Programming multiple regression

By M. J. R. Healy

Multiple regression, one form of estimation by least squares, is an important statistical technique.
Heavy computing is involved and a great many programs have been written to do the necessary
work—so many that it is clear that most of them do not attain an adequate degree of generality.
This paper outlines the essential features of regression analysis and attempts to give the essential
requirements for a general program.

1. Introduction

Multiple regression is the statistician’s name for one form
of estimation by least squares. It is supposed that the
expected value of an observed quantity y, called the
dependent variate, can be expressed as a linear function
of a set of quantities x;, i =1, . . ., m say, the inde-
pendent variates. 1f ) denotes an expected value, we
have for a particular observation

.i}\:ﬁlxl+/32x2+"'+ﬁmxm

or, using matrix notation for a whole set of n observations
y=Xp (0

where X has n rows and m columns. (1) is called a
regression equation, and the B’s are regression coefficients.

The principle of least squares leads us to adopt as
estimates of the §8’s the solutions of the normal equations

(X'X)b= X'y (@)

(X'X) is called the information matrix of the x’s. In
many problems, we may assume that the )’s are inde-
pendently distributed about their expected values with a
common variance o2. In this case, the variances and
covariances of the b’s are given by the elements of
(X'X) 102, and o2 itself can be estimated by

s =y —bXy)|n —m). )

Multiple regression is an important statistical tech-
nique that involves fairly heavy computation, and it is
not surprising that most scientific computer installations
possess multiple-regression programs—a recent listing of
statistical routines (Leone et al., 1961) contains no less
than 77 different programs for multiple regression, 32 of
of them written for a single type of machine. The
inference, borne out by a study of the details of the
different programs, is that an adequate degree of
generality has not usually been attained, so that new
programs have to be written to accomplish tasks for
which previous ones made no allowance. The same
criticism could be made concerning the programs recently
described by Slater (1961). The object of this paper is
to outline some of the requirements which may be
regarded as essential for a general multiple-regression
program.
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2. Basic computations

The basic computational problems fall into three
stages—input and formation of the matrix X, formation
of the normal equations, and the solution of these
equations including the inversion of their coefficient
matrix.

2.1. Input

The design of an input routine for regression calcula-
tions has few points that are not shared by other statistical
programs—indeed, if a regression program is to be one
of a whole set of statistical programs it is desirable that
all the input progiams should be as nearly as possible
the same, at least so far as the user is concerned.

It is elementary that input should be possible from all
the different kinds of peripheral equipment attached to
the computer. Assuming this to be so, it should not be
necessary for the user of the program to adopt any
special format for his data—it should be possible, for
example, to accept data assembled either “by rows” (all
measurements on one subject together) or “by columns”
(all values of one variate together), even though in the
latter situation the maximum size of problem that can
be tackled will be limited by the necessity of storing
essentially all the data.

Facilities should be made available for forming new
variates as functions of those read in. The list of
built-in functions should include the four arithmetic
operations, and a few elementary functions such as the
square root, logarithm and exponential. Some more
special functions, such as log [p/(1 — p)] and sin~! (p?)
with 0 < p < 1, may be included, but it is important to
allow the user of the program the possibility of specifying
new functions on a temporary basis should the need arise.
The notation to be used in specifying these functions
calls for some comment. It is often suggested that the
rules of some well-known autocode, such as Mercury
autocode or FORTRAN, should be adapted to this
purpose. It may well be more profitable, in a program
that is to be widely used, to adopt a very much more
restricted coding of the operations, amounting to no
more than a simple 3-address code. The advantage of
this is that the simple scheme is quickly learnt and leaves
very little room for casual errors in writing the instruc-
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tions for deriving the new variates. Unless a very
complex program is written, a more elaborate scheme is
liable to require the observance of so many rules and
conventions that infrequent users will make too many
mistakes.

When all variate values for a single subject are read in
together it is possible to form any required derived
values, and to add in the contributions to the information
matrix before proceeding to the next subject. Working
storage at this stage can thus be limited to that needed
for the observations on a single subject, and practically
no limitation on the total number of subjects need be
imposed. However, if an adequate backing store is
available, there are many advantages in storing the data,
with or without the derived variate values, for use later
in the program (see 2.4 below).

2.2. Formation of the normal equations

This is the process familiar in statistics as the calcula-
tion of sums of squares and products. In equation (2)
the elements of X'X and X'y are what the statistician
calls crude sums of squares and products, and he is
accustomed to adjust them to give sums of squares and
products of deviations from the means of the variates.
This is appropriate whenever the required regression
equation contains a constant term. In this case one
column of X will consist of 1’s, and the corresponding b
can be simply obtained from the mean of the y’s and the
other column means of X. Using adjusted sums of
squares and products reduces the order of the matrix to
be inverted by one, and usually improves its condition
in the numerical analyst’s sense. The method of making
the adjustment requires a little care. The ordinary
technique as used on a desk machine is based on the
identity

Er](x — X}y — y) = Zxy — ZxZy/[n.

Unless £x and Xy are quite small, this involves the
difference of two large numbers, and can lead to a
catastrophic loss of significant figures in floating-point
arithmetic. As a remedy, the actual deviations from the
means may be formed and their products summed, but
this involves scanning the matrix of observations twice,
which may be undesirable if the matrix is at all large.
It is quite sufficient to use deviations from working means
fairly close to the true means—the simplest values to use
for the purpose are the variate values of the first observa-
tion to be read.

A further process may be applied to the matrix before
inverting it. It is very desirable from a computational
point of view that the elements of the matrix should not
differ too much in size. Although a fairly crude scaling
is adequate for numerical purposes, the obvious statistical
step is to form the matrix of correlations. These quan-
tities will often be of sufficient interest to be worth
printing or recording in such a form that they can be
used for further analysis if required.
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2.3. Matrix inversion and solution of the normal equations

This topic has been very thoroughly studied in recent
years by numerical analysts. The problems arising in
multiple regression have certain special features that
should be taken into account. The matrix to be inverted
is always symmetrical and positive definite, so that the
very efficient square-root or Cholesky technique is avail-
able; furthermore, elements of the inverse and of the
solution vector are seldom needed to more than four
significant figures, so that great refinement of numerical
technique is not usually necessary.

Loss of numerical accuracy in the course of matrix
inversion occurs when the matrix is ill-conditioned. This
state of affairs is generally a challenge to the numerical
analyst, and he strives to produce accurate inverses of
even ill-conditioned matrices. In regression work, ill-
conditioning is liable to occur when a pair of inde-
pendent variates are highly correlated (or become so
when the effects of other independent variates are
partialled out). The result, which is to produce large
elements in the inverse, is to give the regression coefficients
large variances and so to render them badly determined,
and any effort spent in obtaining numerically accurate
values is probably largely wasted. Furthermore, ill-
conditioning is very often a sign that the regression
problem has been badly posed. A classic example is
the regression of the measure of some daily phenomenon
on maximum and minimum temperature; this is liable
to produce a highly significant regression, yet one in
which neither coefficient exceeds its own standard error.
If the identical problem is re-posed as a regression on
mean temperature and temperature-range, it often turns
out that most of the uncertainty is concentrated in the
regression on range, the regression on mean temperature
being accurately determined. The upshot of this is that
the inversion program need not be designed to cope with
extreme ill-conditioning, but that it should provide
indications of such ill-conditioning as occurs. The
simplest of these is the diagonal elements of the triangular
square-root matrix. These have in fact a clear statistical
interpretation; they are the root-mean-squares of the
residuals of the corresponding independent variates after
removing the regression on all the previous independent
variates. Small values are thus danger signals.

2.4. Output

The full results of a multiple-regression problem are
quite extensive, comprising as they do the vector of
regression coefficients, the variance-covariance matrix of
these coefficients, and some form of analysis of variance—
this last might provide the regression mean square
[6'X’y[m in the notation of equation (2)] and the
residual mean square (3), together with their degrees of
freedom m and n — m (the contribution from the con-
stant term in the equation is usually excluded from all
these quantities). This amount of output is seldom
required in full, and parts of it can be provided in a more
useful form. The minimum requirement consists of the
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regression coefficients with their standard errors, and the
analysis of variance. Rather than printing the variance-
covariance matrix, which is time-consuming and not very
illuminating, it should be possible to specify either single
linear functions of the regression coefficients, which
would then be printed with their standard errors, or sets
of such functions, in which case the associated mean
square would be printed. If there are p functions with
values given by the vector ¢ and variance-covariance
matrix C, their mean square is (£ C~'t)/p.

When the regression equation has been estimated, it
is possible to calculate the residuals (y — ») provided
the original data are still available. It will seldom be
worth printing all of these, but a graphical presentation
may be very useful and there are several statistical tests
whose results may be presented. Thus a few of the
numerically largest residuals may be printed to permit
the investigation of aberrant values in the data, and
various tests of randomness (see, for example, Durbin
and Watson, 1950-51; Stevens, 1939) may be made to
guard against failures in the underlying assumptions of
the method.

3. Exploratory regression

The considerations set out above are those which
should govern the simplest type of regression program,
where the user is prepared to specify the exact relation
that he wishes fitted. In practice, multiple regression is
very often used as an exploratory process, several
different equations being fitted to the same body of data.
A program for this purpose is naturally somewhat more
complex.

To begin with, it may well be desirable not to invert
the information matrix ab initio for each different selec-
tion of independent variates—if, for example, it is
required to add a set of independent variates to those
already in the equation, the existing inverse can be
retained and used in a partitioning technique to obtain
the new inverse. A good description of the necessary
computation is given by Woolf (1951).

The main problem is that of the options to be provided
to the user of the program. For a start, he may require
identical studies on several different dependent variates;
these should normally be run in parallel to avoid repeated
inversion of the same matrix. The rest of the specifica-
tion will consist of a series of steps each ending with the
output of a set of regression coefficients with their
standard errors and the current analysis of variance.

On the face of it, the user of the program may seem
to require the selection of the possible x’s which mini-
mizes the residual mean square given by (3), and it is
quite possible to write a program which will evaluate (3)
for each single x, for all pairs of x's, all sets of three xs,
and so forth, finally indicating the optimal set. For any
appreciable number of possible x's, this is a very lengthy
process and one unlikely to be practical except on very
fast machines. Moreover, such complete exploration is
often neither necessary nor even desirable; when a par-
ticular selection of, say, eight x’s is needed for a strict

minimum of (3), there will usually be a selection of three
or four—maybe several such—for which the value of (3)
is only slightly increased and which will in fact be of
more practical usefulness, while more useful still will be
an approach in which the selections of x’s investigated
are at least to some extent under the user’s control.

A possible set of instructions to the program might
then be the following.

(1) Fit a specified set of x’s.

(2) Fit that one (or pair, or trio) of a specified set of
x’s that most reduces the residual mean square.

(3) Fitaspecified set of x’s in the order stated, stopping
when one, or two, or three consecutive coefficients
all fail to exceed their standard errors by a specified
ratio.

(4) From the x’s already fitted, remove that one (or
pair, or trio) that least reduces the residual mean
square.

(5) From the x’s already fitted, remove a specified set
in the order stated, stopping when the coefficient
of the next x to be removed (or the next but one,
or the next but two) exceeds its standard error by
more than a stated ratio.

Type 1 covers the standard type of regression problem
treated earlier; types 3 and 5 are useful when fitting a set
of terms that fall into a natural sequence, such as the
successive terms in a polynomial. As stated above, each
instruction will give rise to a standard output. If further
output is required, it will be called for by a special
instruction.

4. Special problems

There are a number of subsidiary problems in multiple
regression, some of which can usefully be catered for by
a general program.

4.1. Repeated y-values

If there are several observations on the dependent
variate y for each set of observations on the x’s, an
independent “within-cell” estimate of s? can be cal-
culated. This requires the calculation of the mean y’s
and provides an extra line in the analysis of variance
table. Italso leads to two further types of instruction for
exploratory work.

(6) Fit the following x’s in the order stated, stopping
when the residual mean square falls below a stated
multiple of the within-cell mean square.

(7) From the x’s already fitted, remove the following
X's in the order stated, stopping when the removal
of an x would cause the residual mean square to
exceed a stated multiple of the within-cell mean
square.

Instructions of types 3 and 5 probably do best as a
routine to use the within-cell mean square for estimating
standard errors, rather than that derived from deviations
from the regression.
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4.2. Parallel regressions

If the observations fall into several groups, it is possible
to fit parallel regressions, allowing the coefficient of the
constant term to take different values in the different
groups but forcing the remaining coefficients to take
common values over all the groups [see, for example,
Quenouille (1952)]. It is possible to test whether such
parallel regressions fit the data as adequately as would
regressions fitted to each group independently, and, if so,
whether these in their turn could be replaced by merely
a single regression.

If there are p groups of observations, (p + 2) regres-
sion calculations are required—one for each of the
groups, one using within-group sums of squares and
products, and one using overall sums of squares and
products ignoring the grouping. If the calculation is
exploratory, a good deal of storage will be required.

4.3. Weighted regression

If the original y’s differ in accuracy, it may be necessary
to take account of this by calculating weighted means
and weighted sums of squares and products. Formally,
the normal equations (2) become

X'WXb = X'Wy

where W is a diagonal matrix containing the weights.
In practice the weights will be read with the variates,
and their application requires only minor changes in that
part of the program that forms the normal equations.

4.4. Quantal regression

In ordinary regression work, y is considered to be a
continuous variate. Regression technique is also
extremely valuable when applied to so-called quantal
data, in which the dependent variate is a proportion.
With a dependent variate constrained to lie between 0
and 1 a linear model such as (1) is not very plausible, but
this defect can be overcome by transforming the propor-
tions to an unlimited scale. The probit and logit trans-
formations are commonly used for this purpose and the
appropriate estimating technique is that of Maximum
Likelihood (see Finney, 1952, for details). The necessary
calculations involve weighted regression, and because
the weights depend upon the expectations the basic
procedure has to be used iteratively, but a suitable
general program can readily be adapted to this type of
calculation.

4.5. Fitting constants to multi-way tables

As a simple illustration of this procedure, suppose that
data are arranged in a two-way table with several items
in each cell. If y;; denotes an observation in the ith
row and jth column, a possible model is

.};ijk =u+ o+ Bj (4)

where the two factors of the table are assumed not to
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interact. To estimate u and the o«’s and B’s by least
squares, the normal equations take the form

n.p+ng o+ na+...

+naBr+n B+ ... =y,

ny g+ ng oy + B Fnpryt . =y
ny o+ 1y o + i+ npfrt+ .. =,
=J.1.

nyp o+ npoy + nyen + .0y

Here n;; denotes the number of observations in the ith
row and jth column, and a dot indicates summation over
the corresponding suffix. The model (4) can be extended
to more than two factors, and interactions of different
orders can be incorporated.

It is a special feature of this type of calculation that
the coefficient matrix of the normal equations is singu-
lar—in our example, doubly so. To obtain a unique
solution, it is necessary to impose two arbitrary linear
conditions on the constants. These may be chosen
purely for computational convenience; one possibility is
to use

ny oy +n2_a2+. ..=0
naBr+npp+...=0

which gives the solution for p immediately, but it is
even simpler computationally to take

p=0
B =0.

1 and By, with their associated equations, can then be
merely omitted during the solution process. It will also
be seen that the principal submatrices of the coefficient
matrix are all diagonal. It is thus easy to eliminate one
set of constants from the other equations, reducing
(perhaps considerably) the size of the martrix to be
inverted.

This technique, though based on the same principles
as multiple regression and sharing many of its compu-
tational features, is sufficiently different from the user’s
point of view to make it worth while constructing a
special program. This should itself be of considerable
generality. Thus, it should allow the user to fit constants
by Maximum Likelihood to data in the form of propor-
tions—the technique in this context has proved extremely
valuable at Rothamsted but has so far scarcely been
exploited elsewhere. It is also useful to be able to impose
linear restrictions on the fitted constants. Thus if the
categories of one classification can be considered to
represent k levels of a quantitative factor x, it may be
useful to restrain the constants to obey some relation

such as
@ = yo + viXi + y2X}, i=1,2,...,k

in which the 9’s are the quantities of interest.
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4.6. Fitting polynomials

This is another special case which can quitc easily be
handled by a general program but which may merit
individual treatment. The distinguishing feature is the
extreme ill-conditioning that is likely to occur. A satis-
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Book Review

Leo and the Managers, by J. R. M. SIMMONS, 1962; 174 pages.
(London: Macdonald and Co. (Publishers) Lid., 18s.)

In the first chapter, a series of jerky ‘‘flashbacks” take the
reader back to 1896 and the Lyons Company’s earliest interest
in office mechanization. Although the form of presentation
is not one which will commend itself to every reader, one is
left in no doubt that the company has had a long and con-
tinuing interest in office efficiency. The link between LEO
(Lyons Electronic Office) and the lessons of office efficiency is
made clear. The reader who wishes to learn about the opera-
tion of LEO is referred to a long note at the end of the book.

In the succeding three chapters Mr. Simmons develops his
“general theory on the organization of business management
and in a final chapter relates his theory to LEO.

The original purpose of his book was to provide ‘“‘something
that could be used by the Central Training Unit of J. Lyons
and Company Ltd. to supplement lectures that [he] was then
giving to various Company courses on ‘The Art and Tech-
niques of Management’.”” Mr. Simmons has attempted to
adapt and expand these lectures, written primarily for Lyons
managers, to make them suitable for the general reader inter-
ested in the relationship between computers and management.

This creates a difficulty. Mr. Simmons® objective loses its
clarity because he is trying to serve two very different audiences
at once. The employees of the company should know, for
example, when he writes about acrual company policy and
practice and when he is drawing on his imagination to develop
his general theory of organization. The general reader cannot
know. One cannot help feeling that the general reader would
have been better served by an untrammelled description of the
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Lyons Company organization and the way in which LEO
actually assists it to operate effectively. We are, unfortu-
nately, only given tantalizing glimpses of this large organiza-
tion—for, naturally, all of Mr. Simmons’ examples are drawn
from it.

A second, and perhaps more fundamental, difficulty arises
from the fact that, large as the organization is, it is, as far as
one can see, operated as an entity. One thing which we do
know about organization theory is that a gencral theory has
not yet been developed from observation of one organization
at work. . Although such observations may give us some
valuable insights into possible relationships, they are unlikely
to give us a general theory. -

We do, in fact, obtain these insights. Mr. Simmons’
approach to the theory of what he describes as *““Management
Self-Accounting™ is refreshing, and in one of the long notes
(pages 134-6) the concept is fully described.

In the last chapter he suggests that, given a complex com-
pany structure similar to that of Lyons, *'It is essential for the
best use of a computer for it to be thought of as a means of
controlling a decentralized organization and never as an
instrument of centralization.” To this one may link his final
sentence, “'If. but only if, the managers are trained to use LEO
and they regard it as their own tool, it is capable of being
made one of the most powerful management tools that has so
far been devised”. These thoughts run counter to those who
suggest that the future lies in greater centralization. Mr.
Simmons suggests that we should continue to push responsi-
bility as far down the “‘chain of command™ as we can. Who
knows but that he may be right?

J. H. LEVESON
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