Numerical quadrature in » dimensions

By D. Mustard, J. N. Lyness and J. M. Blatt

We investigate a selection of integration rules based on the combination of third degree rules for

elementary three-dimensional sub-domains.
of these rules to domains bounded by planes of a certain type are discussed in detail.

The practical problems associated with the application
These include

integration rules for less symmetrical domains which may occur near the boundary of the volume
of integration, methods for combining integration coefficients from adjacent sub-domains, and
methods for changing net size within the volume of integration.

Particular attention is paid to minimizing the number of points at which the function has to be

evaluated, and error estimates in terms of computation time are given.

A list of integration

coefficients of general interest for three-dimensional integrations is presented. The discussion is
generalized to n dimensions for hyper-cubic domains.

1. Introduction

To calculate the binding energy of the triton it is neces-
sary to evaluate numerically a number of triple integrals.
The domain of integration is defined by the inequalities

X+vr=z |, (1.1a)
r+z>x (1.1b)
I xz=y o, (1.1c)
xX>=ry (1.2a)
y=ry ., (1.2b)
z=ry (1.2¢)

where x, v and z are the three integrand variables and r,
is a given constant (the nucleon hard core radius). The
numerical integration is performed over the finite part
of this infinite domain defined by the inequalities

x<_ R , (1.3a)
r<< R , (1.3b)
z< R, (1.3¢)

where R is a constant chosen to satisfy the requirements
of both accuracy and economy. Since the integrands
can be transformed into functions symmetric in x and y,
the domain can be halved by the further inequality

x>y . (1.4)

This makes inequality (1.36) superfluous.

Not only is the shape of the domain complicated but
the integrands, although having the advantage of a form
making tabuiation over a cubic lattice convenient, have
the disadvantage that some of them assume indefinite
forms at points (termed ‘“awkward points”) where
X = v = z. Many of the integrands are rapidly varying
functions where at least one of x, » or = is small, but are
slowly varying where x, 1 and = are all large, so changes
in the fineness of the lattice of integration points are
desirable.  These are made suitably at boundaries
defined by

Min (x, v, 2) == ¥ (1.5)

where r|, r,. etc., are constants of magnitude between r,
and R.
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All of these boundary planes may be written
Eoc,-x,« -+ /3 -0

where «; and B are small integers. The method of the
final sections of this paper is practical only if the
boundary planes are of this type.

We have described features of this particular problem
because some of them, which led us to select and develop
a particular method of integration, may be common to
many other problems. There are three conventional
methods, which treat the domain as a whole, and these
are discussed briefly below.

(i) Gaussian integration rules

An integration rule is said to be of ““degree of precision
k> or a “k-th degree rule” if it computes exactly the
integrals of all polynomials of at most degree k. The
well-known Gaussian rules have the advantage that a
given degree of precision can be achieved using about
half the number of points required in other methods,
but the disadvantage that unless the domain is simple
the determination of the rule itself may be an enormous
problem. To get sufficient accuracy in the triton cal-
culation, for example, one would need more than
one thousand points and so would have to find more
than one thousand zeros of a complicated polynomial.
This polynomial itself is difficult to determine since the
Gram-Schmid process one uses for determining it
(Courant and Hilbert, 1953) is numerically unstable with
respect to rounding errors, and requires multiple-
precision work after the twentieth polynomial. If
having done all this one wanted to improve the accuracy
by increasing the number of points or the value of R.
one would have to start again ab initio.

(i1) The Monte Carlo method

This method is flexible. easily coded. and. if low
accuracy is adequate. very efficient, so it is suitable for
pilot calculations (it was. in fact, used in the triton
problem (Derrick. 1959: Derrick and Blatt. 1960). but
is unsuitable for final calculations partlv because of its
low accuracy.) If N is the number of trial points then the
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Numerical quadrature in n dimensions

error decreases as N~} or, in a modified method (Davis
and Rabinowitz, 1956) as N—!. In the triton problem
the convenience of tabulating the functions over a cubic
lattice, and the slightly better error law ultimately
obtained, led to the use of other methqds.*

(iii) Product Simpson’s rules
In this method the integral is written as a repeated

integral. In our case this has the form
R x
jdx jdy K(x, ») (1.6)
ro ro
where K(x,») = J*f(x, y, z)dz (L.7)
21
and where z, = max (ro, x — ») (1.8a)
z, = min (R, x + ). (1.8b)

Note that even if the integrand f(x, y, z) is analytic the
function K(x, y) is not, since z, and z, are non-analytic.

The awkward boundaries create several difficulties.
If one used the conventional Simpson’s rule with interval
h in the z dimension, one could define K(x, y) only at
intervals of 2A in x and y. The next integration would
have to use an interval of 24 in the y dimension, and the
resulting function of x would be defined only at intervals
of 4h, so the last integration would have to use an
interval of 4h. This choice of intervals would cope with
the non-analytic nature of K(x,y), but that of equal
intervals in all three dimensions would not.

We discuss this asymmetric rule in Section 6 where
we deal with the use of different intervals in different
dimensions. There we mention that cases arise in which
such a method is suitable.

There is no need for one to use different intervals if
one makes some use of, for example, the Simpson’s ““3”
rule if the number of points is even, or locates the lattice
points differently according as this number is even or
odd. However, in the following Sections we show that
use of this rule without great modification is relatively
inefficient.

In the method we develop for use in the triton problem
the whole domain is dissected into elementary sub-
domains, or cells, of relatively simple shape, and in each
of which the integration rule is determined using the
condition that it be of a specified degree of precision in
that cell. Since each cell is small a low-degree rule
suffices. This method is the natural extension to many
dimensions of the usual method in one dimension.

Gaussian integration rules for the n-cube are known
(Hammer and Stroud, 1958), but they are not the most
efficient ones for our present purpose, for when cells
are joined to form a larger domain the total number of
integration points is not generally the sum of their
numbers in each cell. The counting of integration points

* The popular idea that the Monte Carlo method is generally
better than a straightforward error estimate would indicate is, in
our view, mistaken. Experiments have shown that if one is unlucky

the actual error may greatly exceed the estimated error. Monte
Carlo calculations are always rather a gamble.
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is discussed in Section 2; various integration rules are
given and their errors discussed in Sections 3, 4, 5 and 6;
non-cubic boundary cells are discussed in Section 7,
and the joining of cells and changing of cell size
are discussed in Section 8. For the sake of sim-
plicity and concreteness the last two Sections are
restricted to triple integrals of the type that interests us,
but the methods used allow obvious generalization.

2. Counting of points

Consider an n-dimensional domain of volume V
which is dissected into cubic cells each of width 24 and
volume (2h)". The number of cells, C, is given by

C = V/(2hy. Q2.1

(We neglect, temporarily, possible non-cubic cells near
the domain boundaries.)

Let x be the coordinate vector of any asymmetrically
located point in the basic cell, whose centre we can take
to be at the origin. By reflection, rotation and inversion
symmetry this point is equivalent to many others (7
others in the square, 47 others in the 3-cube, etc.).
Reasonable integration rules for this cell are symmetric
and assign equal coefficients 4; to equivalent points, so
it is best to use only points of high symmetry. .Gaussian
integration rules using this principle have been given
before (Hammer and Wymore, 1957; Hammer and
Stroud, 1958).

The counting of points is quite different, if a typical
point is a boundary point of a cell, as, for example, is
the vertex of the n-cube. There are 2" vertices of an
n-cube, and all of them have equal coefficients 4;. These
27 points are effectively only one point since each point
is a vertex of not only one particular cell but of all
adjacent cells, i.e. the point is “shared” among 2" cells,
so if an integration rule uses only the cube centres and
the cube vertices the number of integration points, N,
in a hypercubic domain is given by:

N = C + (Cln + 1)
N = (1 + 29C.

If C is large, of the order 4,000 and » is small, say 3,
(2.2a) may be approximated by*

N =2C. (2.2b)

This is the case for most practical applications. Since
we use N only to estimate the error of a particular rule
per number of points used, we shall be satisfied with
(2.2b). We discuss the counting of points in this Section
in ‘the spirit of this rough approximation. When an
accurate estimate of N is required the effect of the
boundary cells must be calculated.

(2.2a)

and not

* For N > 4096 and n = 3, 2C <~ N < 2-2C. For large  this
approximation is quite invalid. For »n == 10 and N = 1,000,
N ~ 18-7C. The authors are indebted to Dr. J. C. P. Miller for
drawing their attention to this point. However, in a large number
of dimensions, to obtain reasonable accuracy a larger number of
points would be used; thus equation (2.2b) would still be not
unreasonable.
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Numerical quadrature in n dimensions

For each value (0 < { < h) the n-cube contains
n + 1 different symmetry classes of points. The class
Jj- contains all points X = (x, Xz, ..., x,) such that
exactly j of the n coordinates x; differ from zero and
each non-zero x; equals either +{ or —{. The number
of points, Gj, in class j- is given by

G, = 2f(';) (2.3)

When the cells are joined, each point in class jj is shared
between 2/ different cells, and so this class contributes
an effective number of points per cell, N, given by

n
N, = (/> 2.4)
If the integration rule uses all classes j, (j = 0, 1,...n)
and no others, then the total number of integration
points is given by
|2 vV
=@y 5N @5)
(as might be expected). If not all classes, j, are used
then the sum in (2.5) does not extend over all values of /.
For example, a rule we call the “corner rule,” using
only body centres and vertices (j = 0 and j = n), uses
a total number of points determined by (2.1) and (2.2b):

N

2;1{[-}1,-, (“corner rule”). (2.6)

The most efficient points are the ones with the lowest
N;, viz. the body centre and the vertices; next most
efficient are those with j = 1 and j = n — 1; and so on.
Less efficient than the points of class j, are those of
class j-«({ < h) since the effective number of points of
this class per cell is G; not N;. The most efficient of
classes j-({ < h) are those with j = 1. An integration
rule using the body centres, the vertices and points of a
class 1- ({ < h) uses a total number of points given by

(n+ 1)V
2n—1hn *

We shall develop a fifth-degree rule of this type (error
of order h% and several third-degree rules such as the
corner rule (error of order h*). These rules are more
efficient and flexible than the conventional Gaussian
rules applied to cells (Hammer and Stroud, 1958).

The integrals over the central n-cube of all monomials
that have an odd power of a coordinate are zero, and
many integrals of the others are related by symmetry
(Hammer and Wymore, 1957; Miller, 1960). The only
essentially different non-vanishing integrals of terms in a
polynomial of degree 5 are those of

2 4 2.2
1, x7, x{, x{x3. (2.8)

We write the general integration rule for the cell in
the form

- n G h Gj —
flxydr = (2/1)"{ S 4% fy) + £ X BY Zf(i(,":l)}
h j 0 k=1 1 j-1 k=1

N:

N= Q2.7)

17

where, hj, are the points of class j, and the {4 are those
of class jx(/).

3. The “‘corner rule’’ in n dimensions

In this Section we find a certain third-degree rule. By
(2.8) the only essentially different integrals required are
those of 1 and x3, so two types of points are enough.
According to Section 2 the best are the body centre A,
and the vertices A, so our rule reads

[ feour = (2h>~{Ao. o) + A, 3 f(/Tnk)}. 3.
Taking f = 1 and f = x{ in turn we get the conditions
Ay +274,=1 (f=1)
274, =13 (f=x})
with the solution
Ay =2/3

If we now join the cells the rule for use inside the
domain, away from the boundaries, becomes very simple:
Sum all body-centre function values with weight 2/3,
and all vertex values with weight 1/3. We shall call
(3.1) and (3.2) the ““corner” rule. The small number of
points it needs to cover the whole domain [see (2.6)],
and their disposition on a body-centred cubic lattice,
give this rule such an advantage that only in special
circumstances would it be worth considering more
accurate ones.

We make an estimate of the error made in using this
rule. If we neglect a]l higher than fifth-order derivatives
of the integrand f(x), we can replace f(x) inside each
cell by some fifth-degree polynomial. By (2.8) the
relevant terms_for the central hypercubic cell form a
polynomial P(x) of type given by

A, = 1/(273). (3.2)

(3:3)

i>j=

P(—;C) =ay + ) (bix? + ¢ix}) + > d;x2x3.
i=1 1

The integral, J, of this over the cell is given by

=i carfes (5 +5)

=1

h4 n
+§ > dij}‘ 3.4

i>j=1

If we apply the corner rule (3.1)-(3.2) to P(x) the
result of the approximation is
n h4 n
J, = (Zh)"{ao + _El (h?b;]3 + h%ci/3) + 3 Z ldij}-
i= i>j=
(3.5)

The error over a single cell, Ej, is given by

4

2h n n
E,=J —J= (2;,),:,45 ( zl 3, + X 15d,~j, . (3.6)

i>j=
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Numerical quadrature in n dimensions

Table 1
Six third-degree rules for 3 dimensions

NS;;ER Ao Ay Az A3 v dy da P4 ; P22
1 23 0 0 124 2 1/60 1/6 0-0026 | 0-0262
2 0 1/6 0 0 3 160 | —1/12 0-0045 | —0-0225
3 12 0 124 0 4 160 | 1)24 0-0066 ;-_0~Ol66
4 0 0 s | -1 4160 | —1/30 0:0066 | —0-1333
5 219 | 1/9 0 1/72 5 | 1/60 0 | 0-0089 | 0
6 8/27 2/27 i 1/54 1216 | 8 160 0 ‘ 0-0166 i_m 0

Values of v, d4, d>2, p4 and p3> for various third-degree rules for three dimensions. These numbers are defined in equations
(4.1)-(4.5).

In order_to get an error estimate for the original
function f(x) we observe that for the special case
f(;) = P(?) the quantities ¢; and d;; can be written as
derivatives evaluated at the origin:

1 % 1

“Tawr YT Ak 7

For a general function f'it is reasonable to replace these
coefficients by the same derivatives, evaluated somewhere
inside the hypercube. After this substitution our esti-
mate of the error becomes

h4 n Df n 7‘

E, =~ (2h) 180{ 2 5y 4 + K,L?",szb } (3.8)

The large number of different derivatives which enter

this estimate makes any discussion difficult. In order

to simplify matters we introduce the average direct
fourth derivative

n 34
jo=13s (3.9)

n < lbx“

and the average mixed fourth derivative

n 34
ey 2 s (3.10)

n(n — 1), 55 9x20x3
The error estimate (3.8) then takes the form

E, = (2h

(3.11)

We cannot make a fair comparison between different
rules merely by finding E, for each of them. For a
given fotal error, E, it is not the quantity # alone which
has practical significance but the computation time,
which is proportional to N, the total number of points
at which the integrand must be evaluated; so we must
express E in terms of V' (the volume of the domain) and
N, rather than A.

To estimate E for a hypercubic domain one needs
> (2h)f® and Y] (2h)'f?- 2, the summation being over
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all cells. These sums may be approximated by the
quantities F» and F2 2, respectively, defined by

F& — j SO (x)dr (3.12)
and F22 — j 2 (x)d, (.13)

and which are independent both of /& and the integration
rule used.

The number of cells, C, is V/Q2h)" [see (2.1)]; the
number of integration points for the corner rule is about
2C [see (2.2b)] and each cell contributes an error E,
estimated in (3.11), so the total error E is estimated to be

Ex lW%"_—,,M{F('ﬂ 1 5(n— 1F @ DYVIN)¥n. (3.14)

For n = 3 we find that
E ~ 0-00262{F @ 4 10F‘2v2)}(V/N)4/3. (3.14")

In all similar third-degree rules E varies as the (4/n)th
power of the computation time, so the factors other than
(V[N )* are the distinguishing ones.

4. Other third-degree rules in three dimensions

A similar analysis can be made of other rules we may
invent. If a three dimensional rule uses only the centre

= .
hy, face centres hl,‘, edge centres hz,, and vertices h3,,
of the cubic cell, we can write it in the form

—> — 6 >
[ FGr == @ Aufh) + 41 3 100
h

+Azzﬂén~A zuhm} @.1)

m o1

Six rules are listed in Table 1. Rule 2 (the “‘face-centre”
rule) uses only face centres; rule 1 (the corner rule dis-

cussed before) and rules 3 and 4 each use only two of

the other three types of point. Combinations of rules
1-4 may be used; two, including the three-dimensional
product Simpson’s rule (rule 6), are discussed here.
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Numerical quadrature in n dimensions

Table 2
Third-degree rules for n dimensions (n > 2)

RULE Ao Al An1  An v dy dy 2880p4 2880p22
1 n n(n — 1)

1 23 | 0| 0 | 379 2 180 | 36 n-24/n Sn(n — 1)24/n

_n 1 n | —n(n—1) 4 “Stn— 4/
2 1 3 A 0 0 n+1 180 7 n(n + 1)4In 2(n Dn(n + 1)3n | (n # 3)
5 8—2n| 1 0 1 {n—f-Z n 0 n(n + 2)3in 0 n#4

9 | 9 9-2n 5 180 20 0 n=4

2\" 1 o n
— (2) L 2 _n

6 | ai= (3) o » | |0 16n 0

Values of v, ds, d22, ps, p2> for certain n-dimensional third-degree rules. These numbers are directly analogous to
those defined for 3 dimensions in equations (4.2)-(4.5).

Table 3

Some 5u:-legree integration rules for three-dimensional cubic cells

INTEGRATION POINTS AND COEFFICIENTS ERROR ESTIMATE COEFFICIENTS
Ao A Az As B B; ; .
RULE
o e ok o ( {1 ) (Z_h 3 ( {') V43 Da2 p222
2/ 1k S Jhik | \2/3«
1 -1 0 0 1 0 3 0 8 | 0-0000159 | 0-00556 | 0-00926 | 2-94
5 73 i8
2 _4 0 1 1 16 0 0 11 | 0-000188 | 0-0105 | 0-00700 | 5-28
3 50 120 45
62 1 1 16
3 | -2 a5 0 =3 a8 0 0 11 | 0000188 | 0-0105 | 0-0175 | 5-42
4 | -2 2 0 L 0 0 4 13 | 0-000262 | 0-00367 | 0-0134 | 1-10
45 45 120 45
s 2 0 LI I 0 0 4 13 | 0-000262 | 0-00367 |—0-0159 | 1-08
35 45 360 45
6 | —19/15 | —1/30 % 0 %‘; 0 0 13 | 0-000262 | 0-0147 |—0-0122 | 5-60

We list in Table 3 several fifth-degree rules for three-dimensional cubic cells. Rule 1, which uses an irrational intermediate point, is the
rule discussed above; the others all use intermediate points which lie on a cubic lattice of coordinate difference 4/2, and so would not require
interpolation if the function were tabulated at this regular interval. We see that although rule 1 has by far the lowest value of pg, it does
not have the lowest value of ps; or pa2», so if the mean direct sixth-order derivative of the integrand were very small compared with the
other, mixed, mean derivatives, one of the other rules, such as 2 or 5, would be not only more convenient but more efficient.
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Numerical quadrature in n dimensions

Defining E,, E, f¥, (22 F&® F@&2 N and V as
in Section 3, we again can find estimates of E, and E
in the forms

E, & Qh>3hH{dy [ 4 dyy 2D},
E & hMd,F ™ + dy,F2 2},

4.2)
4.3)

where d, and d,, are coefficients dependent on the rule
but independent of f(X).

We define v to be the number of points used per cell
when only a small proportion of the domain is occupied

by boundary cells. Thus
N = V5 4.4
= an” “4
and we may write
V\43
Ex {pF® + puF ) ﬁ) 4.5)
Ty 413 T\ 413
where Da = d4(g> and p,, = dzz(g) (4.6)

In comparing rules the principal criterion that we use
is that the rule should be efficient, i.e. have a low error
per point used.

The rules easiest to code are the product Simpson’s
rule (rule 6), which uses a 1:4:2:4:...2:4:1
ratio along each line, and the face-centre rule (rule 2),
which uses a 1:2:2:...2:1 ratio along each line;
however, the other rules are only slightly harder to code.
The important factor in the estimate of error per point
is {puF @ 4 py, F DY If F22)[F@ js small (in most of
the domain) the corner rule (rule 1) is best; if it is close
to some constant then either one of the rules 1-4 or a
combination of rules 1 and 2 (with p, = 0-00890) is
best; and if it is large then rule 5 (a particular com-
bination of rules 1 and 2) is best. It can be seen that the
product Simpson’s rule (rule 6) is always less efficient
than rule 5. The asymmetric product Simpson’s rule is
discussed in Section 6. It is usually less efficient than
the symmetric one.

5. n-dimensional rules

The errors made by n-dimensional rules of this type
increase quite seriously with n. Suppose one attempted
to decrease the total error E by reducing the cell width
from A to gh in a rule of degree s — 1. The number of
points used in the domain (and so also the computation
time T') is increased by a factor g=” and the error is
decreased by a factor g%, so the relation between error
and computation time is

E ~ T-sin, (5.1)

A third-degree rule in one dimension (Simpson’s rule),
for example, makes an error decreasing as T—4, whereas
one in three dimensions makes an error decreasing only
as T-43,
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For n > s the error decreases not faster than 7 !
whereas the modified Monte Carlo method makes an
error decreasing as 7 !, and its simplicity and flexibility
would usually compensate for any larger numerical
factor in its error estimate. So o evaluate an n-dimen-
sional integral the modified Monte Carlo method s
usually preferable to an integration rule of degree less
than n.

In view of this we list in Table 2 only four third-degree
rules for n dimensions. Using the definition of classes
of points j- given in Section 2, we call the 2n points of
class 1, “face centres” and the n.2"~! points of class
(n — 1), “edge centres.” The notation and general form
of the error estimates are as in Section 4. The error
estimate for rule 5 does not involve the mixed derivatives:
if n = 4, rule 5 could be preferable to the corner rule if
the magnitudes of these derivatives were significant.
The conventional product Simpson’s rule is again
significantly inferior.

The best rule obtainable using points of class j, alone
is a third-degree rule that integrates exactly the mixed
terms x2y2, etc., but not the terms x*, etc. A fifth-degree
rule uses points of at least one class j«({ < h). According
to Section 2 the rule

2

Fodr = <2h)"{Aof(Zo> Ay S )
h k

2n —
B T ) 62

where the notation is that of (2.9), is the most economic
rule having just the number of independent parameters
(Ag, A,y By, ©) to satisfy the conditions that it be of fifth
degree. These conditions, that integrals of all terms
(2.8) be computed exactly, lead to the values

Ay = (8 — 5n)/9; A, = 2-"/9; B, = 5/18;
Uh = @5}

For this rule, (5.2), v = 2n + 2 and N is given by (2.7).
In three dimensions, then, this rule uses effectively 8
points per cell compared with 14 points per cell used by
the most efficient fifth-degree rule given in Hammer and
Stroud (1958). Compared with the corner rule the rule
(5.2) has two disadvantages: (i) n + 1 times as many
points are needed, many of which are not cubic lattice
points,* and (ii) one coefficient is negative.

(5.3)

To estimate the error we proceed as before. Making
the definitions
1 n bf)}(‘
(6) — (6) — |z i
FO = [ fodr = |- P (5.3a)

* If function values were known only at cubic lattice points
some interpolation would be necessary. but the interpolation rule
used must have degree of precision 5 at least, and so one would use
altogether many more points per cell of width 2/ than by applying,
say, a fifth-degree integration rule developed specifically to use
only the points of a cubic lattice having co-ordinate differences 14
instead of A.
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Numerical quadrature in n dimensions

Table 4

Lattice points and associated coefficients for a right-
angled isosceles triangle

xh yih Qliz X COEFFICIENT
! 0 A\
0 1 Ay
1 - A>
I i 43
)
(4,2) — (4, 2), —
F J-f dr Jn(ﬂ — 1),'_]-2=| bx;.‘hxf’ dr (5.4)
i%j
F2.2.2) — Jf(z, 2,247
6 n d6f
- '["(” — )@ — 2)i>i>zk=l Ax2dx2ox} dr (5.5

we find for a cell

nh® o 4
189000/ * T 17301 — D/

E, =~ (2h)

+ 50— v — 27022} 66

and for the whole domain

 nQ@n £ 2%
~ 12096000

875 VA 6in
- — _ 2,2,2 _
+ =51 — Din — DF? >}(N) .

{F<6> + 175(n — 1)F 42

;.7
For n = 3 the latter reduces to

1 1750 2%
~ (6) (4,2) T F@2,2,2) _
Ex 63000{F +350F 4.2 4 —F }( N) .
(5.8)

As expected, the error from this rule is much smaller,
and decreases with the computation time 7 as T2
instead of as T 4/3; however, the practical problems
associated with the boundary cells are much more
difficult than for third-degree rules.

In the discussion in Section 7 of integration over
boundary cells in the three-dimensional case, we shall
see that second-degree rules using only cubic lattice
points are obtainable. Since the number of boundary
cells is proportional to V2? rather than to V, the total
error still decreases with the total number of points N
as N~ 43 The numerical coefficient generally is larger
than those obtained here, but since the boundary cells
occupy only a small fraction of the domain this is not
very serious.

G
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6. The asymmetric product Simpson’s rule

As mentioned in Section 2 the awkward boundaries
of our (triton) domain suggest the use of an asymmetric-
product Simpson’s rule with different cells widths in
different directions. As long as the boundaries are
planes (or hyperplanes) passing through cubic lattice
points, it is possible to use an asymmetric Simpson’s
product rule with cell width g,/ in the x, direction, g:h
in the x, direction and, in general, g;4 in the x; direction
(where the g; are integers). The volume of the cell is
now h'mg;, and in terms of h the error per cell is
estimated:

Eh x 7gi. h4—'-n

n 4 n A4
L3 o 5.3 o wng) O
n Sy grtxt " on(n —1),55218i %8 * xjx;
Cell width changes of this type are usually convenient
only if the integration is carried out in each dimension
in turn. The asymmetric product Simpson’s rule of
Section 2, where n = 3 and g; = 2/, leads to an estimate

of total error
1 /0% 1 1 V\43
J + 556 347 (%)
6.2)

3\3x8 T 16 ot
If the different partial derivatives are of the same mag-
nitude, the figure 0-108 is directly comparable with the
values of p, in Table 1, for example, with 0-0089 of
rule 5 in that table.

Ex 0-108{

Nevertheless, the asymmetric-product Simpson’s rule is
sometimes preferable. As one example, if the integrand varies
much more slowly in one direction than in any other, then
integrating last over that direction can improve the accuracy
considerably. As another example, if the integrand is a
product k(x) k»(y) k;(z) the integration scheme (1.7) takes
the form (for our domain)

R x Z;
J= J.rodx a9 J'rody ka(y) L:i,k,(z) 63)

where functions z, and z, are defined in (1.8); Simpson’s rule
can be used to tabulate the function

G(z) = [ kn(D1dl (6.4)

at intervals 24 in the variable z; then (6.3) is effectively a two-
dimensional integral and can be evaluated more quickly than
by a three-dimensional method. Product functions of this
type do occur in the triton problem, and this method of
evaluation has been used for them.

7. Boundaries

Boundary cells present special problems. The way
in which cells are joined to give the integration rule for
the whole domain is discussed in Section 8, but the
process is certainly simpler if all cells are cubes or
portions of cubes of width 2k, and so we restrict our
rules to those satisfying this condition.
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The simplest illustration is the two-dimensional
triangular-cell, a half square, defined by: |x| < h;
|¥| < h; y < x. [This type of cell, in three dimensions,
occurs in the triton problem—see (1.4).] Because of
symmetry about the line x + y = 0, certain points are
equivalent and must have equal coefficients in the inte-
gration rule. We give the square lattice points of the
cell, and their associated coefficients, in Table 4.

Because of the symmetry of this cell, polynomials
obtained from one another by interchanging x and y
give identical conditions, not independent ones; for
example, the two conditions obtained by requiring
that the integrals of x and y be computed exactly are
both (7.2) below.

The conditions that the integrals of x?y®, with a > b
and a + b < 2 be computed exactly are

Ay + 24, + A, +24;=1 (a=b=0) (7.1)
A, + A, —13 @=1b=0) (712
A+ Ay +24;=13 (@=2,b=0) (7.3)

Ay, —24;=0 (@a=b=1). (7.4)

These are four equations in four unknowns, so we expect

that the integrals of x* and x2y (neither of which are

zero for this cell) will not be computed exactly, and that

the rule for this cell will be only a second-degree one.
Equations (7.1)-(7.4) have the solution

A0:A1: 1/3; A2’=A2:0, (7.5)
so the integration rule is

j j f(x, y)dx dy = 2h*{£(0, 0) + f(h, 0) + f(0, —h)}.
h
(7.6)

The estimate of error, in the notation of Section 4, is
h3
E, ~ (2h2)4—5{2f(3) — 3@ DY, 7.7

Not only is the error of order 43 instead of A%, but also
the numerical coefficient is larger than for the complete
square.

As the next illustration we take the half-cube, corre-
sponding to the half-square cell above, defined by
|x| < h; |yl <h; |zZl<h and y<x. There are
eighteen cubic lattice points in this cell, and these are
listed in Table 5. In principle we could write down
eighteen or more equations for the coefficients, from
the conditions that the integrals of x?y’z¢ for various
a, b and c be computed exactly. The exact computation
of the integrals of the low-degree polynomials obviously
has first priority. Now solutions do exist for the set of
ten equations with @ 4+ b + ¢ < 2; but of the twenty
equations with a + b + ¢ < 3 the largest consistent set
that includes the first set is the set of those sixteen for
which a + b = 3. We see then, that although there is
no third-degree rule for this cell using only the given
cubic lattice points, there exists a family of second-degree
rules. The choice available among them may be

Table 5

Lattice points and associated coefficients for the half
cube, |x| < A, |y| < h |z] < hy<x

x/h ylh zh |1
an X COEFFICIENT
0 0 0 Bo
0 —1 0 By
1 0 0 B
1 —1 0 B>
1 1 0 B;
-1 —1 0 B}
0 0 +1 Ao
0 —1 1 A
1 0 1 A
1 -1 1 A>
1 1 +1 A3
-1 —1 +1 A3

exploited in various ways to give rules suitable for
particular purposes.

The problem can first be simplified by taking advantage
of the symmetry of the cell. The cell is symmetric about
the z = 0 plane, so we impose the restriction on the
coefficients A(x, y, z) that A(x, y, z) = A(x, y, —z). This
reduces the number of independent coefficients to twelve,
and simultaneously ensures that the integrals of all
functions f(z) . g(x, y), where f(z) is any odd function,
are computed exactly. Then it becomes superfluous to
impose the conditions that integrals of z, zx, zy, zx2?,
zxy, zy?, etc., be computed exactly, since these conditions
are satisfied identically. Similarly, since the cell is sym-
metric about the plane x + y = 0, we put A(x. y, z)
= A(— x, —), z), and then the integrals of all functions
of the type f(x + »).g(x — y, z), where f is any odd
function, are computed exactly.

There remain only eight distinct coefficients. With
a + b + ¢ < 2 there are only five independent equations,
leaving three degrees of freedom which may be used in
various ways. Any solution of these five equations will
compute exactly all the cubic integrals involving an odd
power of z and also the integrals of z*(x 4+ y) and
(x — »)%(x + y). Of the remaining cubic integrals, that
is one of z2y and z2x and three of x3, x%y, xy? and )3, at
most three can be computed exactly. We list here these
five equations

Bo+2Bl+Bz+2Bz’+2Ao+4A1+2A2+4A£:1
(7.8)

+ 24, + 24, =1
(7.9)

+ 24, +24;, +44,=1%
(7.10)

+ 24, — 44; =0
(1.11)

24, + 44, + 24, + 44; = 1.
(1.12)

B, + B, + 2B;

B, — 2B;
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The values (a, b, ¢) for these five equations are (0, 0, 0),
(1,0,0), (2,0,0), (1, 1, 0) and (0, 0, 2), respectively.

We may use the three degrees of freedom in several
distinct ways depending on the particular problem.
These various ways are discussed in turn.

(i) We may minimize the error in the classical way.
We define J(a, b, ¢) as the integral of x“ybz¢ over the
domain, and I(a, b, c; Ay, Ay, - .., By) as the approxi-
mation to this result obtained by using a rule which has
the coefficients A,, A4,,...B;. We further introduce
w(a, b, c), a weighting function which is arbitrary and
can be adjusted to suit the particular function. We then
minimize the function

Y wa, b, o)l(a, b, c; Ag, Ay, . .. B)) — J(a, b, o]
a+b+c=3
subject to the five conditions (7.8)~(7.12). Using the
method of Lagrange’s undetermined multipliers, we
have to solve thirteen equations in thirteen unknowns.

(i) We may make various coefficients zero. The
“awkward points” mentioned in the Introduction may
occur in a cell of this type at points whose coefficients

are By and 4;. If we put

By= A= B, =0 (7.13)
the set of equations (7.8)—(7.13) has the solution
Ay =1/6; 4, = —1/18; 4,=1/9; B, = 4/9; B, = — 2/9.

This rule computes exactly the integral of z2x and so
also that of z2y, and the error is estimated by

W (Y ¥
~ (@)= 2( 5 4 w5 ) — .
E, = (4h )90{2(3_‘_2 + byz) 3 %20y + bxby2)}.

(7.14)

(iii) We may assign the coefficient zero to points which
are shared with adjacent cells and would have zero
coefficient but for this cell. Doing this reduces the total
number of points at which the functions have to be
evaluated in the whole domain, thereby reducing the
integration time.

(iv) We may reduce rounding errors in the computed
results. To do this we need some measure by which we
can compare the rounding error produced by different

rules. Let the integration rule use N integration points
x; and corresponding coefficients a;. We define a
coefficient ¢ by
1[ N
t= ¢ a: 7.15
vz (115

where V = Xa; = [dr, the volume of the domain.
Suppose that the computer registers work to base r and
have p ‘‘decimal” places. It can be shown (Kopal, 1955)
that the r.m.s. rounding error, é, produced by this rule
and computer is given by

1

V
e — 2—{/—3”' pvﬁt (716)

83

The minimum value of ¢ is 1, for a rule whose integration
coefficients are all equal. Such a rule is known as a
Chebyshev rule so we refer to ¢ as the ‘“Chebyshev
coefficient.” Suppose a domain consists of a number of
cells each of the same size, and that integration rules are
applied to each cell, each using the same number of
points and each having the same value of ¢. If the cells
do not share integration points then the Chebyshev
coefficient of the rule for the whole domain is the same
as that of the rule for a single cell; however, if points
are shared it may be different. For the rules listed
in Table 3 we give their Chebyshev coefficients f,
taking into account the sharing of points and neglecting
the effect of boundary cells. Thus if rounding errors
are likely to be important we may use any extra degrees
of freedom to construct or select a rule with the lowest
possible value of .

If the function to be integrated has a particular sym-
metry we may start again and arrange the coefficients so
that low-degree polynomials of that symmetry only are
computed exactly. This is quite distinct from and addi-
tional to the symmetry discussed in the earlier part of
this Section. The integrands occurring in the triton
problem are symmetric about the plane x —y = 0.
Indeed this is the reason for the appearance of this plane
in the list of boundaries. So we need to compute exactly
the integrals of the low-degree polynomials in (x — y)?
and (x + ), but not that of (x — y) itself. The eight
coefficients have to be chosen to compute exactly the
integrals of (x + y)(x — y)z* with s even. This can be
easily arranged for r + s < 3 and r < 3. Two solutions
are:

By = 1/3; A; = 1/48; A, = 1/24; or (other
coefficients zero) (7.17)

A, = 1/12; B, = 1/6; (other coefficients zero).
(7.18)

These are in fact the corner rule and the face-centre rule,
respectively, applied to this cell. The reason that it is
possible to do this is a direct result of the symmetry of
the integrands about x — y = 0. The error E,, is just
half that made by the corresponding rule for the cubic
cell, and so is of order A*. It must be emphasized that
these rules are appropriate only if the integrand has this
symmetry. For example, the rule given by (7.17) does
not compute exactly [xdr over the cell, and if it were
applied to a function without this symmetry the error
would be of order A.

The types of cell other than the complete cube are
classified in the next Section. Possible sets of coefficients
A, for each type are given in the Appendix.

8. Joining cells and changing cell size

We suppose at first that cells of each type are all the
same size, that is that the whole domain is dissected into
cells by three sets of parallel planes each set parallel to
one of the coordinate planes and with members separated
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by distance 2h. Most cells are cubes but some, at the
boundaries of the domain, are cubes truncated in various
ways. Each cell is specified uniquely by the coordinates
(x., Ye» 2.) Of its *‘centre,”” where these satisfy the following
condition:

x./h, y./h and z /h are all odd integers. 8.1

(Note that the *““cell centre” so defined is not necessarily
centrally placed in the cell, and may even lie outside it.)

The points with coordinates (x, y, z) such that x/h, y/h
and z/h are all integers, form a cubic lattice. A lattice
point (x, y, z) belongs to those cells (x,, y., z,) for which
each of the differences

8.2)

is one of A, 0 or —A. A lattice point generally, then,
belongs to several adjacent cells; for example, a face-
centre point belongs to two adjacent cells, and a vertex
point to eight. To avoid the labour of having to compute
the integrand eight times at each vertex point, for
example, we first accumulate the coefficients for the
integration rule and then multiply by the integrand.

For a single integration, the time saved thereby is
probably not very significant. But, in practice, runs are
repeated with slightly altered parameters, each time
integrating over the same domain. Thus, the inte-
gration coefficients at all contributing points are com-
puted (in the way to be described) first, and this infor-
mation is stored on magnetic tape. In addition to the
values of x, y, z, and the integration coefficient, for each
contributing point, the tape also contains other functions
g(x, y, z) which are the same from run to run, and whose
numerical values are needed to compute some of the
integrands. In a computer with tape buffering, the tape
is read block by block, one block being employed in the
computation at the same time that the next block is
being transferred to core memory. Thus, the table
look-up process does 10t cost any time at all.

Let us now describe the process of accumulating the
integration coefficients. In one dimension the process
is trivial: Simpson’s rule, with coefficients 1/6, 4/6, 1/6
for a cell, gives coefficients 1/6, 4/6, 2/6, 4/6, . . ., 2/6, 4/6,
1/6 for a connected line; but for a complicated domain
in three dimensions the process is best programmed for
a computer.

To locate the cell centre of each cell to which the
lattice point (x, v, z) belongs, one finds the coordinates
of each of its 27 neighbouring points in turn (including
itself), by subtracting 4, 0 or —h from x, y, and z, and
then testing which of these 27 points satisfy the require-
ment (8.1) for a cell centre. The number of cell centres
found in this way is between one and eight. Then one
finds, as described below, to what type of cell this cell
centre belongs. If it is one which forms part of the
domain, one looks up the coefficient A4, for the point
(x5, ¥s» 2;) of that type of cell. The total integration
coefficient for the point (x, v, z) is the sum of the coeffi-
cient A contributed by each of the adjacent cells.

Xs =X =X Vs =)V Vs 25 =2 — Z,

84

coordinate axis.

Let us now discuss the boundary conditions (1.1)-(:.4)
in more detail.* The conditions (1.2) and (1.3) define
boundary planes each of which is perpendicular to a
If we impose the following condition:

@7

then it follows that if not all six conditions (1.2) and (1.3)
are satisfied for the cell ccntre (x,, y,., z.), the cell is a
wholly excluded cube and contributes nothing to the
integration coefficient; if all are satisfied the ou.ier
conditions must be applied.

Only three of the four other conditions (1.1) and (1.4)
are independent, namely:

ro/h and R/h are even integers,

xX+y—z>0 (8.5)
y+z—x>0 (8.6)

Using (8.2) we now rewrite these conditions in terms of
the cell-centre coordinates. We define three integers
m;, m,, and m; by:

X, — Y. = mih 8.7)
X, + Y. — 2z, = myh (8.8)
Y.+ 2z, — x. = msh. 8.9)

These and (8.1) imply that m, and m; are odd and m, is
even. In terms of these integers conditions (8.4), (8.5),
and (8.6) become

(xs - ys)/h + nty = 0 (810)
(xs +ys_zs)/h+m2>0 (811)
(ys_{_zx—xs)/h +m3> 0. (812)

The quantities x,/h, y,/h and z,/h each assume only the
values 1, 0 or —1.

Let us take the application of condition (8.11) as an
illustration. Now —3 < (x; +y, —z)[h < 3; so if
for a particular cell m, = 5, for example, then (8.11) is
satisfied for all x,, y,, z,; i.e. every point of the cell lies
inside this boundary. For a cell with m; = 3, (8.11) is
still satisfied for all x,, y,, z,, but one of its vertices, the
vertex (x,, Vs, z,) = (—h, —h, +h), lies on the boundary
surface. Cells with m, = 1 or —1 are cubes truncated
by the boundary surface x 4+ y — z = 0; i.e. some of
the points (x,, y,, z,), satisfying (8.11), are included in
the domain while others are excluded. Cells with
m, < — 3 are cubes lying entirely outside the domain
(except when m, = — 3 for a single point) and contribute
nothing to the integration coefficient. Hence there are
only four essentially different values of m,: m, < — 3;
m, = — 1; my = 1; and m, > 3. The first corresponds
to a cube outside the domain, contributing nothing;
the next two correspond to interior cells formed by

* This discussion is rather specialized, but the methods outlined
can be generalized easily to other boundary conditions. The
restriction to our particular domain makes the exposition more
definite and, we hope, easier to follow than a more general treatment.
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truncated cubes; the last corresponds (as far as this
boundary is concerned) to an interior cubic cell.

By a similar argument we find that m; takes the same
four values, and with similar significance. The essen-
tially different values for m, are: m; < — 2; m; = 0;
and m, > 2. The first corresponds to an exterior cube,
contributing nothing; the second to an interior truncated
cubic cell (such as the one discussed in Section 5); the
third to an interior cubic cell.

We can now outline the steps taken by the computer.
Once it has found, for the given lattice point (x, Vv, z),
an adjacent cell centre (x., )., z.) which satisfies con-
ditions (1.2) and (1.3), it then computes integers
m,, my, my. Only if all three integers are greater than
or equal to —1 is the cell an interior, contributing cell.
There are thus at most 3 ¥ 3 x 2 = 18 distinct types
of cell included within the domain.* (In fact seven of
these do not occur.) The computer then classifies the
cell by assigning numbers m;, m; and mj; as follows:

my = min (1, 2) (8.13)
i, = min (n1,, 3) (8.14)
msy =: min (imj, 3). (8.15)

Stored in the computer is a table (occupying 486 storage
locations) of coefficients A4, for each type of cell
(my, my, m3), and each of the 27 points (x,, y,, z,) of the
cube containing that cell. Points outside the cell,
because of the boundary surface truncations, are
assigned zero coefficients. The computer looks up the
relevant coefficient 4, and accumulates the sum of these
coefficients, one for each contributing cell adjacent to
the point (x, », z). The final sum is the integration
coefficient for that point.

This procedure, although rather awkward to describe,
is simple to code, takes little computation time, and can
be adapted to deal easily with changes of cell size.

Suppose one wants cells of width 44 instead of 2h in
that part of the domain where all x, y and z exceed
some value r,. 1f we call the original domain, defined
by (1.1) (1.4), D(ry, R), then the domain D(r;, R) must
be dissected into cells of width 44 and the remainder
into cells of width 2h. If we call the remainder
D’'(rg, r1,R), then

D(ro, R) == Dl(ro, i, R) _}“ D(rl, R). (8.16)

* 1t is necessary to emphasize that this small number of cells is
a direct result of the fact that each plane is of the form

N PIAYES: /f 0
where z; and 3 are integers. This means that each plane passes
through many cubic lattice points, and leads to my, m> and m;
beiny integers.
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The treatment of D(r,, R) is simple if we make the
following condition:

ry/2h and R/2h are even integers. 8.17)
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Appendix

During our investigation we prepared three lists of
coefficients, each list satisfying different criteria of
Section 7. These “Memmo Lists” are:

(i) M,, which applies to any regular function, and
does not exclude the awkward points;

(i)) M,, which applies to regular functions symmetric
in x and y, and does not exclude the awkward points;

(iii) M;, which applies to regular functions, symmetric
in x and y, and assigns zero coefficients to the awkward
points, i.e. those on the line x = y = z.

All three lists minimize the number of points assigned
non-zero coefficients. M, and M, use the corner rule
for all cubic cells, and M; uses it except where it would
introduce an awkward point. M, and M, differ only
for cells adjacent to the boundary plane x — y = 0, i.e.
with M| = 0.

We list in Table 6 all of M,, M, and M,.

As mentioned before, the integration time depends on
the number of distinct points at which the function has
to be evaluated, that is points with non-zero coefficient.
This is in fact the reason for choosing the corner rule,
as is discussed in Section 2.

It is important to be able to calculate, at least approxi-
mately, the number of points with non-zero coefficients,
taking into account the additional points introduced
because of boundary domains. We have already done
this, exactly, in Section 2, in the case where the total
domain is a cube. Rewriting formulas (2.2a) and (2.2b),
the number of points N required using the corner rule
in a cubic volume ¥V with a net size 4 is given by

N:

d v 1) (A1)

@iy T \@m T (Zh)3

It is tempting to apply this formula to the actual domain,
calculating separately the number of net points in each
of the three domains of net size 2, 4h and 84 on the
basis of their volumes. We might even expect an over-
estimate, on the grounds that certain points on the
boundaries of two domains would be counted twice. In
fact, however, as we shall illustrate by example, even
when the number of points is of the order of 10,000, an
estimate based on (A.1) is too small by a factor of about
2, due to the large number of additional points introduced
by the truncated cubes on the surface of the domain.
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We suppose that the domain D(ry, R) is divided into
the three regions D’(rg, ry, R), D'(ry, r5, R) and D(r,, R)
(see eqn. 8.16) with ro <r; <r, <R, by surfaces of
the type (1.5), and that in these three regions we use
cells of width 2h, 4h and 84, respectively. We define by
N(r;, R; nh) the number of points used within and on
the surface of D(r;, R) when the cell width is nh, and by
S(ri,R, nh) the number of these which lie on the net-
change boundary, i.e. which are common to D(r;, R)
and D’ (ro, ri, R). In this case the total number of pomts
used is given by

N = N(ry, R; 2h) — N(ry, R; 2h) 4 S(r, R; 2h)
+ N(rl, R; 4h) - N(rZy R; 4h) + S(r2, R; 4h)
+ N(ry, R; 81) — S(ry, R; 4h) — S(r,, R; 8h). (A.2)

The first three terms are the number in D’(ry, r;, R), the
second three the number in D’(r,, r,, R), the seventh the
number in D(r,, R), and the final two terms subtract the
number of points on net-change boundaries counted
twice.

The functions N and S depend on the Memmo list
used. If we write

. R—r
j_ nh ]

R —_
k — max ( — (A.3)

r 0)’

these functions for M; with ry 5= 0 are given by

S(r, R; nh) = [(2j + D + 1) — 3,3k + 1)]
N(r, R; nh) = 3[(2j* + 3/ +2)(j + 1) — k(k + 1)?]
+ 39k + 19k) + 11j — 18. (A4)

(The terms in square brackets are in fact the exact
number of block vertex and centre points in the region,
whether with zero coefficient or not. The final terms in
(A.4) are quadratically correct, and refer to M; with
ro #* O)

As an illustration we apply this formula to calculate
the number of points when (rg, r, 75, R) = (6, 12, 24, 96)A.
In this case equation (A.l1) reads N = 6,196 ~ 5,319
and (A.2) to (A.4) give N = 11,653. Using a previous
Memmo list, which instead of minimizing the number of
points, used criterion (i) of Section 7, the same domain
used N = 14,000 points. These figures illustrate the
importance of making a valid estimate of the number of
points used, and the importance of using a Memmo list
which minimizes the number of points.
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Numerical quadrature in n dimensions

Table 6
The ‘“Memmo’’ lists

The coefficients are ‘‘normalized” so that the volume of a cube
of side 2h is 8640 = 18 x 480 = 26 x 33 x 5. Lists M; and M>
may be read directly from the table.

List M3 may be obtained from the lists M, and Mj of the table.
The coefficients in list M> should be used, unless the condition in
the final column is satisfied. In these cases the coefficients of list
M would assign a non-zero coefficient to an awkward point, and
the coefficients in list M3 should be used instead.

BLOCK POINT COEFFICIENT
CONDITION THAT
, XYz , M3 BE USED
mimymi| oy j| My M M; INS%EAD OF M>
TO FORM M3
¢c—-1 3| 0 0-1 180 | 144 180 | if centre is
1—1—-1| —15]| =72 —-72 1,1,3)
1 0-1 162 | 288 216
1 0 0| 228 | 288 288
1 1-1 0| —36 0
1 1 0| 198 | 144 144
1 1 1] —-33| =36 | — 36
o1 1|—-1—-1-1| -9 0 0 if centre is
0—-1 0| 504 0 288 a, 1,1
0 0-1 108 0 324 i.e. always
0 0 O] 864 | 1584 0
0 0 1] —36 0 684
1—-1 1|—108 | 216 —72
1 0 0| 216 0| 1008
1 0 1 576 0| —144
1 1-1 90 | 108 | —216
1 1 0 0 0 288
1 1 1 36 | 252 0
0 1 3|—1—1-—1/|—-162| 396 236 if centre is
0—1-—1 0|—576 | —192 3,3,5)
0—1 O 1080 |—480 | —224
0 0-—-1]| 972 0 0
0 0 O 0| 3504 | 2736
0 0 1 252 |—240 | —112
1—1—1 72 | 840 456
1-1 0 0 |—576 | —192
1—-1 1| —=36| 792 472
1 0-1 0 0 256
1 0 0] 1368 0 0
1 0 1 0 |—576 | —192
1 1-—1/|-126 96 0
1 1 0 0 0 128
1 1 1 180 | 420 228
0 3 1 |—1-1-1 36 36 0 if centre is
-1 -1 1 36 | 252 0 3,3, 1
0—1 0| 432 0| 1152
0—1 1| 432 0 0
0 0-1 0 0 72
0 0 O] 1152|2016 | —288
0 0 I 0 0| 1080
1—1 1|—144 | 288 | —288
1 0 0| 432 0| 1152
1 0 1| 432 0 0
1 1-1 36 36 0
1 1 1 36 | 252 0
0 3 3|—-1—-1-1 0| 180 0 if
—-1-1 1 0| 180 0| |my—ms <4
0—1 0| 1440 0| 1440
0 0-—1 720 0 720
0 0 O 0 | 2880 0
0 0 |1 720 0 720
-1 -1 0] 360 | 0
1 -1 1 0| 360 0
1 0 0] 1440 0| 1440
1 1 -1 0 180 ! 0
1 1 1 0! 180 0
21 31=1 1 11! ~72 | |
0 0-1] 288 | i
0 1-1 288 ! |
0 1 0] | 288
= 1—1 -
I 0-1 | 288

BLOCK POINT COEFFICIENT
CONDITION THAT
, o, X Yoz , M3 BE USED
mimymi| j p o M| M M3 | |NSTEAD OF M
TO FORM M3
2 -1 3 1 0 O 288
1 11 —172
1 1 0 288
1 1 1 —72
2 1 1|—-1—-1-1 72 576 if centre is
-1 1-1 504 0 3,1,3)
-1 1 1 288 288
0—-1 0 0 |—1008
0 0 O 4032 | 4032
0.1 0 0| 1008
1—-1 1 72 576
1 1-1 288 288
1 1 1 504 0
2 1 3|-1—-1-1 792
—1 0-1 —576
-1 0 O —480
-1 1-1 840
-1 1 0 —576
-1 1 1 792
0—1-—1 —576
0—1 0 —480
0 0 O 7008
0 0 1 —480
0 1 1 —576
1—1-1 840
1—-1 0 —576
1—-1 1 792
1 0 1 —576
1 1-—1 192
1 1 1 840
—1-1 1 -72 36 if centre is
2 3—-1|—-1 0 O 288 0 G, L1
-1 0 1 288 144
-1 1-1 —72 —-72
-1 1 0 288 864
-1 1 1 -72 0
0 0 1 288 288
01 0 288 0
0o 1 1 288 144
1 1 1 -72 36
2 3 1|—-1—-1-1 792 472 if centre is
—1-1 0 —576 | —192 5,3,3)
—1—-1 1 840 456
-1 0-1 —576 | —192
-1 0 1 0 256
-1 1-1 840 456
-1 1 O 0 256
-1 1 1 192 0
0—1 0 —480 | —224
0—-1 1 —576 | —192
0 0-1 —480 | —224
0 0 O 7008 | 5472
0 1-—1 —576 | —192
o 1 1 0 256
-1 1 792 472
1 0 O —480 | —224
1 0 1 —576 | —192
1 1 -1 792 472
1 1 0 -576 | —192
1 1t 1 840 456
2 3 3\ —-1—-1-1 360 0 | if both m =2
-1 -1 1 360 0 and
-1 0 O 0 | 1440 |m2—m3 f—2|<2
-1 1 -1 360 0
-1 1 1 360 0
0-1 0} 0 1440
o0 0-1 0 1440
0 0 0 5760 0
| 0 0 1] 0 1440 |
o 1 0, 0 1440 |
S e 360 0'
[ B B O 360 0
10 0 0| 1440
[ =1 360 0
1 1 11 360 | 0
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