Partial differential equations

WILKINSON, J. H. (1960). “Rounding Errors in Algebraic Processes,” Information Processing, pp. 44-53. Paris: UNESCO;

Munich: Oldenbourg; London: Butterworths.

Woops, L. C. (1953). *‘The Relaxation Treatment of Singular Points in Poisson’s Equation,” Quart. J. Mech., Vol. 6, p. 163.

Young, D. (1954).
Vol. 76, p. 92.

“Iterative Methods for Solving Partial Differential Equations of Elliptic Type,” Trans. Amer. Math. Soc.

Note on a method of forming a sorting key for a partly
ordered list, and an application

By D. M. Collison

In commercial applications, calculating the keys for
items to be sorted is usually trivial, since they are rarely
time-dependent. In on-line applications the keys may
well vary with time, and if a complicated decision is
involved in calculating them, any method of simplifying
the decision is useful. One way may be to assume the
answer, and check the assumption in a simpler manner
after the calculation. For a key with two different forms,
A and B, the conventional structure of the sorting
routine is shown in Fig. 1, and the suggested one in
Fig. 2. The new routine behaves like a flip-flop, the
decisions switching it from one state to the other; and
it can be extended for keys with more than two different
forms, although the result is not as efficient. The main
advantage of such a structure is that it will work better
if the list is already partly ordered, as the cross-overs are
less efficient than the conventional structure.

In the application, it was necessary to sort items with
Cartesian coordinates (x, y) into angular order. Forming
the polar coordinate ® was slow and inefficient, as the
key was only needed for the sorting, and the following
key f was used (the case x = y = 0 could not occur).

x>y>0 f=yB8x -3
y = x| f=—x/8y —%
—x > |y /=8
—y > |x| f=—x/8y +%
x> —y>0 f=pBx +}

[is continuous over the interval [—4, +4] and any two
keys can be compared by one subtraction. The key
for y = 0, x > 0 should be calculated by only one of
the first or last forms, and not by both.

The routine was implemented on the Elliott 502. This
computer has no modulus facility and the decision
whether | y| > |x| takes about six instructions. Form A,
therefore, divides 1 by x and tests for overflow (one
instruction), while form B divides x by v. The actual
routine to deal with the five different forms is rather
more complicated than Fig. 2.

Two points arose in the implementation and are
included to guide possible users. The first occurs if the
hardware division process does not round properly and
the full length of the quotient is used. Adjacent items

74

FETCH NEXT ITEM ’

¥
|

COMPLICATED DECISION

i ¥

I I
FORM A ’ FORM B

¥ |

SORTING PROCEDURE

Fig. 1.—Conventional structure

—’ FETCH NEXT ITEM FETCH NEXT ITEM |—

7 T
| !
FORM A FORM B
T N —y
1 | AN |
SIMPLER DECISION SIMPLER DECISION]
|
T T
| |
SORTING SORTING !
PROCEDURE PROCEDURE —

Fig. 2.—Suggested structure

may be sorted into the wrong order. Luckily the 502
forms an extra digit for the quotient and rounds accord-
ingly; with other computers it may be necessary to
round and truncate the quotient by program. Another
possibility is that both x/y and y/x may cause overflow.
This occurs on the 502 if x = y, but it was possible to
make provision for it without slowing down the two
main loops of the routine.

The author would like to thank Elliott Brothers
(London) Ltd. for permission to publish this note; and
Mr. E. M. Shorter. who implemented the routine on
the 502.

¥20Z Iudy 61 U0 1senb Aq 261001/v2/1/9/8101e/|ufwod/woo dnoolwspeoe//:.sdiy woly papeojumo(

