Note on coding Reverse Polish expressions for single-address

computers with one accumulator

By A. J. T. Colin

This note gives a general method of coding Reverse Polish expressions into machine orders for
single-address computers with one accumulator, and includes the description of an algorithm which
improves the efficiency of the compiled program, by manipulating the expression before translation.

Since the subject of this note is the manipulation of
Reverse Polish algebraic expressions, it may be as well
to explain certain terms used in connection with the
latter.*

The Reverse Polish notation is a method of writing
algebraic expressions so that operators follow the
operands they refer to. For example, the sum of two
numbers @ and b (normally written a + b) is, in Reverse
Polish ab +- ; or “the square root of x” is written x4/.

Operands may be either explicitly named, as in the
examples above, or they may be the results of some
previous operations on different operands. We may put,
for m 4 4/n in conventional notation, mn4/+ in
Reverse Polish. The two operands of the operators
“+> are m and nv/.

This process of using general operands may be
extended to any depth, thus avoiding the need to use
brackets.

In general there are two types of operator: monadic,
which refer to only one operand (such as 4/, sin, log, or
mod) and diadic, which refer to two operands (such as
-, X, or =). As an example, we shall give the Reverse
Polish form of the expression

log [a 4 be(d — ev/f]2)]
Itis:

abc X defy/ X g — — X + log

It is well known that the coding of Reverse Polish
expressions for computers with nesting-store accumu-
lators is particularly easy, because each symbol in the
expression can be represented by one machine order.
On the other hand, coding these expressions for con-
ventional computers is more difficult, because it is
generally impossible to establish a one-to-one corre-
spondence between symbols and machine orders. When
such coding is being done, it is most convenient to split
the expression into four types of ‘““molecules’ as follows.
(It is assumed that the Reverse Polish expressions con-
sidered do not contain the operator ‘‘becomes.”)

(a) *“*Simple operations,” which each consist of an
operand followed by a diadic operator.

(b) Monadic operators.

(¢) and (d) Operands and diadic operators which
cannot be paired into simple operations.

*See also the paper by A. B. Hamlin which begins on p. 210 of the
October 1962 issue of this Journal —Ed.

67

When translating the expression, a stack of con-
secutive registers, numbered 1 upwards, is set aside for
storing intermediate results, and a pointer (P) is initially
set to zero. Each molecule of the string is then con-
sidered in turn, and coded by the following rules.

(1) Simple operation:
The appropriate machine order (which is usually
available) is compiled. For example, the molecule
“a-+"" would be compiled as

“Add o

(2) Monadic operator:

Instructions to carry out the indicated operation
on the contents of the accumulator are compiled.

(3) Operand:
If the current value of the stack pointer is 0, the
instruction compiled is simply ‘“Clearadd Oper-
and.” Otherwise it is necessary to compile the
two instructions

Store (P)
Clearadd Operand

In both cases P is increased by 1.

(4) Diadic Operator:
Instructions are compiled to carry out the specified
operation using the contents of the accumulator
and of storage register (P — 1) as operands.
P is decreased by 1.

To illustrate this technique, consider the expression
a — b -+ xyv/z, whose Reverse Polish form is

ab — xy X z4/ X .

The coding process for this expression is as shown in
Table 1.

This code will produce the value of the expression in
the accumulator.

It is clear that the inefficiencies in this code are intro-
duced as a result of the storage operation which is
necessary whenever any operand after the first is com-
piled. The ideal form of a Reverse Polish expression
to be compiled for a single-address computer is therefore

202 YOSe\ €1 U0 1sanB Aq LS00/ 29/1/9/9101E/|ulwoo/woo"dno olwapese;/:sdiy Woly pepeojumod

Coding Reverse Polish expressions

Table 1
MOLECULE FINAL VALUE CODE
CONSIDERED OF POINTER PRODUCED
a 1 Clearadd a
b— 1) Subtract b
Store (1)
* 2 { Clearadd x
yX 2 Multiply v
5 3 [Store 2
| Clearadd -
V4 3 Acc’ = :4/ Acc
X 2 Multiply (2)
+ 1 Add ¢))

one operand, followed only by simple operations and
monadic functions.

Forexample,ab +c—dx e+ andz4/x X y X a+b—
are ideal forms, but abc X X is not.

It is frequently possible to manipulate a Reverse
Polish string so that its mathematical meaning is not
changed, but its form is brought closer to the ideal.
The manipulations which can be used consist of inter-
change of sequences of symbols, according to certain
rules. The circumstances under which these interchanges
can be made are set out below.

We shall define a “general operand” as “The subject
of an operator.” General operands can clearly consist
of one or more symbols; so that, for example, in the
expression ab X ¢cd — f —+ both abx and cd — f=
are general operands (as they are both the subjects of
the operator +). We shall also define a “general
operation” as a “‘general operand followed by a diadic
operator.”

Rules for possible interchanges are:

(1) Adjacent general operations may be interchanged
whenever the order in which they are carried out
is immaterial. For example, adjacent additions
and/or subtractions, or adjacent multiplications
and/or divisions, may be carried out in any order;
and adjacent operations involving these groups of
operators can be interchanged.

(2) The two general operands of a diadic operator
may be interchanged provided that the operator
itself is replaced by a mirror-image operator, which
specifies the same operation with the operands
taken in the reverse order.

Clearly, only symmetrical operators, such as addition
or commutative multiplication are identical to their
mirror images. Below, we shall denote mirror image
operators by circling them; so that we may write:

(ab—) = (ba ©).

The rules by which actual interchanges are selected
from all possible ones can be deduced from the following
consideration. First, single operands should be moved
towards the right, for there they may combine with diadic
operators to produce operations. Secondly, operations
which include monadic functions should be moved to the
left, because the subjects of these functions can never

68

form operations, and the only place in the string where
two consecutive operands can be efficiently dealt with
is at the extreme left.

These two ideas can be combined in a single rule
which states: “Whenever an interchange of two groups
is possible, arrange for the longer group to be on the
‘left, and the shorter on the right.” This rule should be
applied repeatedly to the interchange of operations and
then to the interchange of operands.

Two examples of the application of this rule are given
below.

The brackets in the Reverse Polish expressions which
follow have no mathematical significance, but are
inserted to show which groups of symbols are to be
interchanged.

(1) The Reverse Polish form of the expression
a—b+4xyvz is ab— xy X z4/ X +.
By interchange of operations,
alb—)(xy X z4/ X +) =axy X z4/ X +b — ;
ax(yX)zv/X) +b — = axzA/Xyx + b —;
By interchange of operators,
ax)(zV) Xy X +b— =az/xQy x +b—;
@EVXQy X)+b—=2z/x8yXa®b —.
(Ideal form).
(2) The Reverse Polish of a + b(c — delf) is
abede X f+ — X +. By interchange of operands,
ab(cYde X f+~)— X + =abde x f-~cO x + ;
ab)de X f-cOQ)X + =ade X f-cObQ + ;
@de X f-cObR)+ =de X f-cObRQad
(Ideal form)

The system described in this note is liable to produce
alteration in the order in which operands are used. In
most cases this is immaterial, but where the order does
matter,* this could be indicated to the compiler by the
use of a special “becomes” symbol or similar device.

Lastly, it is often possible to improve coding by the
introduction of purely ‘“local” operators which. corre-
spond to special instructions available on the target
computer. An example of such an operator is negative
multiplication. It can be shown that the sequence
“X —” can be replaced by the sequence ‘X 4", where
X denotes the operation of negative multiplication.
This device is often useful in getting rid of mirror-image
subtraction, which can be difficult to code. For example,
consider the expression a — bc: which in Reverse Polish
is abc X —. Without substitution, this transforms to
bc X a ©, which may lead to some awkwardness in
coding; but with substitution we obtain

abc < —
abc X @
be Xa®

=bc X a+
which is easily coded.

* E.g. if x, <y, the evaluation of x; 4+ x2 + x3 + X4+ ...
+y and of y + x; + x2 + x3 + x4 + . . . on a floating-point
computer might give significantly different results.

202 YOSe\ €1 U0 1sanB Aq LS00/ 29/1/9/9101E/|ulwoo/woo"dno olwapese;/:sdiy Woly pepeojumod

