What EVERYBODY should know about ALGOL

By B. Higman

PART I:

if you never use mathematics then stop reading right
now otherwise if you dont want to use ALGOL then retire
on your pension otherwise study this note carefully

That was a good and valid ALGOL statement.
Orthodoxy prefers the shorter else to the longer other-
wise, but these bold type words (they would be underlined
if hand- or typewritten) are only a trick to get round the
paucity of symbols on the typewriter, and to argue about
that is like arguing about whether, if you haven’t a multi-
plication sign on your typewriter, you type ‘‘a times b’ or
“‘a multiplied by b.”” Both of them are clumsy substitutes
for the cross. (A letter X is an ambiguous substitute,
which will not do at all.)

ALGOL has come into existence because ordinary
mathematical notation is inadequate to describe the
processes of numerical calculation, and needs extending
for this purpose. ALGOL is nothing more than the
extra symbols required to describe numerical calculations
and the rules about how to use them. Its alleged
difficulties are greatly exaggerated. We all know that

at+bxc+d

has a trap concealed in it; the b X ¢ must be worked out
first. In ALGOL too, if you don’t know the rules,
there are traps you can fall into; they are neither worse
nor more numerous than those associated with algebraic
symbols.

Every ALGOL statement calls for action. This is quite
unlike other mathematical statements, such as
(a + b)(a — b) = a2 — b2, which merely tell you some-
thing.* There are three rules about the use of statements
beginning with if.

(1) The general form is

if - an assertion then action if assertion is true™
else action if assertion is false .
(2) If the second action is *do nothing” then it and
the else can both be left out altogether.
(3) The second action. but not the first, can be another
if statcment.

This third rule prevents confusion about which else
belongs to which if, and we shall sec later that if we want
to get around it, we can do so by putting brackets around

* But ALGOL has enough of the spirit of Pure Mathematics
that it considers ‘‘do nothing” to be one possible action. And do

not be misled here, *"do nothing” is not ‘‘stop,” it is more like
**miss out on this turn.”

50

‘O’ LEVEL

the first action to remove the confusion. Notice that
if ax + b = 0 then x = —b/a

is not a valid ALGOL statement because the then is
followed by an assertion, not by an action.

Actions can be built up out of simple ones and then
given names. That is how our opening sentence can be
a valid statement; if it occurred in a program then the
three actions it involves would have been defined in
detail previously. Ninety-nine per cent of simple actions
are of one of two sorts: giving a variable a value, and
jumping (as in “go back to square one’’). Successive
simple actions are separated by semicolons. Semicolons
also separate definitions (which do not qualify to be
called actions).

Now it is a dreadful thing, but mathematical notation
itself is not as unambiguous as it ought to be. Let
I, m, n be three integers. Consider

In(m2 4+~ m + 1).

Do you know whether this is / X n X (m2 + m + 1) or
the natural logarithm of m2 4+ m + 1? One thing is
certain, it is asking a lot to expect a machine to decide
such a question in the way you would, from the context.
And ALGOL is meant to be ‘“understanded of the
machines” as well as “of the people.” So, to settle this
once for all, there is a rule about names. Any sequence
of letters, or of letters and digits beginning with a letter,
counts as one name. Furthermore, spaces, carriage
returns, etc., are all to be ignored. So “BLACK
SMITH” and “BLACKSMITH” count as the same
name. (But capital and small letters count as different
letters if you have the means to distinguish them.) This
settles the dispute over ““/n” in favour of the natural
logarithm. It also means that we must take care to write

2ab but 2 X axb
cos X but cos(x)

but we have as wide a choice of names as we can ever
need:

not
not

A, B, C,
alpha, beta, gamma,
aleph, beth, gimel,
0C4s5, Via, Minor1000,
Temperaturpotenzreiheentwicklung,
Calc of moments,

etc. etc.

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

Every freedom has its associated responsibility, how-
ever, and in this case, before we are allowed to use any
name, we are required to define it. (An exception can
be made in practice of the universally understood sin,
cos, etc.) For the moment we can consider three ways
of doing this:

((l) by listing those names which -stand for real
variables or integral variables with.an appropriate
heading to:the list;

*(2) by attaching the name, as a label, to a statement;

.and
1(3) by givingdetails of any elaborate action to ‘which
‘we wish to:give a name.

ALGOL adds ithe imperative mood %o algebra. In
algebra we assert that x is equal to y by wiiting “‘x = y.”
In ALGOL we need:a symbolic represemtation of “make
x equal to y,” and fer this “x := y” has been chosen,
the wolon and the equals together forming a single
symbal :(like “th™ ibeing equivalent to #). A second
imperative is required for jumps; this is the (single)
symbwl ;go to.

We can now write a program! At least, if we take
one obwious liberty, we can. The following program
will primtithe numbers 1, 4, 9, 16, 25 . . .

integer @; a :=0; R: a :=a + 1; print (a X a); go
to R;

It is a trivial program, of course, but it does show the
first two sorts of definition and both sorts of action.
4 is a variable, defined by a list, and R is a label. defined
by prefixing it to a statement with a colon between.
(The liberty is to assume that prins does not have to be
defined. Actually any detailed definition of it will have
to involve not only ALGOL but also some knowledge
of machine hardware; this must be true of all input and
output, and ALGOL allows, without specifying details,
the definition of an elaborate action to be in machine
code in such cases.)

Solving a quadratic is “O” level algebra. It is safe
to say that no one who has read as far as this would be
daunted by it. But it also happens to be a nasty job to
program on account of the variety of special treatments
needed for special cases and to guarantee retaining full
accuracy. So it will serve as a very suitable example of
a “‘real” program after we have looked at one or two
further points.

(1) Suppose we wanted to write
ifa=0 then p:=0;q:=1
else p:=1;q9:=2;

If the intention is what the layout suggests, it will be
misinterpreted, because as soon as the first semicolon
is reached, it will be assumed that this is the end of a
“short” if statement (in which there is no else because
the second action is “do nothing”). We need some
form of brackets to enclose the “p:=0; g:=1,>

51

such as

ifa=0 then{p:=0;q:=1
else {p:=1;q:=2};

and these ought for convenience to be different from

the round brackets used in algebraic expressions.

ALGOL uses begin and end for these brackets, and writes

if a=0 then begin p :=0; g:=1 end else begin
p:=1;q:=2end;

(2) These brackets are used in the definition of an
elaborate action. To form such a definition we write
out the details, surround them by these brackets, and
precede the result by “procedure (the name);”. Though
not the whole story, this is the gist of defining the names
of eldborate actions. It is also usual to surround the
whole pprogram by begin . . . end.

(3) Definitions must follow immediately after a begin.
If this its the one at the start of the program, then the
names are defined for the whole program, but by putting
them after some other begin they can be made local to a
part of the program.

(4) It so happens that only three symbols can legally
follow end, namely, another end, a semicolon, or an
else. So the rules allow commentary which does not
include any of these three symbols to be inserted after
an end. This is particularly helpful in allowing us to
insert something after an end to help the human reader
to identify which begin it belongs to. Such commentary
is ignored by a machine.

(5) Lastly, we need two more input/output facilities;
next is short for “next number on the input tape,” and
printtext("X) prints, not the value of X, but the actual
letter X. And in case sign(x) is not universally under-
stood, it is +1 for positive x, —1 for negative x, and 0
for zero x.

Here, then, is a program for accepting the three
coefficients of a quadratic equation (that of x2 first) and
printing out the roots. The use of the usual formula to
obtain the numerically greatest root, followed by use of
the knowledge of the product of the roots to obtain the
smaller, is a well-known technique for avoiding loss of
significant figures in the latter.

begin real q, b, c;
a .= next; b := next; ¢ := next;
if a = O then begin
if b = 0 then begin
if ¢ = 0 then printtext (“indeterminate™)
else printtext (“both infinite*);
go to nineteenth hole end b = 0
else print (—c/b); printtext (“and infinite>)
enda=0

else begin real d;
d:=bxb—4xaxc;
if d << 0 then go to complex;
d = sqri(d);
if b 0thend := —b — d X sign(b);
print (d/(2 X a));

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

if ¢ = 0 then print (0) else print (2 X c/d);
go to nineteenth hole;

complex: print (—b/(2 X a));
printtext ("+ Lyand L — Lyiy XO);
print (sqrt(—d)/(2 X a)) end a = 0;

nineteenth hole: end program

PART II:

Can you read the following formulae aloud, in such a
way that it is possible for another person to take them
down, and the correctness of the result to be used in
evidence?

(1) er+a 4 r
) Fofg + Fng + Fo—gfc+e + Fotgfo—g
(3) xml m2 + xm’ my

Modern mathematics is a game for hand and eye, both
of which operate two-dimensionally, rather than for
mouth and ear, which are limited to one dimension
(unless you are willing to raise and lower the pitch of
your voice for exponents and subscripts, and even then
example (3) would be a musical tour de force).

Now paper tape is one-dimensional, in this sense.
So ALGOL has inevitably something of the clumsiness
of spoken mathematics, how much depending on the
installation. In ALGOL reference language these three
formulae become:

MDet(p+q +r

(2) FIG] X flg]l + Flg] x f[G] + FIG — g] x fIG + ¢g]
+ F[G +g] X f[G —¢g]

(3) x[m[1], m[2] 1 211 2 + x[m[114 2, m[2]] 1} (—2)

In paper tape with less than seven holes there will be
shift symbols as well, corresponding to such words as
“capital” and “small” as inserted when speaking.

The upward pointing arrow raises the following
number, name, or bracketed expression to exponent
level. A functional name such as sin obviously includes
the following bracket containing its argument. A num-
ber must be unsigned or else bracketed. Square brackets
lower their contents to subscript level and may be nested
as often as occasion demands. Except when actually
feeding a program into a machine, the more ordinary
conventions may be used if preferred

Subscripted variables are defined by an extension of
the list method, incorporating information as to the
range of the subscripts, thus

array X, Y[1:3],Z[0:2], 4, B[l : 3,1 : 3];

defines X, Y and Z as three-component vectors (Z having
a different range of suffixes from X and Y) and 4 and B
as 3 X 3 matrices.

Only algebraic suffixes, i.e. suffixes which are them-
selves variables or expressions, are treated in this way.

Note that the action labelled nineteenth hole is a “do
nothing” action, to be jumped to when the program
ends in the middle, as it were. The name has been
chosen to recall the fact that the program is finished
before this statement is reached. d is a ‘“memo-pad”
variable defined only for the second part of the problem.
Since spaces are ignored, printtext has a special con-
vention for spaces.

““A>” LEVEL

If y; and y, stand for input and output values of y, they
would be simply yi and yo in ALGOL. For if i happens
to have the value 3 at any moment, then y[i] is y[3],
but yi is not y3,

We can cook up far worse formulae than (1)-(3) above!
How about a determinant whose components are
definite integrals whose limits are themselves definite
integrals? Fortunately this sort of thing can always be
steam-rollered out by means of functional notation.
For example, one can write

S f(h) as sigma(f(h), h, a, b)
h=a

This makes it just too easy. And the catch? Only that
now we have to supply a definition for sigma. But that
is, in itself, enough to call for a new section.

Of course we don’t work out a definition of sigma if
we can find one in the library. The library probably
gives us something like

real procedure sigma(w, x, y, z); value y,z; real w;
integer x, y, z;
begin real 5; 5 := 0;
for x ;= ystep l until zdo s := 5 + w;
sigma := s end

This is not as bad as it looks, if we take its features one
by one.

(1) It is a more elaborate form of the structure
procedure (name); begin . . . end
which we mentioned in Part I.

(2) The initial real means that it is not so much “an
elaborate action” as a function with real values
needing ‘“‘elaborate action” to work it out. The
function is assigned a value in the final statement
sigma = s.

(3) When the program meets sigma(f(h), h, a, b) it
will carry out the actions described in the definition,
with f(h) for w, h for x, a for y and b for 2.

(4) The process may break down if the quantities
replacing x, y and z are not integral, or the quan-
tity replacing w is not real (which in this context
includes integral).

(5) The list headed by the symbol value means that
the quantities replacing y and z are determined

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

once for all at the start. By contrast, those
replacing w and x do so algebraically, so that
every time x occurs in the definition /i is referred
to, and every time w occurs, f(/1) is worked out
using the current value of /.

(6) The new symbols, for, step, until, do can be taken
at their face value. As with then, the effect of a
do lasts until the next semicolon which is not
protected by statement brackets begin . . . end.

Which should be crystal clear! If it isn’t, try reading it
a second time (a process called iteration), though as
some of the above comments can be broadened to cover
a wider variety of contexts, reading on may also help.
For example, there are other types of statement beginning
with for. Thus to evaluate

DIERTEY

x=1273
we can write
s:=0;forx:=1,2,3dos :=s + w[x];

and to evaluate

>w
x=1...2k
except k+ 1

we might write
s:=0;
for x := 1 step 1 until Kk — 2, k, k + 2 step 1 until
2X kdos =5+ w;
and there is also a third option provided which would
deal with, say,

2 L to 9 significant figures,
n=1n?
namely,
s:=0;forn :=1, n -+ 1 while n» < 10'° do
§i=1s5 -+ n-r;

The effect of the list headed by value is quite subtle,
but may broadly be described under three heads.
(1) The procedure makes its own copy of each quantity
in this list to do what it likes with, and so protects those
copies of these variables which are the property of the
main program. In this it is like a man who makes his
own copy of a crossword puzzle so as not to spoil
the original for other members of the family. (2) If
the procedure is dealing with something like
sigma(k?, k, 1, p2 — pg + ¢?), then if the - were not
in the value list, the procedure would be in duty bound
to re-evaluate p2 — pg -+ g2 every time it checked x
against it, just in case p or ¢ had somehow got altered
in the meanwhile, which would be a great waste of time.
But, (3). it is the very fact that w is not on the value list,
and /s different every time it is worked out, that makes
the procedure work at all. -

In this way nothing is barred that conforms to standard
functional notation. Thus

m n

DI
ST1k=1
becomes
sigma (sigma(f(j, k), k, 1, n), j,.1, n)

Integrals can be dealt with in the same way, with this
proviso, that in this case the definition, since it provides
details, will presume a particular choice of quadrature
rule (e.g. Simpson’s). A word of warning is also
necessary about the dummy variables in such expres-
sions—j and k in the above example. These must be
defined in the main program, but they are used by the
procedure, and this makes it perilous to use them in the
main program, except for very temporary purposes.
If this warning is disregarded, then the procedure can
throw a spanner into the works by surreptitiously
altering the data behind the back of the main program.

PART II: “S” LEVEL

S is for Strings, Side effects, Switches, Synonyms, and
Several other things that have not fitted into what has
gone before.

Strings we have met before without giving them a
name. A string is anything in inverted commas. The
=0 output routines we used in solving a quadratic
would have definitions beginning as follows:

procedure print(X'): real X; ...
and
procedure printrext(X); string X; ...

ALGOL includes strings for obvious reasons, but it
doesn’t rcally like them.

Side effects we have also met without giving them a
name, and as the enemy have tried to make a bogy of
them, we think this bogy should be laid. The fact that
sigma(w, x, y, 7) makes its own use of whatever main-
program variable is substituted for x, and thus interferes
with any long-term use of this variable, is an example of
a side effect. This is fairly innocuous because the variable
affected is visible among the parameters when sigma is
called. But now suppose that we are curious to know
how often sigima is actually called in a certain program.
Then we add to the program:

(1) in its initial definitions an extra integer, count,

(2) among its initial orders, count : -~ 0,

(3) inside sigma, count : = count -- 1, and

(4) at the end of the program, print(count).

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

And why not? We now have a side effect which is com-
pletely concealed when we are CALLING sigma, but
then the whole idea was to make it automatic. It is true
that this is the thin end of the wedge, and that we can
now introduce the most dreadful concealed side effects
just for the hell of it (see Ref. 13), but the plain fact of the
matier is (1) that side effects as a principle are necessary,
and (2) programmers who are irresponsible enough to
introduce side effects unnecessarily will soon lose the
confidence of their colleagues, and rightly so.

Switches are moment-of-truth devices. Suppose we
have a big program which needs to solve a quadratic at
several points. Then our earlier program will have to
be converted into a procedure. Our reaction to the
awkward cases may well be different at each of the
several points. In these circumstances we could use a
switch in the following way: we define solve thus:

procedure solve (a, b, ¢, xi, x2, 5); value a, b, c;
real g, b, ¢, x1, x2; switch S;
begin integer 7;
if a = 0 then begin
if & = 0 then begin
ifc=0thenn := 1elsen := 2;
go to moment of truth end
else x1 := —c¢/b; n := 3 end
else beginreal d; d := b X b — 4 X a X c;
if d < 0O then go to complex;
n:=4;d .= sqrt(d);
if b£0thend:= —b — d X sign(b);
xl :=d/(2Xa);
surprise: x2 := if ¢ = 0 then O else 2 X c/d;
go to moment of truth;
complex: n :=5; x1 := —b/(2 X a);
x2 := sqrt(—d)/(2 X a) end;
moment of truth: go to S [n] end

When we want to use this procedure, we shall write
something like

solve (p, q, r, s, t, A);

say, and we must then include among the definitions one
of the switch 4, which we do in the form

switch A := alpha, beta, gamma, delta, epsilon;

where alpha . . . epsilon are the five labels (not necessarily
all different, and not necessarily simple labels) showing
where we wish to rejoin the main program in the various
satisfactory or unsatisfactory situations represented by
n=123,4,5.

Among the Several other things, we may m emtion
first that the if . . . then . . . else structure may b¢ > wsed
not only for a conditional action, but also to si tatte a
conditional value. As an example, see the a cition
labelled surprise in the above procedure, and comp. axe it
with the corresponding line in the “O” level prog ram.
Labels either after go to or in a switch may also take
this form.

Secondly, an assertion, such as comes between if and
then, has as its ““value” either true or false. If we w 'ant
to give a name to such an assertion, the name is lis #ad
as a logical, or boolean variable. Such values ¢ md
variables imply the use of logical functions such as & wd
(also written & or A) and or (also written \/). To shc w
how they are used:

boolean x, y;
X :=: the programme is bad;
y = it is time for bed;
if x or y then switch off the television;

An and or an or between two booleans is structurally
similar to a plus or a minus (i.e. a + or —) between two
numerical quantities, except that and is more like times
since it takes priority over or. Similarly one can write,
say, firstentry := true just as one can write x := 25.

S is for Synonyms because it is hoped that an exposi-
tion of this type gains by the avoidance of technical terms.
Nevertheless, it is as well to have some sort of glossary,
so here is a list of those terms we have vsed which have
technical equivalents:

for name read identifier
action statement
definition declaration (except those

defining formal para-
metersof procedures. when
“specification” is used)

elaborate action procedure (‘“‘identifier” or
“declaration” according to
context)

assertion (when not boolean expression

a simple name)

algebraic replacement call by name (not by value)

Further, a begin . . . end is called a “compound statement”
if no definitions follow the begin, or a “block” if there
are definitions. The distinction is important, because
of the rule that names must be defined before they are
used, which means that a block must be entered through
its begin, whereas there is no objection to jumping to a
label in the middle of-a mere compound statement.

PART 1IV: SOME QUESTIONS ANSWERED

Q. How many more of these underlined words are
there?

A. Only three, comment, label and own. The first
seemed too obvious to need explanation, the second is

only used as a list heading, and the third looks so unlikely
to be used very much that it is safe to forget it. There
are also several mathematical and logical signs such as
7] (or not) and = (for integral division) which we have
not mentioned.

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

Q. Is the use of English words in this way inter-
nationally agr eed ?

A. Yes. 13ut it cannot be too strongly emphasized
that they are r1ot words but symbols. To a German, it
is not so much a question of learning that if is “wenn,”
as that it must: be followed somewhere by its then just
as an integral :sign must be followed somewhere by its
d(). And, conversely, for a machiine to accept wenn
instead of if, is kike our accepting tinat the written and
printed forms of the same letter are equivalent, and for
purely local purposes would be a.triviial variant.

Q. ALGOL 58 was followed by ALGOL 60. How
long can we trust ALGOL 60 to remaiin ?

Q. Is ALGOL gaeod enough—is it not too early to
freeze its form?

A. These questioms are complementiary. ALGOL 58
was very tentative, but ALGOL 60 is altiogether different.
The answer to both these questions is tihat as far as one
can tell ALGOL 6@ is likely to be ackded to but not
changed. (Possible additions are permission to define a
variable to be complex, and some:technigue for actually
manipulating strings.)

Q. Won’tit be a long time before ALGOL programs
can be accepted for direct input: tora machine ?

A. ALGOL programs are already accepted at the
Mathematical Centres at Amsterdam, Copenhagen,
Stockholm and Mainz for direct input, and two English
firms have ALGOL facilities in the “service trials” stage
for their most up-to-date machines (the English Electric:
KDF9 and the Elliott 503 or 8,000-word 803). In this:
connection it is worth remarking that a phrase like
KDF9 ALGOL refers to the input conventions usedi,
methods of handling library procedures, and so om,
which ALGOE leaves open; it does not imply amy
fundamental differences from official ALGOL.

Q. Has ALGOL any real advantages over, say,
Mercury Autocode ?

A. Once upon a time a nuclear physicist wanted the
value of

’ e—kl(—Inw}
[anw=s [(—inw)=" dw du
0 0

for certain integral values of n and k. He had no
experience of computer programming in the ordinary
sense, but he had learned to use ALGOL. He also knew
enough to avoid asking any machine to evaluate In (0),
and therefore put in a certain amount of thought as to
how to get around the problems posed by his limits.
He found a library procedure for evaluating an integral
by Simpson’s rule, and this he copied in among his

Bibliography
1. NAURr, P. (Ed.) (1963).

definitions, noting that in addition to the obvious
requirements (limits, etc.) it also required him to specify
the accuracy required, which he thought was reasonable,
and a curious quantity, ¥, which he thought the machine
might well have supplied for itself. He also noticed
that the library procedure used some of the same symbols
which he was proposing to use, but this did not worry
him, because he knew that the ALGOL concept of
“local definitions” would take care of this automatically.
He then completed his program in the form given below,
handed it to the machine operators together with a list
of values of k and n, and very soon he received back the
results he required.

begin real u, w; integer k, n;
real procedure Simps (F, x, a, b, delta, V);

value a, b, delta, V; real F, x, a, b, delta, V;

comment integrates F with respect to x from a
to b by Simpson’s rule, halving the mesh size
until the proportionate difference between
two successive approximations is less than
delta. V¥V must be supplied as anything
greater than three times the largest value of
abs(F) in the interval,

begin inte:ger n, k; real h, J, I;
Vi=(b—a X V;n:=1;h:=(b—a)2;
x:=a;J:=F;x:=b;J:=({+ F) X h;
J1: b :==0;
for k :== 1 step 1 until # do begin
x:=0QXxk—1)Xh+ a;
end;
Ii=-4xXhxb+J;

i abs(I — V) > abs(V) X delta then begin
Vo=LJ:=U+J)4; n:=2 X n;
Fi:=h/2; go to J1 end;
Sir nps := 1/3 end Simps;
actual progrc im: n := next; k := next;
print($ 5imps(if 10-7 > u or u > 0-999999 then 0
else: (In(u))—® x
{Simps(if 10=7 > w then 0 else (—/n(w))(—",
w, 0, exp(—k/sqrt(—In(u))), 0-001, 103%),
u, 0, 1, 0-001, 103%));
g0 t.o actual program end
This stor y is substantially true. I received it second hand,
and can not vouch for minor details such as how the
various values of n and k were handled, but the basic
print st atement is as I received it.

I ch-allenge any user of Autocode to produce anything
comprarable in either directness of relation to the original
staterment of the problem, or in clarity, supposing dis-
cuss’ion should arise at a later date concerning exactly
howy the values were arrived at.

b:=b+ F

*“Revised Report on the Algorithmic I.anguage ALGOL 60, The Computer Journal, Vol. 5, p. 349.

2. NAUR, P. (Ed.) (1960). ‘“‘Report on the Algorithmic Language: ALGOL 60, Numerische Mathematik, Bd. 2, S. 106-36.

3. DuksTrA, E. W. (1962).

55

A Primer of ALGOL 60 Programmiing, London: Academic Press.

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

What EVERYBODY should know about ALGOL

4. HigmaN, B., and GoopMan, R. H. (1963). The Language of Computing: A Programmed Introduction to ALGOL, London:
English Universities Press (in press).

. McCRrACkeN, D. D. (1962). A4 Guide to ALGOL Programming, London and New York: Wiley.

. DUKsTRA, E. W. (1962). ““Operating Experience with ALGOL 60,” The Computer Journal, Vol. 5, p. 125.

. Duncan, F. G. (1962). “Implementation of ALGOL 60 for the English Electric KDF9,” The Computer Journal, Vol. s,
p. 130.

8. Duncan, F. G. (1963). “Input and Output for ALGOL 60 on KDF9,” The Computer Journal, Vol. S, p. 341.

9. Hoarg, C. A. R. (1962). ““Report on the Elliott ALGOL Translator,” The Computer Journal, Vol. 5, p. 127.

10. Hoarg, C. A. R. (1963). “The Elliott ALGOL Input/Output System,” The Computer Journal, Vol. 5, p. 345.

11. HockNEy, R. W. (1962). “ABS12 ALGOL: an Extension to ALGOL 60 for Industrial Use,” The C omputer Journal, Vol. 4,

p. 292.
12. WoODGER, M. (1960). “‘An Introduction to ALGOL 60,” The Computer Journal, Vol. 3, p. 67.
13. KNuTH, D. E., and MERNER, J. N. (1961). “ALGOL 60 Confidential,” Communications of the A.C.M., Vol. 4, p. 268.

NN W

Correspondence
To the Editor, (5) and (6) *, and *= were adopted in preference to .,
The Computer Journal. and .= on the grounds of consistency, and follow
De Havillands’ h in impl ting ALGOL
A Hardware Representation for ALGOL 60 using Peegasizl ands’ approach in implementing GOL on

Creed Teleprinter Equipment Yours faithfully,

Sir, J. M. R. WaTsoN (Chairman, Working Party
In your January issue, you published a paper by J. M. on 5-hole Working)
Gerard and A. Sambles describing the ALGOL 60 hardware G. M. Davis (Secretary, EECUA).

representation for S5-hole Ferranti coded Creed teleprinter
equipment. The paper contains many references to the
KDF 9 character set, and, in view of the authors’ conclusions,

English Electric Computer Users Association,
London Computer Centre,
Queens House, Kingsway, W.C.2.

could be mistakenly taken to be the representation adopted 18 March 1963
by KDF 9 users. This is in fact not the case; a Working arch
Party set up to consider the matter by our KDF 9 Users To the Editor

Group has recently agreed a S-hole representation for

. . . . The C ter J l.
ALGOL 60 which differs from the published proposals in ¢ Somputer Journa

the following instances: Sir,
The arguments used by Gerard and Sambles (1963) to support
REFERENCE KDF 9 GERARD AND EECUA their choice of a hardware representation for ALGOL 60 in
LANGUAGE FLEXOWRITER SAMBLES 5-h§llt):FC?(EED terms of Ferranti Pegasus five-track paper-tape code are not
) " " FPOW . @dg{llly consistent or convincing, as the following comments
indicate.
2)] 1) *) 1. While — for : may be thought suggestive when used
3) r [£ *Q in array declarations, it can hardly be considered so when
@)) T 0 U used as the separator between a label and a statement. The
= ’ alternative .. would appear to be suitable (and perhaps sug-
) ; , o *, gestive ?) in both cases. The argument that this is too similar
(6) 1= = L= *— to the symbol ., would, of course, apply equally to the
symbols : and ;
] The reasons for the choice of the above 5-hole representa- 2. It seems a pity that the symbol * * was not adopted for
tion of ALGOL for use on KDF 9 were briefly as follows: 4, in conformity with FORTRAN and the Elliott 803
(1) ** was adopted in preference to *POW as it is desirable Telecode, instead of the clumsy *POW.
to have a non-alphabetic representation. It was, of 3. Since a single asterisk is elsewhere used to denote under-
course, suggested by the equivalent representation in lining of basic symbols, the choice of * > and * > to repre-
FORTRAN. sent < and <C respectively seems particularly unfortunate.
(2) The use of) for] is directly opposed in philosophy to If suggestiveness is a desideratum, why not n > and n >?
that adopted by E.E. Co. in writing their Compilers, 4. If the above changes were made, — would remain as an
namely that all basicsymbols must have a context- escape symbol.
free representation. Further, the representation adopted Yours faithfully,
removed an implied restriction on the use of] within 91 Kingston Road, G. H. L. BuxToN.
strings. Earlsdon, Coventry.

(3) and (4) *Q and *U (quote and unquote) were adopted 21 March 1963
for string quotes " as they are a more natural repre-

sentation than £ and ?. Further, the use of ? (5-hole Reference

binary 29) is inconvenient on KDF 9 due to the hard- GERARD and SAMBLES (1963). ““A hardware representation
ware restriction that 5 channel binary 29 is the “End of for ALGOL 60 using Creed Teleprinter equipment,” The
message’’ character. Computer Journal, Vol. 5, p. 338.

56

202 udy 61 U0 1s8nB AQ 85GE£00%/0G/1/9/8101E/|UlWO0/W00" dNo"olWBPEdE//:SARY WOy POpeojumod

