Advance Access publication on 27 July 2011

© 2011. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
doi:10.1093/comjnl/bxr069

SST: A Scalable Parallel Framework for
Architecture-Level Performance, Power,
Area and Thermal Simulation

MING-YU HsiEH!*, ROLF RIESENZ, KEVIN THOMPSON>, WILLIAM SONG*
AND ARUN RODRIGUES'

LSandia National Laboratories, Albuquerque, NM, USA
21BM Research, Dublin, Ireland
3Department of EE, New Mexico State University, Las Cruces, NM, USA
4Department of ECE, Georgia Institute of Technology, Atlanta, GA, USA
*Corresponding author: myhsieh@sandia.gov

In this paper, we describe the integrated power, area and thermal modeling framework in the
structural simulation toolkit (SST) for large-scale high performance computer simulation. It
integrates various power and thermal modeling tools and computes run-time energy dissipation for
core, network on chip, memory controller and shared cache. It also provides functionality to update
the leakage power as temperature changes. We illustrate the utilization of the framework by applying
it to explore interconnect options in manycore systems with consideration of temperature variation
and leakage feedback. We compare power, energy-delay-area product (EDAP) and energy-delay
product (EDP) of four manycore configurations-1 core, 2 cores, 4 cores and 8 cores per cluster. Results
from simulation with or without consideration of temperature variation both show that the 4-core per
cluster configuration has the best EDAP and EDP. Even so, considering that temperature variation
increases total power dissipation, we demonstrate the importance of considering temperature
variation in the design flow. With this power, area and thermal modeling capability, the SST can
be used for hardware/software co-design of future exascale systems.

Keywords: NoC; simulation framework; performance modeling; power consumption

Received 12 December 2010; revised 30 June 2011
Handling editor: Stephen Jarvis

INTRODUCTION

With the cost of a megawatt of power for 1 year ranging
from $590K to $1.85 Million [1], the power bill for future
many-megawatt machines could outweigh their purchase cost.
Additionally, increased power consumption often requires
expensive new facilities to deliver and manage the vast
amount of electricity, as well as facilities to cool the energy-
dissipating computers. This is demonstrated by recent data
centers constructed by companies like Google and Apple
with costs in the hundreds of millions of dollars [2]. The
problem is one of worldwide importance as 2010 server power
consumption is estimated at $44.5 Billion [3].

Traditional architectural simulators for high performance
computing (HPC) narrowly focus on the performance and power
dissipation of part of the system. This makes it difficult for

system designers to make educated decisions about how to
manage the energy for the entire system.

The structural simulation toolkit (SST) [4] aims to address
this problem. The SST provides a framework for simulating
large-scale HPC systems. This simulator allows parallel
simulation of large machines at scale to understand both
performance and energy consumption. The SST couples
parameterizable models for processors, memory and network
subsystems. These models all have access to a uniform interface
to power and thermal modeling libraries that estimate power
dissipation and update temperature.

This paper introduces the technology interface in the SST, the
core of integrated energy, power and temperature simulation. It
receives access counts from the SST components and calculates
the power dissipation and temperature change. The power and

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z 1dy 0} U 1s9NB Aq 960Z1E/181/2/SS/AI0IE/|UlWoo /W0 dNod1WSPED.//:Sd)lY WO PaPEOjUMOQ

182 M. HSIEH et al.

thermal libraries are architecture modeling tools that provide
power and temperature calculation methods to the technology
interface. In the current implementation, the power libraries
include McPAT [5], IntSim [6, 7] and ORION [8], and HotSpot
[9] is used as a thermal library. The technology interface also
provides the functionality to dynamically update the leakage
power as temperature changes.

Temperature variation has become a major challenge to future
HPC architecture design. It has an exponential relationship with
leakage, which can cause further exacerbation of power [10].
This problem is becoming more and more critical with the
continuous scaling of technology [11]. There have been a few
energy management approaches proposed for on-chip networks
(NoC), including routing-based energy optimization [12—15]
and clustering [5]. In this study, we illustrate the utilization of the
modeling framework to study the performance and efficiency
tradeoffs in clustering of manycore systems with consideration
of temperature variation. The communication pattern generator
and the router model components in the SST are used to model
the manycore systems and provide component usage counts to
the technology interface. The estimated power and performance
of the NoC are gathered by the introspection interface for further
evaluation.

The remainder of this paper is organized as follows. In
Section 2, we discuss prior related works. In Section 3, we
describe the structure of the SST and its key interfaces for
power/area/thermal modeling and statistics gathering. Section 4
gives more details on the technology models currently supported
by the framework, and Section 5 shows preliminary results
of validating SST. In Section 6, we use the framework to
explore the interconnect options of future manycore processors
by varying the degree of clustering, and examine the impact
of temperature variation on this. The paper is concluded in
Section 7.

2. RELATED WORK

There has been much research in the area of performance and
power modeling of HPC architectures. Traditional single-core
simulators were designed to model out-of-order superscalar
processor pipelines. For instance, SimpleScalar [16] was
widely used to evaluate uniprocessor systems. It is extended
with several power models, such as Wattch [17] and Sim-
Panalyzer [18], for examining performance/power tradeoffs.
However, it runs only user-mode single-threaded workloads,
let alone the simulation of multiple processor cores. Full-
system simulators are frequently used to evaluate manycore
architectures. For example, the M5 simulator [19] supports the
execution of the operating system as well as the application
code, and is capable of modeling I/O subsystems and multiple
networked systems. It has been integrated with Wattch to
study the processor lifetime of chip multiprocessors [20].
However, it only supports a shared-bus model to simulate

interconnection of manycore processors and the integration with
the power model is not available in the standard distribution.
GEMS model detailed aspects of cores, cache hierarchy, cache
coherence and memory controllers [21] and has an improved
network model, GARNET [22]. However, it can only model
power dissipation of the network components, not the entire
system. The Polaris toolchain provides rapid estimations of
power/area/delay of large NoC design space and its power
model has been extended to consider temperature variation
and leakage feedback [11]. However, it has a lack of detailed
power models of the computation and storage components
on the chip. The integrated power, area and timing modeling
framework, McPAT, has been used together with a manycore
performance simulator to explore the interconnect options of
future manycore processors, but the simulator is not publicly
available. Recently, Lis er al. [23] presented HORNET, a
parallel, highly configurable, cycle-level manycore simulator
with support for power and thermal modeling. However, it
does not have a modular design to allow integration of other
architectural models not shipped with the package. Moreover,
itis integrated with ORION, which only provides power models
of network components.

The SST simulation framework builds on a long tradition of
architectural and network simulators such as M5 [19], NS-3
[24] and A-SIM [25]. In addition, it builds upon community
experiences in modeling power dissipation [5, 17]. The SST
often seeks to directly include existing simulators to build a
‘best of breed” framework. The novel approach of the SST is
to include these individual component models in a parallel,
scalable and open-source framework.

3. STRUCTURAL SIMULATION TOOLKIT

The SST is based on a fully modular design and provides
a parallel simulation environment using message passing
interface (MPI). This enables the SST to extensively explore
parameters of an individual system without the need to
intrusively change the simulator. It also provides a high level of
performance and the capability to look at large systems.

The SST consists of a simulator core, which provides simu-
lation services, and pluggable components (Section 3.4), which
constitute individual simulation models. The simulator core pro-
vides simulation configuration and start up (Section 3.1), the
parallel model of computation (Section 3.2.1), checkpointing
(Section 3.3) and a common interface to the technology models
(Section 3.5).

3.1. Configuration and job flow

The SST is configured with an XML file which lists the
components instantiated in the simulation, any component
parameters that must be passed in, the links between
the components and the latency on the component links.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z 1dy 0} U 1s9NB Aq 960Z1E/181/2/SS/AI0IE/|UlWoo /W0 dNod1WSPED.//:Sd)lY WO PaPEOjUMOQ

THE SST FRAMEWORK 183

This configuration is processed into a graph, with the component
instances as nodes and the links between them as edges, which
is then fed to the Zoltan [26] library to find a partition which
balances the number of components per host rank and which
will maximize the simulated latency between components.
Partitioning along high latency /inks means that rank will
have to exchange messages less frequently in our conservative
optimization.

3.2. Model of computation

The simulation is carried out in a component-based discrete
event model of computation. Each component can assign a clock
to itself, to be triggered at regular intervals. Components can
also send events to other components along links, which have
a minimum latency. When an event arrives at a component, it
triggers an event handler function, in which the component can
process and respond to the event. Alternately, the component can
poll the link to receive and process any outstanding messages.

3.2.1. Parallel implementation

Parallelism is transparent to the component writer. Components
interact through sending events to each other through link
objects. All events inherit from a common base class, which also
includes a time (Section 3.2.2) tag to indicate when it should be
delivered. All events must be serializable (using the Boost [27]
Serialization Library), which transforms the event structure into
a compact binary representation.

Whenever an event is sent, the SST core determines if the
destination of the event is local (i.e. on the same MPI rank) or
remote. Remote events are queued up for future delivery the
next time the given ranks are due to synchronize. This occurs
only as often as needed, based upon the latency partitioning
given by the Zoltan library; that is, if the components on two
ranks are connected by a link with a minimum latency of
1000 ns, those ranks only need to synchronize every 1000 ns
of simulated time.

The Boost MPI library is then used to perform the actual
communication. When two ranks synchronize, they serialize
and send the pending events to each other. When the events are
received, they are integrated with the local event queues, where
they wait for delivery to their target components.

3.2.2. Time

Time in the simulator is represented using a single 64-bit
unsigned integer to count the number of atomic timesteps that
have passed since the beginning of simulation. The actual
atomic timebase (time increment represented by each atomic
timestep) is user programmable and has a default of 1 fs (107!?)
s, which provides for over 200 days of simulated time. All
times used by components and links are specified using strings
(for example, ‘1.5ns’ or ‘1.73 GHz’), and are resolved at build
time into a TimeConverter object. The TimeConverter object
essentially represents a component’s view of time and provides

functions for converting from the component’s timebase to the
atomic timebase. The TimeConverter simply stores the number
of atomic timesteps (referred to as its factor) in the desired
time interval. In the case of a specified clock frequency, the
factor represents the number of atomic timesteps in the clock
period. For example, a component with a 1 GHz clock would
get a TimeConverter object with a factor of 1000 (assuming the
default atomic timebase of 1 fs), which would also be equal to
the factor for 1 ns.

The creation of a TimeConverter has two options. The first
is to register a clock handler, in which case the handler is
called once per clock period. The second is to simply register
a timebase with the simulator, which can be used with the
event driven interface. In either case the returned TimeConverter
object is registered with the component’s links, where it is
used to convert latencies from the component’s view of time
to the atomic timebase. The use of TimeConverters insulates
the components from both the need to know the value of the
atomic timestep, as well as from knowing their own operating
frequency. This allows a component to be written with a generic
timebase, which can be set at run-time.

3.3. Checkpointing

Because simulations may run for an extended period of time
over a number of nodes, the simulator needs the ability to
checkpoint and recover its state. To accomplish this, the
simulator core uses the Boost Serialization Library to convert
the core’s state and the state of each component into a binary
format. At a user defined interval, this binary state is dumped to
a file that can be used to restart the simulation.

3.4. Components

The most important class in the SST is Component, the base
class from which all simulation components (e.g. core, router,
memory, etc.) inherit. Components are connected by links
to communicate with each other and are partitioned among
all ranks to ensure balanced workload and scalability of the
simulator.

Components can query the SST’s technology interface
for power and temperature estimates, and in some cases,
chip area and timing information. The components can set
technology parameters (such as clock frequency and supply
voltage), choose the estimation library it wishes to use, and set
architecture parameters like cache size or the number of register
file ports. Once the estimates are computed, the SST provides
components a uniform interface (the introspection interface) for
reporting power consumption and gathering statistics. The SST
includes a variety of processor, network and memory models
(components) at different scales and levels of accuracy. In this
study, we use two components, the communication pattern
generator and the router model.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

184 M. HSIEH et al.

3.4.1. Communication pattern generator and the Router
model
The communication pattern generator is implemented as a
state machine. It simulates compute time by suspending
operations until a future event indicates the passing time and
the need to transition to another state in the state machine.
The communication pattern generators use dimension-ordered
routing in the NoC. The only communication pattern
implemented at the moment is ghost, which simulates ghost
cell exchanges on a five-point stencil operator where each rank
communicates only with its east, west, south and north neighbor.
Implementations of communication patterns for FFT [28], the
NAS parallel benchmark integer sort [29] and master/slave [30]
are under way.

The router model component allows for arbitrary topologies.
Messages are wormhole routed and use source-based routing.
If a path from an input port to an output port is available, the
message is forwarded without further delays. The router model
also models congestion in the network when the input or the
output port is busy. The router model maintains a small number
of counters to enable statistics on the number of messages
coming in and going out of each port, how often congestion
occurs and how much delay is caused.

3.5. Technology interface

The technology interface is the core of power and thermal
simulation. It integrates various power and thermal libraries
(e.g. McPAT, IntSim, ORION and HotSpot), computes run-time
energy dissipation and stores the data traces. Its implementation
is independent of the front-end simulator such that the statistical
timing model is replaceable.

3.5.1. The design

The technology interface is initialized at two levels: the chip
level and the component level. The chip-level initialization
creates silicon layer floor plans and links the simulation chip
with a thermal library. The floor plan may include multiple
blocks, and the blocks are assumed to be running with the same
clock frequency and voltages, and more importantly within the
uniform temperature plane. Therefore, the size of the floor
plan determines the modeling granularity of the simulation
and can vary from a single block to an SST component
(e.g. core or main memory). After floor plans are set up,
thermal tiles are created for silicon, interface, spreader and
heatsink layers. Thermal tiles are the same size as underlying
floor plans but do not need to be on the same layer—only
silicon-layer thermal tiles are duplicated in terms of xyz
coordination.

Chip-level physical parameters include thermal design
parameters, floor plan parameters (e.g. sizing and coordinate
information) and technology parameters for each floor plan.
Thermal design parameters include chip designs (e.g. chip
thickness, thermal RC constants) and the initial temperatures

for each thermal tile. Technology parameters include device-
level parameters as well as higher-level parameters such as
temperature, clock frequency and supply voltage.

The component-level setup reads architectural parameters
of each component from the system description language
(SDL) file and runs the power model to compute the basic
information such as dynamic energy per access, leakage
energy and area. Component parameters include core/uncore-
level microarchitectural parameters such as number of branch
predictors, cache hierarchy, pipeline design, etc.

3.5.2. Run-time power and temperature estimation
with leakage feedback control

The technology interface specifies the power into five
categories: dynamic, short circuit (or switching), gate leakage,
subthreshold leakage and peak power. The technology interface
gets usage counts of each component at a user-specified period
or condition. It then uses the well-known Wattch method [17] to
calculate the dynamic energy by multiplying these count values
with dynamic energy per access statically calculated by power
models. The leakage power consumption is calculated by power
models at an initial temperature. The estimated power is then
stored in a central power database, which can be accessed for
later analysis.

After power dissipation for each component is calculated, the
power values for the underlying floor plans are correspondingly
updated. Once the power calculation is done for all components
in the simulated chip, the technology interface triggers
temperature calculation using the thermal library. The thermal
library takes instantaneous power values for each floor plan.
The new temperature of each floor plan updated by the thermal
library is fed back to the blocks grouped within the floor
plan. This procedure is called leakage feedback, and the new
leakage power is calculated based on the new temperature.
These power changes will again affect the temperature profile
[31]. After several iterations, the difference between each loop
will be small enough and the power and thermal profiles
converge [11].

3.6. Introspection interface

The introspection interface is a unified way to report and record
simulation data for analysis and display. It provides a standard
method of retrieving statistics so that external programs can
access the simulator statistics without requiring knowledge
of simulator structures. The SST Introspector class inherits
from the component class and can be created to monitor
information from all, or a subset of other real components. Like
components, introspectors are created and parameterized by the
SDL specifying which components they wish to monitor and
how frequent to query these components to retrieve components
state (e.g. power). Unlike components, introspectors are not
partitioned and have a copy on every rank. Introspectors can
exchange components data with introspectors on other ranks

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

THE SST FRAMEWORK 185

Microarchitecture
parameter

[

Step 1 Traffic Pattern }

Router Model

Generation

I Usage Counts

/ Technology
Interface

Step 4 Thermal Model

Temperature
profile

t

Step 3 Power Model

Leakage-feedback

il

Step 2 High-level

\\ profiles coverage

Step when power and temperature

)

i

Power

i

profile Area

Performance
(Delay)

Step 5 Output Data and Analysis

FIGURE 1. Flow chart of NoC power modeling with consideration of leakage feedback.

via MPI collective calls. Via these collective communications,
introspectors can gather information, such as the highest core
temperature in the system and the total power dissipation of the
system, etc.

Figure 1 presents the flow chart of NoC power modeling
with consideration of the leakage feedback using the modeling
framework. The traffic pattern generator component generates
a traffic trace, which is then fed into the router model
component to capture the usage count of the router and
calculate the network delay. The usage count information is
then fed into a power library (McPAT or ORION in this
study) to calculate the power consumption with consideration
of leakage feedback and temperature variations. At this step,
within each iteration leakage power is calculated with the
simulated temperature until the power and thermal profile have
converged. The power library also calculates the area for the
NoC. Finally, the introspection interface gathers simulation
results including NoC power dissipation, temperature, delay
and area from all the router model components. It then uses
several metrics to explore interconnect options in manycore
Pprocessors.

4. TECHNOLOGY MODELS

The following power, area and thermal models are currently
integrated with the SST technology interface. They support
power/area/thermal analysis of five component types (core,
clock, shared cache, memory controller and NoC/router).

4.1. HotSpot

HotSpot is a thermal simulation tool used for estimating
chip-wide temperature based on an architectural floor plan
and simulated power measurements [9]. The SST technology
interface includes the transient thermal simulation kernel of
HotSpot, and provides HotSpot with dynamic values for power
density and the present temperature of each block. In this
paper, we use power densities obtained from McPAT. HotSpot
then solves a series of differential equations and returns the
new temperature of each block. However, the temperature
analysis does not support the case in which power dissipation
is dependent on the temperature, which is the situation with
leakage [31]. To solve this problem, we extended the thermal
analysis such that the power consumption at a timestep is
calculated as the sum of two components: (1) the dynamic
power return from the power modeling library and (2) the
leakage power calculated at the simulated temperature of the
previous step.

4.2. McPAT

MCcPAT is an integrated power, area and timing modeling frame-
work for multithreaded, multicore and manycore processors.
It includes power, area and timing models for the processor
cores, NoC, shared caches, memory controllers, and clocking.
Its power models account for dynamic, subthreshold leakage,
gate leakage and short-circuit power. McPAT was validated
against Niagara, Niagara2, Alpha 21364 and the Xeon Tulsa

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

186 M. HSIEH et al.

processors. The difference between its models and the reported
data was between 10% and 20%.

The original McPAT work [5] assumes uniform temperature
within the chip and no leakage feedback. We extended this
tool to calculate power consumption with consideration of
leakage feedback and temperature variation. Leakage feedback
is processed in three steps; updating temperature-dependent
technology parameters, reconfiguring McPAT and retrieving the
new leakage power.

4.3. IntSim

IntSim is an interconnect-centric CAD tool that optimizes die
size and pitches of different wiring levels for circuit blocks
or logic cores. It includes a methodology for co-optimization
of signal, power and clock interconnects and stochastic wiring
distribution [6, 7]. The primary IntSim algorithm is an iterative
loop that repeatedly calculates the dynamic and leakage power
until the presumed power and the calculated power values
converge. This model is useful to evaluate the power of logical
blocks such as functional units in the microarchitecture.

4.4. ORION

ORION is a power and area library for different router
configurations, which projects potential circuit structures for
each configuration at each technology node [8]. ORION was
validated to within 7% and 11% error on the Intel 80-core
Teraflops and SCC chips, respectively. It takes the SST router
model resource utilization information for each router and link
as input activity and returns network dynamic and leakage
power.

5. VALIDATION

The validation of the SST is composed of three levels: the
component level, the component—technology interface level and
the component—component level.

The SST often seeks to include existing architectural
and network simulators, and provides them a parallel and
scalable framework. The simulator developers are responsible
for verifying their models (components). The SST currently
includes cycle-based detailed processor models (e.g. MY),
a detailed flit-based router model based on the RedStorm
SeaStar router [32] and an abstract message-based router
model (Section 3.4.1), a highly detailed memory model
(DRAMSim?2 [33]) and well-received power/thermal models
(MCcPAT, ORION, HotSpot). Most of these models are validated
against real machines.

At the component—technology interface, we verify that com-
ponents interfacing to power/thermal models are implemented
accurately. To validate this, we run two simulations. In one sim-
ulation, power and temperature of an NoC are estimated by

90 T
—— SST
® McPAT/HotSpot

~ 851]
)
g
=
s 801
3
o
=]
o
= 75t

70 - - - -

0 100 200 300 400
Time (ms)

FIGURE 2. Comparison of temperature from the two simulation
methodologies.

x1076

5.6

5.55f | ——SST -
= = = 48—core chip|

o
e
> O

- 5.351

bl
w

Latency (seconds)

5.25}
5.2}
5.15}

0 1 2 3 4 5 6 7 8 9
Network hops

FIGURE 3. Validation against with the Intel 48-core test chip.

MCcPAT and HotSpot integrated in the SST. In the other simula-
tion, usage information of the NoC is fed into the stand-alone
MCcPAT to compute power. The power trace is then fed into
the stand-alone HotSpot to compute temperature. Both simu-
lations are run for 500 ms and power/temperature statistics are
gathered every 50 ms. Figure 2 shows that the results from our
framework and the direct McPAT/HotSpot output are identi-
cal. We do not validate the interface by comparing the results
from our framework with power measurements of real machines
because McPAT is know to have >50% error in dynamic power
modeling.

At the component—component level, we verify the links
between components, the events sending and receiving, and
the timing are handled accurately by the SST core. We use the
communication pattern generator and the router model to model
the Intel 48-core test chip [34] and the Cray Red Storm system
installed at Sandia. At the high level, we use the MPI ping-pong
latency benchmark to validate the two models. The ping-pong
latency is a common network benchmark that helps to insure
that basic latencies are correct. As Fig. 3 illustrates, the MPI
ping-pong latency matches very well between the simulated and

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

THE SST FRAMEWORK 187

x1073

- = =SST
Red Storm

o
%

’_é?
806F]
e / ____________ -
204
S
<
—

0.2

0 " " " " "

16 32 64 128 256 512 1024

Message size (bytes)

FIGURE 4. Validation against with the Red Storm system.

the 48-core test chip. It is worth noting that the figure shows
simple hop delay, and since the ping-pong latency is a very
simple benchmark, there is no contention in the network nor
randomness in the model, and the result is very deterministic.

Figure 4 shows the ping-pong latency between the simulated
and the Red Storm system. The simulation result matches the
initial latency of around 4 s, and the end latency at 1kB
of ~6 ws. However, it does not show the characteristic bend at
32 bytes. The bend may come from a change in processing the
message when it is <32 bytes long, and after it reaches that size.
Considering the complexity of the system and our use of generic,
coarse-grained components, we consider this validation result
to be good. We expect that enhancing the models can mimic the
messaging processing behavior.

6. PERFORMANCE ANALYSIS OF VARIOUS
INTERCONNECT OPTIONS OF MANYCORE
PROCESSORS

We illustrate the utilization of the integrated modeling
framework by applying it to evaluate different interconnect
options of manycore processors with consideration of the
leakage feedback and within-chip temperature variation. We
study the power, the energy-delay product (EDP) and the
energy-delay-area product (EDAP) for four manycore system
configurations. We also examine how temperature variation
impacts these metric values.

6.1. Experimental setup

We consider a manycore architecture used in McPAT’s work for
our baseline system and analysis. The manycore architecture
consists of multiple clusters connected by a 2D-mesh on-chip
network. A cluster has one or more cores and there is one
communication pattern generator on each core. Routers in the
network have local ports that connect to a cluster of cores

as well as ports that connect to the neighboring routers. The
cores attached to the same router in the NoC are assumed to
have a shared L2 cache. Messages between them carry a flag
indicating that they should be handled at a lower latency and
higher bandwidth by the router model.

We adopt parameters from MCcPAT and our experiments
assume 64-core NoC designs and 22 nm processing technology.
Our study considers four configurations: 1 core, 2 cores, 4 cores
and 8 cores per cluster. Simulations are run with a time step of
150 000 ns and the NoC power is estimated every 100 timesteps.
The simulation overhead highly depends on the components
used. In this study, we use the high-level communication pattern
generator and the router model, which incur little processing
and memory overhead. The SST startup takes less than a
second. Simulations with power/thermal modeling result in
~10% overhead, mainly due to the computation performed in
MCcPAT and HotSpot.

6.2. Comparison of router power estimated by McPAT
and ORION

The two power models, McPAT and ORION, supported by the
modeling framework are popularly used in many power-related
architecture research projects. First, we want to compare them

TABLE 1. Parameter values.

Technology 65 nm
Clock frequency 1.0GHz
Supply voltage 1.2V
Number of input ports 8
Number of output ports 8
Flit bits 128
Virtual Channels per port 2

3 . .

[ORION

25+ | EEEE McPAT

power (W)
TS

051

2 4 6 8 10 12
Number of input/output ports

FIGURE 5. Comparison of McPAT and ORION in estimation of
router power with varying number of ports.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

188 M. HSIEH et al.

in terms of NoC power modeling. We use the parameters in
Table 1 to model router power dissipation by both McPAT and
ORION and the results are shown in Figs 5 and 6.

In Fig. 5, the number of ports is varied from 2 to 12 while
the rest of the parameters are kept the same. In Fig. 6, the flit
width is varied from 8 bits to 256 bits. The figures show that the
discrepancy between McPAT’s and ORION’s power estimations
is small (an average of 10%), and they both grow at about the
same rate when the number of ports and flit bits are varied.

Each of the two power modeling tools has its advantage over
the other. For example, McPAT also provides power models
for core, memory controller and shared cache. One can simply
call McPAT to model the overall power dissipation of manycore
systems. On the other hand, ORION’s NoC parameters are much
more customizable than McPAT’s and are more flexible to model
various router architectures. In addition, ORION is a modeling

35

[orION
3t | I McPAT

2.5¢

power (W)

8 16 32 64 128 256
Flit width (bits)

FIGURE 6. Comparison of McPAT and ORION in estimation of
router power with varying flit width.

1.8

1.6r

1.4r

1.2¢

1,

0.8

Normalized power

0.6

0.4

0.2

8core 4core 2core 1core

FIGURE 7. Normalized power of the manycore systems.

tool specifically for NoC so it takes less time to initialize while
MCcPAT may have a huge design space to exhaust the search for
the best value power and area deviation.

6.3. Performance and efficiency tradeoff in clustering

Figure 7 shows the total power of the four configurations
(1-core, 2-core, 4-core and 8-core per cluster) normalized by
the value of the 4-core per cluster configuration. In these
simulations, we use McPAT to model the NoC power dissipation

A2 B2

Relative EDAP
Relative EDP

8core 4core 2core lcore 8core 4core 2core lcore

FIGURE 8. Normalized EDP and EDAP.

—_ = =
- N~

Normalized number of local communication

8core 4core 2core 1core

FIGURE 9. Normalized number of intra-cluster communication.

2 r
I No variation
Il Temperature variation
5 1.5¢
2z
)
a
)
SIS
=
£
5]
Z 0.5¢
0
8core 4core 2core 1core

FIGURE 10. Normalized power with consideration of temperature
variation.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 1senB Aq 960Z7E/1.81/2/GG/I0IME/|ulWoo /W00 dno-oIWaPEDE//:SARY WOl papeojumod

THE SST FRAMEWORK 189

A 2.5
- = - - No variation
2 Temperature variation
-9
<
[a)
m
)
8
s
£
5]
4
0.5
0
8core 4core 2core lcore

B

Normalized EDP

2.5

0.5

0
8core 4core 2core Icore

FIGURE 11. Normalized EDP and EDAP with consideration of temperature variation.

with neither leakage feedback nor temperature variation. In
general, clustering reduces the system total power except at
the 8-core per cluster configuration.

We use two metrics to evaluate the performance and efficiency
tradeoffs in clustering. The EDAP is of particular interest
because the metric includes both an operational cost element
(energy) and a capital cost element (area) [5]. Figure 8 shows
EDAP and EDP of the four system configurations normalized
by the values of the 4-core per cluster configuration. Figure 8(A)
shows that clustering using 4 cores gives the best EDAP. This
is consistent with McPAT’s conclusion that the 4-core per
cluster configuration has the best EDAP on all benchmark
suites on average [5]. Figure 8(B) shows the 4-core per cluster
configuration also has the best EDP.

It has been shown that, on average, increasing the cluster
size improves the system EDP and the effects of clustering
on the metric values depend heavily on applications [5]. In
our study, the 8-core per cluster configuration has the worse
EDP than the 4-core per cluster design. This is because of
the characteristics of the communication pattern generator we
use. In this study, we assume that the cores in the same
cluster have a shared L2 cache. Figure 9 shows that the
communication pattern generator results in similar numbers
of local communications (intra-cluster communications) for
the 4- and the 8-core per cluster configurations. Therefore,
clustering 8 cores together does not derive more benefit from
cache sharing compared with the 4-core per cluster design. On
the other hand, the 2-core per cluster design has ~50% less
local communications and thus consumes more power in routing
messages.

6.4. Effect of temperature variation and leakage
feedback on performance

In the previous section, we simulate the network on chip with a
single uniform temperature and without leakage feedback. We
now consider temperature variation and leakage feedback in the

model and examine how these affect the metric values for the
four system configurations.

Figure 10 shows the total power consumption of the
four configurations normalized to the lowest power NoC
configuration. The grey bars indicate estimated NoC power with
no leakage feedback or temperature variation, while the black
bars show the estimated power taking both into consideration.
The figure shows that when both leakage feedback and
temperature variation are considered, the power consumption
for each configuration increases (by ~10%) compared with the
no variation case. Besides, the relative power ranking among
the four configurations remains the same as the one with no
variation.

Next, we examine the impact of considering both leakage
feedback and temperature variation on EDAP and EDP.
Figure 11 shows the normalized EDAP and EDP of the four
configurations with (solid line) and without variance (dashed
line). We can see that considering temperature variation does
not change the relative ranking of EDAP or EDP among the
four configurations. The figure gives the same conclusion that
the 4-core per cluster configuration has the best EDAP and
EDP. However, it is still important to consider the temperature
variation in NoC power modeling because it can introduce
substantial differences in total power dissipation. Even though
the relative power ranking does not change, a design may have
a power constraint that needs to be met. Therefore, total power
should be accurately estimated in order to make a correct design
decision.

7. CONCLUSIONS

In this work, we implement a framework for integrated power,
area and thermal simulation and data gathering. The framework
includes a number of power and thermal models and contains
leakage feedback functionality. We illustrate the utilization of
the framework on studying performance and efficiency tradeoffs
in the clustering of manycore processors with consideration

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

190 M. HSIEH et al.

of within-chip temperature variation and leakage feedback.
Integration of this power, area and temperature estimation
capability to the SST for HPC architectural simulations makes
it possible to use the SST for hardware/software co-design of
future exascale systems.

We first compare the two power models, McPAT and
ORION, in NoC power estimation. Our result suggests that
there is a small discrepancy between the two in terms of
power dissipation. We then use a manycore architecture
in McPAT’s work for our baseline system and analysis.
While McPAT uses a full simulator to model a core, the
communication pattern generator in the SST allows to generate
network traffic without incurring the processing and memory
overhead. We arrive at the same conclusion as McPAT’s that
configuring a cluster with 4 cores has the best EDAP. When
temperature variation and leakage feedback are taken into
consideration, the conclusion remains the same. Even so,
considering the temperature variation in power estimation is
still important because it substantially increases the power
dissipation, which can change a designer’s decision in choosing
a network configuration. Moreover, it has been shown that
the amount of performance gained by the use of a manycore
processor depends very much on the application. When more
communication pattern generators are implemented, we expect
that our simulation results would demonstrate the impact
of communication patterns on power, EDAP and EDP in
more detail.

ACKNOWLEDGEMENTS

Sandia National Laboratories is a multiprogram laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL.85000.

FUNDING

This project is supported by the DOE NNSA Advanced
Simulation and Computing program, and the DOE Office of
Advanced Scientific Computing.

REFERENCES

[1] Outlook, A. (2009) Average retail price of electricity to ulti-
mate customers. http://www.eia.doe.gov/cneaf/electricity/epm/
table5_6_b.html (accessed August 13, 2010).

[2] Register (2009). http://www.theregister.co.uk/2009/05/26/new_
apple_data_center/ (accessed August 13, 2010).

[3] Scaramella, J. (2006) Worldwide server power and cooling
expense 2006-2010 forecast. http://www.sun.com/service/eco/
IDCWorldwideServerPowerConsumption.pdf (accessed August
13, 2010).

[4] Rodrigues, A., Hemmert, K., Barrett, B., Kersey, C., Oldfield, R.,
Weston, M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E.
et al. (2011) The structural simulation toolkit. ACM SIGMET-
RICS Perform. Eval. Rev., 38, 37-42.

[5] Li,S.,Ahn,J., Strong, R., Brockman, J., Tullsen, D. and Jouppi, N.
(2009) Mcpat: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. Proc.
42nd Annual IEEE/ACM Int. Symp. Microarchitecture, New York,
NY, December 12-16, pp. 469-480. ACM.

[6] Sekar, D. (2008) Optimal signal, power, clock and thermal
interconnect networks for high-performance 2d and 3d integrated
circuits. Ph. D. Dissertation, School of ECE, Georgia Tech.

[7] Sekar, D., Naeemi, A., Sarvari, R., Davis, J. and Meindl, J. (2007)
Intsim: A Cad Tool for Optimization of Multilevel Interconnect
Networks. Proc. 2007 IEEE/ACM Int. Conf. Computer-Aided
Design, San Jose, CA, November 5-8, pp. 560-567. IEEE Press.

[8] Singh, S., Mayfield, C., Mittal, S., Prabhakar, S., Hambrusch,
S. and Shah, R. (2008) Orion 2.0: Native Support for Uncertain
Data. Proc. 2008 ACM SIGMOD Int. Conf. Management of Data,
Vancouver, BC, Canada, June 10-12, pp. 1239-1242. ACM.

[9] Skadron, K., Stan, M., Sankaranarayanan, K., Huang, W.,
Velusamy, S. and Tarjan, D. (2004) Temperature-aware
microarchitecture: modeling and implementation. ACM Trans.
Archit. Code Optim. (TACO), 1, 94—-125.

[10] Mohanty, S., Ranganathan, N., Kougianos, E. and Patra, P. (2008)
Low-Power High-level Synthesis for Nanoscale CMOS Circuits.
Springer.

[11] Li, B., Peh, L. and Patra, P. (2008) Impact of Process
and Temperature Variations on Network-on-Chip Design
Exploration. Proc. 2nd ACM/IEEE Int. Symp. Networks-
on-Chip, Newcastle University, UK, April 7-11, pp. 117-126.
IEEE Computer Society.

[12] Gelenbe, E. and Morfopoulou, C. (2011) Routing and g-networks
to optimise energy and quality of service in packet networks.
Energy-Efficient Comput. Netw., 54, 163—173.

[13] Gelenbe, E. and Mahmoodi, T. (2011) Energy-Aware Routing
in the Cognitive Packet Network. Int. Conf. Smart Grids,
Green Communications, and IT Energy-aware Technologies
(Energy’11), Venice, Italy, May 22-27.

[14] Gelenbe, E. and Morfopoulou, C. (2010) A framework for energy-
aware routing in packet networks. Comput. J., 54, 850.

[15] Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer,
H., Dang, M. and Pentikousis, K. (2010) Energy-efficient cloud
computing. Comput. J., 53, 1045.

[16] Burger, D. and Austin, T. (1997) The simplescalar tool set, version
2.0. ACM SIGARCH Comput. Archit. News, 25, 13-25.

[17] Brooks, D., Tiwari, V. and Martonosi, M. (2000) Wattch:
A Framework for Architectural-Level Power Analysis and
Optimizations. ACM SIGARCH Computer Architecture News,
The 27th Annual International Symposium on Computer
Architecture. June 10-14, 2000. Vancouver, British Columbia,
Canada. pp. 83-94. ACM.

[18] Kim, N.S. (2003) Sim-panalyzer library. http://www.eecs.umich.
edu/~panalyzer/ (accessed June 1, 2009).

[19] Binkert, N., Dreslinski, R., Hsu, L., Lim, K., Saidi, A. and
Reinhardt, S. (2006) The m5 simulator: modeling networked
systems. Micro, IEEE, 26, 52—60.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html
http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html
http://www.theregister.co.uk/2009/05/26/new_apple_data_center/
http://www.theregister.co.uk/2009/05/26/new_apple_data_center/
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf
http://www.sun.com/service/eco/IDCWorldwideServerPowerConsumption.pdf
http://www.eecs.umich.edu/~panalyzer/
http://www.eecs.umich.edu/~panalyzer/

THE SST FRAMEWORK 191

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Coskun, A., Strong, R., Tullsen, D. and Simunic Rosing, T. (2009)
Evaluating the Impact of Job Scheduling and Power Management
on Processor Lifetime for Chip Multiprocessors. Proc. 11th Int.
Joint Conf. Measurement and Modeling of Computer Systems,
Seattle, WA, June 15-19, pp. 169-180. ACM.

Martin, M., Sorin, D., Beckmann, B., Marty, M., Xu,
M., Alameldeen, A., Moore, K., Hill, M. and Wood, D.
(2005) Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. ACM SIGARCH Comput. Archit. News,
33, 92-99.

Agarwal, N., Krishna, T., Peh, L. and Jha, N. (2009) Garnet:
A Detailed On-Chip Network Model Inside a Full-System
Simulator. /IEEE Int. Symp. Performance Analysis of Systems
and Software, 2009. ISPASS 2009, Boston, MA, April 26-28,
pp. 33-42. IEEE.

Lis, M., Ren, P.,, Cho, M., Shim, K., Fletcher, C., Khan, O.
and Devadas, S. (2011) Scalable, Accurate Multicore Simulation
in the 1000-core Era. Int. Symp. Performance Analysis of
Systems and Software (ISPASS 2011), Austin, TX, April 10-12,
pp- 175-185.

Henderson, T., Roy, S., Floyd, S. and Riley, G. (2006) ns-
3 Project Goals. Proc. from the 2006 Workshop on ns-2: The
IP Network Simulator, Pisa, Italy, October 10, pp. 13-es.
ACM.

Nellans, D., Kadaru, V. and Brunvand, E. (2004) Asim-an
Asynchronous Architectural Level Simulator. Proc. GLSVLSI,
Boston, MA, April 26-28, pp. 73-77. Citeseer.

Devine, K., Boman, E., Heaphy, R., Hendrickson, B. and
Vaughan, C. (2002) Zoltan data management services for parallel
dynamic applications. Comput. Sci. Eng., 4, 90-96.

(27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

Karlsson, B. (2005) Beyond the C++ Standard Library. Addison-
Wesley Professional.

Swarztrauber, P., Sweet, R., Briggs, W., Henson, V. and Otto, J.
(1991) Bluestein’s fft for arbitrary n on the hypercube. Parallel
Comput., 17, 607-617.

Prakash, S., Deelman, E. and Bagrodia, R. (2000) Asynchronous
parallel simulation of parallel programs. IEEE Trans. Softw. Eng.,
26, 385-400.

Leary, G., Mehta, K. and Chatha, K. (2007) Performance
and Resource Optimization of noc Router Architecture for
Master and Slave ip Cores. Proc. 5th IEEE/ACM Int. Conf.
Hardware/Software Codesign and System Synthesis, Salzburg,
Austria, September 30—October 5, pp. 155-160. ACM.

Su, H., Liu, F, Devgan, A., Acar, E. and Nassif, S. (2003)
Full Chip Leakage Estimation Considering Power Supply and
Temperature Variations. Proc. 2003 Int. Symp. Low Power
Electronics and Design, Seoul, Korea, August 25-27, pp. 78—
83. ACM.

Underwood, K., Levenhagen, M. and Rodrigues, A. (2007)
Simulating Red Storm: Challenges and Successes in Building
a System Simulation. 2007 IEEE Int. Parallel and Distributed
Processing Symp., Long Beach, CA, March 26-30, p. 45. IEEE.
Rosenfeld, P. (2010) Dramsim2. http://www.ece.umd.edu/
dramsim (accessed August 20, 2010).

Mattson, T., Riepen, M., Lehnig, T., Brett, P., Haas, W., Kennedy,
P, Howard, J., Vangal, S., Borkar, N., Ruhl, G. et al. (2010)
The 48-Core scc Processor: The Programmer’s View. Proc.
2010 ACM/IEEE Int. Conf. High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA, November
13-19, pp. 1-11. IEEE Computer Society.

THE COMPUTER JOURNAL, Vol. 55 No. 2, 2012

20z Iudy 0} uo 3senb Aq 960ZYE/181/2/SS/I0HE/|Ul0/Woo"dNo dlWBpEdE//:Sd)lY WOJj PapEojumoQ

http://www.ece.umd.edu/dramsim
http://www.ece.umd.edu/dramsim

	1 Introduction
	2 Related work
	3 Structural simulation toolkit
	3.1 Configuration and job flow
	3.2 Model of computation
	3.3 Checkpointing
	3.4 Components
	3.5 Technology interface
	3.6 Introspection interface

	4 Technology models
	4.1 HotSpot
	4.2 McPAT
	4.3 IntSim
	4.4 ORION

	5 Validation
	6 Performance analysis of various interconnect options of manycore processors
	6.1 Experimental setup
	6.2 Comparison of router power estimated by McPAT and ORION
	6.3 Performance and efficiency tradeoff in clustering
	6.4 Effect of temperature variation and leakage feedback on performance

	7 Conclusions

