Partial differential equations
By L. Fox

This expository paper discusses the present state of our ability to solve partial differential equations.
It considers the success achieved in the production of new techniques, machine-oriented techniques,
error analysis, mathematical theorems and the solution of practical problems, and contrasts this

with corresponding work in the field of linear algebra.

Outstanding problems include a determina-

tion of the error of finite-difference approximations, the automatic machine production of finite-
difference formulae in complicated regions, the smoothing of physical data, and the classification
of equations for computing-machine library routines.

I want to make some observations on what seems to me
to be the general state of the art and science of solving
partial differential equations, and especially what is
lacking in that field. I am concerned particularly with
what is sometimes called ‘“‘numerical” solution and
sometimes ‘“‘approximate” solution, and which implies
an approach other than the evaluation, at selected values
of the independent variables, of the exact solution
expressed in closed mathematical form, such as a single
function, an infinite or doubly-infinite series, and so on.
The numerical approach is of course almost always
necessary, because the mathematical solution can rarely
be obtained with known techniques.

All research in numerical analysis can be put into one
of four or five categories, and we can approach our
subject conveniently from these points of view. My
categories are

(i) New methods.
(i) Machine-oriented techniques.
(iii) Error analysis.
(iv) Theorems and mathematical analysis.
(v) Application to practical problems.

Linear algebra

In linear algebra, for example, I would class the
original Givens method for finding the latent roots of
matrices as a brand-new method, and it has been followed
by other work on similarity and unitary transformations,
to reduce the matrix to one of simpler form. Some of
these methods are more effective than the Givens tech-
nique, but they owe their existence to Givens’ idea.
Under (ii) we have recent analysis of the details of various
techniques, to make them as automatic as possible and
to avoid, for example, the loss of efficiency in the use of
a two-level store in computing machines. An analysis
of Givens’ method, for example, by Rollett and Wilkinson
in a recent paper in this Journal showed that it was
possible, by reorganizing the calculation to avoid too
frequent transfers to and from the backing store, to save
some 859 of Mercury time in the treatment of matrices
of large orders.

Under (iii) we have the work of Von Neumann and
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Goldstine, Turing, Wilkinson and others in the assess-
ment of errorsin a variety of processes in linear algebra,
together with an investigation of stability, for example
in avoiding divisions by small numbers with consequent
large rounding errors. In (iv) we have various results,
such as investigations into bounds for eigenvalues, the
relations between various known direct and iterative
methods, the fact that a symmetric positive-definite
matrix 4 can be decomposed into LL’ with perfect
safety without interchanges, and so on.

Finally, the various pieces of knowledge accumulated
over the years have given us a fair mastery over any
problem likely to arise in the field of linear algebra,
from which, incidentally, I am excluding linear pro-
gramming in which there are several unsolved problems
of technique and error analysis.

I mention linear algebra because (a) it has received
considerable attention since the automatic calculating
machine arrived and (b) because it has considerable
bearing on the subject of partial differential equations.
Indeed, when we examine our various categories, we
find very little advance in our subject in its own right.
In elliptic equations in particular the major advance has
been in the extra efficiency of the solution of the corre-
sponding algebraic problem which arises through the
use of finite differences.

Partial differential equations

In fact the use of finite differences is still our main
technique, at least for equations of parabolic and elliptic
types, and I know of no brand-new method of general
application. Apart from finite-difference methods we
can think of suggestions, none of them particularly new,
such as a linear combination of trial solutions for linear
differential equations, with weights adjusted to satisfy
certain conditions, perhaps the boundary conditions at
various points, or even the differential equation at various
points. These are the so-called methods of collocation,
and may be extended with principles of variation or
least-squares to give methods like those of Rayleigh,
Ritz and Galerkin. They are valuable, I repeat, only in
certain restricted classes of problem, and in any case it
Is not easy to estimate the error of an approximation
with a finite number of terms.
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Certain methods of a brand-new type have been
proposed, for example the kernel-function method of
Bergman and Schiffer, the suggestion to replace the
differential equation by an integral equation, and the
“hyper-circle” method of Synge, but there is very little
numerical evidence of successful application, and indeed
they receive hardly a mention in the most recent book
on partial differential equations by Forsythe and Wasow.
Certainly 1 know nothing about these processes and
would welcome any knowledgeable comment in the
discussion.

For hyperbolic equations in two dimensions, Jikewise,
we have nothing particularly new. In addition to finite-
difference methods, of course, we can here integrate
along characteristics, and this in my view is usually the
better approach, since the characteristics separate
regions of discontinuity which would seriously affect the
finite-difference formulae. The characteristic method,
moreover, has recently been extended to problems in
three dimensions by Butler and others, and indeed this
is a bright light in my gloomy account of lack of
progress.

Machine-oriented techniques

In category (ii). of course, there have been substantial,
elegant and exciting advances in methods, particularly
for the elliptic equation, of solving the algebraic problem,
called by Forsythe and Wasow the “‘discretized™ problem.
The algebraic problem here involves matrices of large
order but of very particular forms, with large blocks of
zero elements. If the problem is small enough we can
solve it by a direct method, and for various purposes
and reasons this is very attractive. In general, however,
the small size of our machine store is a prohibitive factor,
and iteration is necessary. In place of the paper-and-
pencil relaxation method of Southwell, with its emphasis
on refined tricks and dodges which are difficult to
program, and which in any case do not use the modern
computer to best advantage, we have developed some
extremely fast and effective methods of automatic
iteration. The convergence of the simple automatic
Liebmann process has been improved by the “successive
point over-relaxation” methods of Young and Frankel,
and we have progressed through line iteration and
Chebyshev acceleration to the systematic alternating-
direction methods of Douglas and others, applicable
both to elliptic and parabolic equations and to problems
in more than two independent variables.

At the same time a number of beautiful theorems have
been discovered, part of my category (iv). which indicate
the circumstances under which these various iterative
devices will have optimum success. We have all heard,
for example. of the phrases “‘property (A)” and *‘con-
sistent ordering™ in connection with Young's theory of
successive over-relaxation. and we know that the simple
five-point formula for the Laplace operator satisfies the
requirements, whereas the more accurate nine-point
formula is satisfactory in this respect for line iteration
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but not for point iteration. Other results of this kind

are coming to light every day.

Error analysis

When we come to category (iii), however, we find a
rather mixed state of affairs. We know a lot about the
stability of step-by-step processes of explicit and implicit
kinds, through the pioneering Fourier-type analysis of
Von Neumann and its extensions by Lax and Richtmyer
and others, and of the similar use of matrix algebra in
this connection. We even have some theorems, in the
associated category (iv), connecting stability with con-
vergence. Generally speaking, if stability is assured
(that is if the asymptotic behaviour is right), and if the
finite-difference equations are compatible with the
differential equation (that is if we can choose our mesh
lengths, or certain parameters thereof, in such a way
that the local truncation error vanishes with the mesh
size), then we also have convergence—that is the finite-
difference solution tends correctly in the limit to the
true solution at all points.

But we are very considerably in the dark about the
difference between the true solution and that of the
algebraic problem at any fixed finite intervals. 1 some-
times think that the excitement of the discoveries about
the algebraic problem, particularly for elliptic equations
and particularly in America, has caused its exponents to
lose complete sight of the fact that our real problem is
differential, and not algebraic. Certainly comparatively
little attention has been paid to this point during the last
decade of great algebraic discovery. T suppose the
problems are harder, and those mathematicians, still
rather small in number, who have become seriously
interested in numerical analysis have found that the
algebraic field produces greater immediate reward.

The problems are certainly formidable. What, for
example, is the nature of the function g in the expression

Jx, y) — f(x, y, h) = g(h), (1
or in the corresponding
A — Ah) = gy(h) (2

in the eigenvalue problem, where f(x, y) and A are the
true solutions of the differential systems, and f(x, y, h)
and A(h) are approximations obtained from truncated
finite-difference formulae with interval h? The basis of
Richardson’s *‘deferred approach to the limit” rests on
such knowledge, and particularly on the assumption
that the right-hand side has a convergent Taylor’s series
or at least a semi-convergent series about /i = 0. But

this is true only in particularly simple cases. [t can be
proved, for example, that for the solution of
V- Af=0 (3)

in the interior of a rectangle, with f vanishing on the
boundaries, the use of the five-point formula gives such
a series in even powers of /i, and /*-extrapolation is
possible.  For the nine-point formula we have
h*- extrapolation. If there is an internal angle greater
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than =, however, as in the shape

Fig. 1

of the famous L-shaped membrane (Fig. 1) this hypo-
thesis is certainly not true, and as far as I know the
expression for the error has not been found either in
f(x, y, h) or in A(h).

A re-entrant corner is not the only danger. For
example we have similar difficulties in the neighbourhood
of the points x = 0, t = 0; x = 1, ¢ = 0 in the parabolic

equation
2

with initial conditions on ¢ =0 and boundary con-
ditions on the lines x = 0 and x = 1.

If
lim f(x, 0) = lim £(0, 1) ®)
x—>0 t—0

we are in serious trouble, and if the limiting higher
derivatives do not satisfy the differential equation and
its derived forms at the corner we have similar troubles
in decreasing degree.

With discontinuous boundary conditions even on a
straight boundary, and particularly with non-linear
equations, .the solution may behave in a way which
prohibits accurate representation in particular regions
by finite-difference equations, and therefore nullifies the
deferred approach, whose success demands a local
truncation error of the same form at every point.

It is interesting to note, in passing, that discontinuities
in the specified conditions for hyperbolic equations are
often much less serious. The discontinuities may be
propagated only along characteristics, and the solution
may have quite different forms in regions separated by
certain characteristics. Each within its own region may
be perfectly well behaved, to such an extent that the
integration along characteristics with a simple trape-
zoidal rule can be supported quite correctly with
h2-extrapolation. There may, of course, be other
difficulties with the characteristic method, such as the
presence of interfaces, the development of shocks, and
so on, about which considerable work is being done,
particularly at Aldermaston, and of which some has
been published in the book of the 1961 Summer School
at Oxford (Fox, 1962).

Returning to the parabolic and elliptic case, and
particularly to the latter, how are we going to estimate
the accuracy of our computed result? I assume, without
apology, that this is desirable, though its practice is not
widespread in these days of automatic computation!
There are about four possible methods. First, we can
sometimes prove, in the absence of rounding error (and
this I ignore completely since in stable methods its effect
is negligible) that the maximum difference between the
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true solution and the finite-difference solution with a
particular formula is less than some known multiple of
the largest value M of some derivatives. This possibility,
and in particular a knowledge of M deduced from the
data alone, rather than from numerical differentiation
of the approximate solution, occurs so rarely that it can
be discounted.

~ Second, we might try to use the deferred approach to
the limit. This also is unsound unless we can determine
in advance the nature of the expression for the error.
Without this knowledge the method is dangerous, and I
know of several cases, for example in the determination
of the eigenvalues for the L-shaped membrane, in which
extrapolations have given consistent but wrong results.

Third, we can decrease the interval successively until
the solution stops changing. This is sometimes the only
feasible and sound method, for example in cases of many
singularities or discontinuities, such as at interfaces in
nuclear reactor problems. But it is extremely laborious
and time-consuming, and even dangerous. Again I know
of cases in which, for the eigenvalue problem, successive
intervals have given the same result to a certain precision,
whereas the true solution differs quite substantially
therefrom.

Fourth, we can apply a method which is very suc-
cessful in solving the linear algebraic simultaneous
equations

Ax = b. 6)
From an alleged solution x, we compute the residual
vector

r=>5b— Ax,, )]
and find a correction x; to x, from the equation
Ax,=r. (8)
In a linear differential equation we are trying to solve
something like
k(D)f =g, ®

where k(D) is a differential operator and g a function
of the independent variables. Our first approximation

satisfies
kD)fo =g + & (10)

and if we can find € we can correct our approximation
with the addition of an f; which satisfies

k(D)f; = € (11)
and the homogeneous versions of the various boundary
conditions. For non-linear equations we can obtain
linear equations for first-order corrections.

Now can we find the function €? I assert that if we
cannot find € with reasonable accuracy at every point,
then we have not solved our problem with any degree
of confidence. Indeed the determination of e will
involve derivatives of all orders up to that of the
differential equation, and at least some of these will be
the important quantities in practical applications. The
standard method of finding € uses formulae for numerical
differentiation, and this is usually safe in regions where
the differences converge, so that the function can be
approximated by interlacing polynomials, and with safe-
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guards about possible masking of periodic behaviour.
Near singularities, such as the re-entrant corner in the
L-membrane, the differences will behave in a way which
indicates the applicability or not of finite-difference
formulae, and we may have to reduce the interval in a
region whose boundaries the behaviour of the function
will specify for us. Alternatively, we might use the
methods of Motz and Woods, extended recently by
Walsh, in which we abandon finite differences altogether
in the offending region, and use formulae deduced from
a linear combination of special functions which satisfy
the differential equation and boundary conditions in the
region of the corner. This is an extremely useful meihod,
and has been applied with success by Walsh to the
L-shaped eigenvalue problem, with a relatively large
interval and a small fraction of the computing time
involved in the use of finite differences at the necessary
small interval. It is the only method I know, inci-
dentally, which gives the eigenfunction accurately in the
neighbourhood of the corner.
In the equation

VY + M =0, (12)
in two Cartesian co-ordinates, and with zero values
of f on the lines meeting at the re-entrant corner,
the appropriate functions are the Bessel functions
J3n (ry/A) sin (n6), where the corner is the origin of polar
co-ordinates (r, 6). Unfortunately it is not always easy,
in more difficult cases, to find functions which satisfy
all our requirements, and this is another field of research
in which success would be extremely valuable. It belongs
to my category (iv).

The difference correction

The method of the difference correction, which I
advocated several years ago for both ordinary and
partial differential equations (Fox, 1947), is of course a
particular technique of the kind I have been talking
about, involving the computation of the perturbation
term &. This idea does not seem to have penetrated
deeply into the literature of automatic computation, and
indeed is not mentioned at all by Forsythe and Wasow.
I'am more puzzled than hurt by this neglect. Certainly
we have to do some differencing, involving extra pro-
gramming, extra space, and some difficulties in auto-
matic inspection of differences, but machines are getting
larger and programming easier (or so everybody tells
me), and if we are concerned with accuracy, as we
certainly should be, I should have thought that something
like this was essential.

In passing 1 would like to comment on a remark about
this method made by Dr. Wilkes in his review of the
second edition of Modern Computing Methods. He
advocated, for various reasons, the direct inclusion of
higher differences in the adopted form of the Lagrangian
formulae for the determination of the first approxima-
tion, which would avoid the differencing and indeed
give in one application a very correct result. After some
examination I think I would accept this proposal for the
solution of integral equations, and for some parabolic
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equations, but for ordinary differential equations and
some partial differential equations this approach has
some inconveniences. For any step-by-step process,
particularly in ordinary differential equations, it is
dangerous to use a recurrence formula of greater order
than that arising naturally from the differential equation:
the result is almost always *‘strong instability,” in the
phraseology of Dahlquist. This is not necessarily true
for boundary-value problems, either ordinary or partial,
and even for parabolic equations of not too complicated
form we have found it possible to incorporate the
difference correction or at least the major part of it
into a Lagrangian form, with interesting effects on
stability criteria. But with two-point problems in
ordinary differential equations, and with elliptic partial
differential equations, the resulting Lagrangian formulae
give rise to matrices of less compact form, so that not
only is the arithmetic of both direct and iterative methods
of solution more complicated and lengthy, but we may
also destroy the valuable property (A) which may be
needed for the production of optimum accelerating
devices. In any event the fundamental point remains
valid, in all cases, that we do not know what order of
Lagrangian formula to take until we know the solution,
and for any approximate solution the determination of
our error function e is still necessary.

Practical problems

Finally, I must make two comments about my
category (v)—practical problems. In most cases, par-
ticularly for elliptic problems and perhaps especially for
the free boundary case, in which some extra condition
is imposed which will help to fix the position of some
part of the boundary, the boundaries are not often of
conveniently simple shape. Indeed the automatic
machine production of appropriate finite-difference or
other formulae, for use near a curved boundary, is a
formidable undertaking, and I have seen no research of
any great value in this field, even in two dimensions.
The adjusting of the boundary to a more simple shape
must, I think, have a dangerous influence on the result,
except possibly in the eigenvalue problem, for which
there are certain exclusion and inclusion theorems due
to Polya and Szego.

Second, there are some problems, for example in
tidal flow in rivers and in numerical weather prediction,
in which the given set of data comes from physical
measurements, and may be rough or at least not smooth.
It is not a known mathematical function, and yet we
have to differentiate it, perhaps more than once, before
our main numerical work can start. Little is known,
I suspect, though the Meteorological Office is investi-
gating the problem, of the effect on the solution of
roughness in the data, or on what kinds of initial
smoothing processes will produce the best results.

Conclusion

One very last word. The SPADE project, started
some years ago on the West Coast of America, which
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seemed to be intended, without too much exaggeration,
to allow us to write, in our program, ‘‘solve partial
differential equations of type 7, with the following
specifications,” has died a lingering death. [ think it
was stillborn, since the topic has too many parameters
for a single program. But we should at least try to find
into what categories our various problems will fit, and
to make the number of categories reasonably small, so
that not every fresh problem needs a separate complete
program.

This is a problem very suitable for university research,
and | have a private regret that our Computing Labora-
tories have such poor facilities, both in machines and
particularly in men, and that these facilities are occupied
so much with teaching and the interminable preoccupa-

differential equations is essentially a problem in mathe-
matics, and neither ALGOL nor FORTRAN will do
it for us.

Note added in proof: 1 am grateful for a written
comment by Dr. J. C. P. Miller drawing attention to
recent work by Lieberstein and Fichera. This work is
concerned with solving partial differential equations in
terms of a series involving standard functions, such as
polynomials in the several variables concerned, with
coefficients to be determined to give a suitable approxi-
mation to the solution desired. A great deal of emphasis
is laid on the determination of error bounds that can

be calculated—at least for the overall integral—e.g. of

the square of the error. These papers, however, are

tion with programming languages, that we seem to make
too new to me for authoritative evaluation.

little progress in mathematics. The solution of partial
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Note on a method of forming a sorting key for a partly
ordered list, and an application

By D. M. Collison

In commercial applications, calculating the keys for
items to be sorted is usually trivial, since they are rarely
time-dependent. In on-line applications the keys may
well vary with time, and if a complicated decision is
involved in calculating them, any method of simplifying
the decision is useful. One way may be to assume the
answer, and check the assumption in a simpler manner
after the calculation. For a key with two different forms,
A and B, the conventional structure of the sorting
routine is shown in Fig. 1, and the suggested one in
Fig. 2. The new routine behaves like a flip-flop, the
decisions switching it from one state to the other; and
it can be extended for keys with more than two different
forms, although the result is not as efficient. The main
advantage of such a structure is that it will work better
if the list is already partly ordered, as the cross-overs are
less efficient than the conventional structure.

In the application, it was necessary to sort items with
Cartesian coordinates (x, y) into angular order. Forming
the polar coordinate ® was slow and inefficient, as the
key was only needed for the sorting, and the following
key f was used (the case x = y = 0 could not occur).

x>y>0 f=yB8x -3
y = x| f=—x/8y —%
—x > |y /=8
—y > |x| f=—x/8y +%
x> —y>0 f=pBx +}

[is continuous over the interval [—4, +4] and any two
keys can be compared by one subtraction. The key
for y = 0, x > 0 should be calculated by only one of
the first or last forms, and not by both.

The routine was implemented on the Elliott 502. This
computer has no modulus facility and the decision
whether | y| > |x| takes about six instructions. Form A,
therefore, divides 1 by x and tests for overflow (one
instruction), while form B divides x by v. The actual
routine to deal with the five different forms is rather
more complicated than Fig. 2.

Two points arose in the implementation and are
included to guide possible users. The first occurs if the
hardware division process does not round properly and
the full length of the quotient is used. Adjacent items
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FETCH NEXT ITEM ’

¥
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i ¥
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Fig. 1.—Conventional structure
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SORTING SORTING !
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Fig. 2.—Suggested structure

may be sorted into the wrong order. Luckily the 502
forms an extra digit for the quotient and rounds accord-
ingly; with other computers it may be necessary to
round and truncate the quotient by program. Another
possibility is that both x/y and y/x may cause overflow.
This occurs on the 502 if x = y, but it was possible to
make provision for it without slowing down the two
main loops of the routine.

The author would like to thank Elliott Brothers
(London) Ltd. for permission to publish this note; and
Mr. E. M. Shorter. who implemented the routine on
the 502.
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