sensors is achieved
by solving a distributed optimization problem based on the
expected information gain of the predicted target measurements.
As a result of these simulations and analysis, the following main
conclusions were drawn:

(i) A cooperative assignment strategy was shown to
outperform a local (implicit cooperation) strategy for
a target-tracking application.

(ii) The Max-Sum algorithm was shown to efficiently
and effectively enable cooperation across a distributed
sensor network using a simple message passing scheme
when the utility function can be factorized without
introducing significant approximation errors.

(iii) A PC approach taken was shown to enable cooperation
across a distributed sensor network when the utility
function cannot be factorized and was shown to be
computationally tractable (compared with a brute-force
approach) when more than four sensors are involved in
a single factor.

10. FUTURE WORK

A natural extension from this current research would be to
develop and refine the two existing algorithms in isolation.
For example, the Max-Sum algorithm is currently limited to
discrete actions and the algorithm has a very basic termination
condition (number of iterations performed). Further research
could be targeted at extending the Max-Sum algorithm into
continuously valued action spaces perhaps building on work
recently conducted by Stranders et al. [20].

The second avenue for future work leaves behind these
particular algorithms and poses a higher level question in regard
to the relationship between implicit and explicit cooperation. In
practice, given that implicit cooperation is likely to require less
communication than explicit cooperation and communication is
finite and a valuable resource, would performance be improved
by dedicating more resources to implicit rather than explicit
cooperation. Furthermore, what is the optimal balance between
implicit and explicit cooperation for a given scenario or
application?

The third avenue that stems from this research is the possible
impact on the timeliness of the decision-making process when
cooperation is included. For example, the Max-Sum algorithm
may require a preset number of iterations to be completed before
decision-making can be performed. Hence, the decision-making
process is now limited to the speed of communication between
two or more agents. Another approach would be to run the
decision-making process at a different rate to the cooperation
mechanism (be that Max-Sum or PC). With this approach, the
decision strategy could be outdated (if the environment evolved
at a faster rate than the communication) and the agent would not
respond in a timely manner.A possible approach to this problem
would be to estimate the confidence as well as the predicted gain
for the cooperation mechanism.

The fourth avenue, and most general in nature, arises from the
observation that although a cooperation mechanism can yield
significant improvements, we fundamentally have a limited
understanding of when a cooperation mechanism is required.
For example, the only time when we know cooperation is
beneficial is when the mechanism has finished computing the
joint set of actions and the utility function is evaluated. Future
work in this area should focus on predicting when cooperation
mechanisms may improve performance and not just assume
that they will run all the time. The most promising approaches
to tackle this are through the application of machine-learning
algorithms to predict when to run a cooperation mechanism or
by estimating a confidence-bound which is associated with the
cooperation mechanism.
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