The solution of nonlinear ordinary differential equations

in Chebyshev series

By C. W. Clenshaw and H. J. Norton

The paper describes a simple iterative method for obtaining the solution of an ordinary

differential equation in the form of a Chebyshev series.

Nonlinear terms which occur in the

equation are dealt with by evaluating their components at the Chebyshev points (cos rciN),
performing the nonlinear operations and then deriving the representative Chebyshev series for
the nonlinear term from its values at the Chebyshev points.

1. Introduction

In an earlier paper (Clenshaw, 1957) one of us has
shown how an ordinary linear differential equation may
be solved numerically in Chebyshev series. Where readily
applicable, the method has considerable advantages over
finite-difference methods, particularly for boundary-
value problems. The method is such that by its very
nature the zype of boundary condition is irrelevant to
the numerical procedure, so that boundary-value problems
are solved with no more difficulty than initial-value
problems.

The main drawback in practice is that the class of
problems to which the method can be applied directly
is limited by the requirement that the coefficients
occurring in the differential equation must be poly-
nomial functions of the independent variable. Although
it is true that a much wider class of problems may be
tackled by resorting to polynomial approximation of
non-polynomial coefficients, such a procedure often
raises its own difficulties. For when the polynomial
coefficients are of high degree, the method involves the
use of recurrence relations of high order, and is therefore
cumbersome in operation.

It is natural, therefore, to consider other methods
capable of exploiting the advantages of Chebyshev
series expansions, while avoiding the restrictions inherent
in the method mentioned above. One possibility, which
we discuss in this paper, is to adopt the principle of
Picard iteration [see Ince (1953), Chapter 3], while
representing functions of the independent variable in
Chebyshev series. This procedure enables us to attack
not only linear differential equations with non-polynomial
coefficients, but also nonlinear differential equations.

In the next section we outline the basic iterative pro-
cedure. Some properties of Chebyshev polynomials are
discussed in Section 3, while Section 4 ‘contains a
description of a simple method of solution in which
Chebyshev series are employed in the iterative procedure
of Section 2. In Section 5 we consider the problem of
determining the degree of Chebyshev series which is
to be used at each stage of the computation. A simple
extension of the method to second-order equations is
given in Section 6.
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2. Picard iteration

For simplicity we discuss the solution of the differential
equation of the first order

dy .
- — 1
; f(x, ), ¢))
with the associated boundary condition
(¢ = . 2

It is easy to see that any differential equation which
expresses the derivative of highest order explicitly in
terms of the lower-order derivatives and the independent
variable can be replaced by a system of equations, each
of the form (1) [see Ince (1953) §3.3], but where f now
represents a function of a/l the dependent variables.
This form is thus of fundamental importance.

In Picard iteration a sequence of functions
yi(x)(i=0,1,2...)is generated from

[ f(x, yi-)dx,
0

starting with y, = 7. It is clear that if this sequence
converges to a limit for every value of x in a given range,
that limit will be a solution of (1) satisfying the boundary
condition (2). It has been shown [see, for example,

v

Ince (1953), Chapter 3] that if f(x,y) and df/oy are

bounded and f is of integrable modulus in a region of
the (x, y) plane containing the point (£, 7), then the
sequence (3) does indeed converge to a solution in a
neighbourhood of x = ¢.

Unfortunately, this convergence property is of limited
value in the general problem. For, although the property
remains valid for systems of equations of the form (1)
in the case of initial-value problems, it is not applicable
to the very case in which we are primarily interested,
namely that of boundary-value problems. We shall,
therefore, proceed to apply the iterative procedure with
caution, and not expect convergence in general without
some modification of the procedure.

3. Properties of Chebyshev polynomials

We henceforth assume without loss of generality that
the finite range of variable in which we are interested
has been transformed to —1 < x < 1. The Chebyshev
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polynomial of degree n appropriate to this range is
defined by

T,(x) = cos (ncos ! x). “4)

Accounts of the properties of these polynomials, and of
their applications to problems of numerical analysis,
may be found in Clenshaw (1962), Lanczos (1957) and
National Bureau of Standards (1952). We now briefly
discuss the particular properties which are of value in
the solution of differential equations; they are all con-
sidered in greater detail in Clenshaw (1962).

It is known from the theory of Fourier series that any
function which is continuous and of bounded variation
in the range — 1 << x < 1 possesses a unique convergent
expansion of the form

S = ey + e4T(0) + T30 + . = 5 e T,
say. (5)

If the series (5) is truncated at the term c,T,(x), we have
a polynomial approximation to f(x) of degree n. It is
found that in many cases of practical interest this
approximation differs little from the ‘“best” polynomial
approximation of that degree, defined as the polynomial
whose greatest deviation from f(x) in the range —1<<x< |
is as small as possible. In such cases the Chebyshev
series provides a convenient and economical form of
representation for the function.

The coefficients ¢, for an arbitrary function f(x) are
determined to a specified accuracy by a summation
formula.

For if fix) = ” ¢, T(x)
where Y} denotes a sum whose first and last terms are
halved

N
(e.g. Z_(')' U= Sug +uy +uy + ... 4 un_y + uw),
then
N
-"_12\/§ (cos —) cos7T—rS (r=0,1,2,.... N). (6)
If N is now chosen to be so large that for r > N the

coefficients ¢, in (5) are negligible, we may write with
similar accuracy

C,:Z‘,.(I'IO, 1,2,...,N'—1),CN:“%Z'N. (7)

The approximation of degree n(< N), which we denote
by

£ = ¥ T, ®)

may be evaluated by a recurrence procedure. It can
be shown (Clenshaw, 1962) that if we form successively

b, b, 1.b, a..., b, from the relation
b,=2xb,., —b,.,+ c, 9)
with b,. | = b,., = 0, then we have f,(x) = $(by — b,).
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It may be observed that a computer subroutine for
evaluating f,(x) from the coefficients ¢, in (8) may also
be used to calculate the coefficients ¢, from (6), given

the function values f{(x,) :f(cos 7;—5) For if we
write C, = %f(xx) for s=0,1,2,...,N—1, and
Cy = /%/f( — 1), equation (6) becomes
N
¢, =% CT(x), (10)
s=0

which is clearly of the same form as (8). ‘
A Chebyshev series may be integrated readily. If
we write

y=YaTw, PoSarem A
r=0 d. r=0

then we have
a .. (12)

This equation does not, of course, give @, which is a
constant of integration.

To summarize this Section, we note that the coeffi-
cients in the Chebyshev series expansion of an arbitrary
function f(x) may be found from the summation
formula (6). Truncation of this series furnishes a
polynomial approximation f,(x) which may be evaluated
for any argument value by recurrence using (9), and
also integrated simply with the aid of (12). Use will be
made of these properties in applying Chebyshev expan-
sion techniques in conjunction with Picard iteration.

2ra, =a,_| —

4. Use of Chebyshev series in Picard iteration

We now consider the details involved in carrying out
the iterative procedure described in Section 2, while
representing the functions y; and their derivatives by
polynomial approximations in the form of Chebyshev
series. Let y,_,(x) be represented by a Chebyshev
series of degree N:

N
Vi I(X) = 2(; a/'Tr(X)'

We have now to calculate the Chebyshev series for

f(x,y;_,), given an algorithm for computing the value

of f(x, y) for any (x, v) pair in the region of interest.

Since we no longer suppose f(x,)) to be a linear
function of y or a polynomial function of x, we must
use a method of more general applicability than that of
Clenshaw (1957). The summation formula (6) suggests
such a method; it shows that a function which is ade-
quately represented by N + 1 terms of its Chebyshev
series may be equally well represented by its numerical
values at N -+ | special points. The latter mode of
representation has the advantage that nonlinear opera-
tions which are difficult to apply to the Chebyshev series
may be readily applied to the function values.
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The procedure to be adopted is therefore as follows.
The Chebyshev series for y;_, is evaluated at the points

X, = COS 7;—\‘: for s=0,1,2,..., N. The values of

SIxes yi—1(x,)] can then be calculated at each of these
N +1 points and equation (6) used to obtain the
coefficients A, in the series

N
S(x, yim (%) = Eo AT (x).

The integration required in the subsequent calculation
of the Chebyshev series of y; from (3) is then readily
performed using (12). Thus the coefficients 4, (r > 0)
in the expansion

N+1
yi(x) = 2_:0, AI'TI'(X)’

are obtained from the relations

2rA,=A' -A;+|,r:1,2’3,"'3N,

r—1

2(N + DAy, = Ay,

and A4, is determined from the boundary condition.
For example, if the condition is y(— 1) = 7, we have

A0:2[7]+A1—A2+A3—...+(—)NAN+|].

This sequence of operations represents one cycle.
The process may be repeated until each member of the
current set of coefficients differs from the corresponding
member of the previous set by less than a prescribed
amount, this amount being a measure of the accuracy
required in the solution.

To illustrate the procedure we consider the simple
example

Y +y=0,y0) =1

5
We take N =5, and writing y,(x) = X’ a®¥T,(x) we
—o

o
obtain the values given in Table 1, which also gives for
comparison the leading coefficients a, in the infinite
Chebyshev series for e—=.

Table 1

Here the values in each column are given by the
relations

i) __ G-1) G -
2"09 - ar'—l + ar‘+ll)
a? =0 (r>5),
a =21 + af’ — af);

the latter condition arising from the boundary con-
dition, y(0) = 1.

It is clear that for i < N the Chebyshev series for y;(x)
is merely the truncated Taylor series for e —*, rearranged
appropriately. This is a special feature of this example;
we shall not expect the i*" iterate to be a simple trunca-
tion of the Taylor series in the general case. Wheni > N,
however, this behaviour no longer persists, and it is of
interest to continue the iterative procedure until the
coefficients have settled down to a given accuracy, say
6 decimal places. This occurs at i = 12; the coefficients
a1? are accordingly given in Table 1.

Since ys(x) is a rearrangement of the truncated Taylor
series for e—*, it is clear that its maximum error occurs
at x = — 1 and is given by

O <r<y),

and

5 .
e— Y (—)’a?) —e — 2-716 = 0-00162.
r=0

In contrast, comparison of the coefficients aﬁ'” with a,
shows that the error of y,(x) can nowhere exceed
5 ©
Y |a"? —a,| +3 |a,| = 0-00017.. (13)
r=0 r=6
Thus continuation of the iterative process from i = 5
to i = 12 gives a significant gain in accuracy, even
though the degree of the approximation has not been

increased.
A less trivial example is afforded by the problem

y=y, y—1D=1%
Since the equation is nonlinear, the successive iterates
will no longer bear any simple relation to the Taylor

series for the solution, which is known to be (3 — x)~ L
The iterations were carried out on the N.P.L. ACE

Approximations to ¢*

Pl A | a0 | @ | a | o a2 ar

0 +2 +2 3 2 + 33 + $F = 4 2-531250 +2-532020 +2-532132
1 0 —1 —1 —3 — 3 — 7 = — 1130208 —1-130268 —1-130318
2 0 0 +3 + % +33 + &% = -+ 0-270833 +-0-271483 +0-271495
3 0 0 0 —%% — 7 — 35z = — 0-044271 —0-044335 —0-044337
4 0 0 0 0 + 1= + 15z = + 0-005208 +0-005473 +0-005474
5 0 0 0 0 0 —1s70 = — 0-000521 —0-000547 —0-000543
6 +-0-000045
7 —0-000003
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computer, with N == 30. The coefficients showed no

change in the 11th decimal place after 22 iterations, and

they are given to this accuracy in Table 2. It can be

seen that they are correct to within a unit of the last

figure, by comparison with the exact expression for the

coefficients in the infinite Chebyshev expansion, given by
4 (3 ——\/5)’

STV 2

An upper bound for the error in y(x) for any x in the
range —1 < x < | can be readily estimated in a manner
similar to that used above in (13). The error of y;(x)
can nowhere exceed

N . o
Z/ |a(,’) - a,.| + E |arl*
r=0 r=N+1

where a, is the coefficient in the infinite Chebyshev
expansion. Although a, is generally unknown, the second
sum in this expression can be estimated by observation
of the rate of convergence of the @\”, while the first may
be regarded simply as the sum of a number of quantities
which contain one-signed rounding errors. In our
second example, for instance, we might estimate the
truncation error as being 0-6 x 10~!!, while the sum
of the rounding errors should not exceed 14 x 10~!!,
and probably does not exceed 4 x 10!,

5. Choice of NV

Most of the arithmetic involved in the method
described in Section 4 occurs in the calculation of the
Chebyshev series for f(x, y;_,) from the series for y;_;.
If the same degree of approximation N is used for both
functions, then about 2N?2 multiplications are required
in each cycle, in addition to the arithmetic necessary to
compute each value of f(x,y). The minimum value of
N which is necessary to represent both y and f(x, y) to
the desired accuracy will not, in general, be known in
advance. Although no harm would result from the use
of a value larger than necessary, this would clearly be
uneconomic. Indeed, during the early iterations, when
the approximation is poor, it may be desirable to use a
value of N smaller than that ultimately required to
achieve the full accuracy.

One possibility is to start with a moderate or small
value, say N = 4, and then introduce further coefficients
only when their inclusion appears necessary for further
improvement of the solution. In order to program this
method for a computer, we need a fully automatic and
reliable criterion for deciding when to increase N.

The criterion may be based on a comparison of the
magnitude of the later coefficients in the series for y;(x),
with the difference between ; (x) and y;(x). This
difference is in turn reflected in the change in the early
(most significant) coefficients in the series for y;(x) from
one cycle to the next. Accordingly, we have adopted
the criterion that if, for a suitably chosen integer p ( > 0),

|dg — aq| + |4, — a)] <|Ax | + Ay ,oil. (14
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Table 2
Solution of y' = y2, y(—1) =2

r a, r 10!1a,
0 1-78885 43820 0 14 25172 2
1 0-68328 15730 0 15 9614 9
2 0-26099 03370 0 16 3672 6
3 0-09968 94380 0 17 1402 8
4 0-03807 79770 0 18 535 8
5 0-01454 44929 9 19 204 7
6 0-00555 55019 7 20 78 2
7 0-00212 20129 3 21 29 9
8 0-00081 05368 1 22 11 4
9 0-00030 95975 1 23 4 4
10 0-00011 82557 3 24 17
11 0-00004 51696 7 25 6
12 0-00001 72532 8 26 2
13 0-00000 65901 7 27 1

and provided Ay_, and Ay are not both smaller than
the permitted error (in which case the problem is solved),
then we increase the value of N by 2. 1In (14) we have
used (as in Section 4) a, and A, to represent the coeffi-
cients in the Chebyshev series for y;_;(x) and yi(x)
respectively. Several examples have been tried with
various values of p, and p = 2 seems the most satis-
factory.

An alternative to (14) is obtained by replacing its
right-hand side by k(|4An| + |4An—])- It is difficult to
determine a value of k suitable for all problems, however;
solutions with rapidly convergent Chebyshev series seem
to demand a large value of k, while less well-behaved
solutions may need a smaller value.

The inclusion of two terms rather than one in both
members of the inequality (14) is designed to reduce the
risk of its “freak” satisfaction which might otherwise
arise if, for example, the alternate coefficients in the
series are small or zero. A similar circumstance might
still arise of course if o zero (or very small) coefficients
are followed by larger coefficients. However, this
unlikely occurrence would usually lead only to an
occasional loss in efficiency, and very rarely to an
erroneous result.

6. Second-order equations

Differential equations of order higher than the first
may be expressed as a set of first-order equations,
provided only that the derivative of highest ord=:r is
expressible explicitly. Thus no new technique is required.
The frequent occurrence of second-order equations in
practical problems, however, indicates the desirability
of a more direct method attack for such problems. The
obvious extension of (3) for the equation

V= S 1)) (15)
is obtained by integrating
Vs X Y Vi) (16)

1
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Table 3

Solution of van der Pol’s equation

r a,

0 +2-06806 63183 9
1 +1-02398 06778 3
2 —0-03279 45404 3
3 —0-02485 57498 6
4 —0-00136 68544 3
5 +0-00090 10786 3
6 +0-00013 65318 3
7 —0-00002 64079 5
8 —0-00000 87217 2
9 + 3786 5
10 + 4436 0
11 + 255 6
12 — 186 3
13 — 307
14 + 60
15 + 21
16 — 1
17 1

From the Chebyshev series for y;_; and y;_,, their
values at the points x; = cos ‘%T may be computed, and

hence the values of f(x,, y;_(x,), yi—(x,)). With the
aid of the summation formula (6), we can then compute
the coefficients 4, in

N
f(x’ Yi—15 yi— l) = gl(; Ar'T,,(X).

Then using the relations
2rd, = A, — A, yand 2rd, = A,_, — A.., (17)
we can calculate the coefficients A4, and A4, in the

expansions
n+1

n+2
Y, =% AT(andy, =3 A,T,(). (8)
r=0 r=0

The coefficients A,, 4, and 4, cannot be found from
(17); they are determined with the aid of the boundary
conditions.

As an example we consider van der Pol’s equation

d?y 2 A .
E2+(y l)d—t+y—0,
with the boundary conditions
=H=0, y+dH=2
References

Writing ¢ = 1x and using primes to denote derivatives
with respect to x we have

V== )y — ey,

H—=1)=0 y+1)=2
The boundary conditions yield for A4, and A4, the
expressions

Ay=2—2A, + A4 + 46 +..)

Ai=1— (A3 +As +A; +..)).
We suppose that the coefficients are required to 11
decimal places; we find that 11 iterations are sufficient
to achieve this accuracy, and the result is given in Table 3.
In accordance with the procedure of Section 4, we may
estimate the truncation error of this finite series to be
less than 10—!'!, and note that the error in y(x) due to
rounding errors should not exceed 9 x 10—!!, and
probably does not exceed 3 x 10~'1

with

7. Conclusions

The iterative method described in this paper can be
used to obtain the numerical solution in Chebyshev
series of a class of differential equations. The class
includes many nonlinear problems to which the earlier
methods using Chebyshev series (see Clenshaw, 1957,
Lanczos, 1957) are not applicable. For many problems,
however, the iterative procedure as herein described
will fail to converge. As a simple example, the problem

V' +Ay=0; p—=1)=0, y+1)=1

can be solved by the present method only when A < 7.

We suggest that this essentially simple approach may
serve as the basis for more powerful methods designed to
solve nonlinear boundary-value problems. In a subse-
quent paper, techniques will be described which are de-
signed to secure convergence in a wide class of problems
for which the present method diverges, and also to reduce
the number of iterations required in other cases.
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