Iterative procedures for solving finite-difference approximations
to separable partial differential equations

By M. R. Osborne

We show that, for a class of separable partial differential equations of elliptic type in two inde-
pendent variables, the optimum value of the over-relaxation parameter w can be calculated when
the eigenvalue of maximum modulus of a certain double eigenvalue problem is known. This
generalizes the well-known case of Laplace’s equation for a rectangle (for which explicit results
are known), and provides a convenient method for the calculation of the optimum value of w.
We extend some of our results to partial differential equations in three independent variables, and
we also use our formalism to discuss the Peaceman—Rachford iteration.

Introduction

In this paper we consider certain classes of iterative
methods for solving finite-difference approximations to
elliptic partial differential equations having the form

20 | %0 Y Y%
o Ty TIN5 ey

+ [p(x) +9(»]Q = e(x,y) (1)

with the boundary conditions given on a rectangle with
sides parallel to the x and y axes, respectively. Our
analysis will be worked for the case Q prescribed on the
boundary but applies (with obvious modifications) to

d
the case AQ + BD7Q prescribed, where 4 and B are

constant on any one side. Typical equations to which
our results are applicable are Laplace’s equation for the
rectangle and (in polar coordinates) the circular annulus,
and Reynolds equation* for a rectangle.

By restricting our attention to rectangular regions and
separable partial differential equations, we find that it is
possible to represent the unknowns in our finite-difference
equations as the components of a rectangular matrix
(in contrast to the usual representation as the components
of a vector), and that the finite-difference equations then
take a very simple form [equation (5)]. This repre-
sentation is given in section 1 where it is applied to
analyze the iterative scheme of successive over-relaxation
by points. Successive over-relaxation by lines is con-
sidered in section 2, and the Peaceman—-Rachford iteration
in section 3. Successive over-relaxation by points for
hree independent variables is considered in section 4. In
section 5 we give a computational scheme for solving the
eigenvalue problems derived in the preceding sections,
and in section 6 we consider the relation between our
method and that normally used to analyze the iterative
procedures discussed here.

* This equation, which is important in the theory of film lubrica-
tion, has the form

N P P dh

22 dx’
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1. Iteration by points

If we write ¢@; for the vector whose components make
up the ith line (x = x;, i = 1, 2, ..., n) of the solution,
then the standard five-point difference approximation
to (1) takes the form

)
h3(1 =)y 4 16— @h=2 — pollg,

hfi
+h2(1+ )b =C O
where G is an (m X m) tridiagonal matrix whose jth
row is

k- (1 —) —2k=2 4 q;, k™ (l + ) and where

h and k are the mesh spacings in the x and y directions,
respectively.

Writing G — 2h—2 — p)I = L + X; + U as the sum
of a lower-triangular, a diagonal, and an upper-triangular
matrix, we can represent the Young-Frankel over-
relaxation scheme with iteration parameter w as

h—z( hf')¢(s+1) + (L + 0 'X;)petD
+ [(1 — 0™ X, + U]$
hfi
(1 g0 = @

where the upper suffix s indicates the progress of the
iteration.

To determine the rate of convergence of this iteration
we require a knowledge of the eigenvalue of maximum
modulus of the problem (as in Forsythe and Wasow,
1960, p. 214 and p. 247)

hf;
)\{h 2(1 — %)‘ﬁj.,l + (L + w- ]Xi)¢i}
+{0— @ DX+ U,

+h 21+ hfzf—%)¢i 4=0. (¥
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Iterative procedures for partial differential equations

Before reducing (4) we note that the left-hand side of
equation (2) can be described by an operator combining
together consecutive ¢; plus an operation G on the
individual ¢;. If we write ® for the m x a matrix with
columns ¢; then (2) becomes

GD + OF = C 5)

where F is the (n x n) tridiagonal matrix whose ith
row is

hfi hfisa
-2 — p-2 p-2(1 _
(155, — 22 21 -
The representation of the difference equation in this
form has been given before by Bickley and McNamee
(1960).

If we set

F=L,+D +U,

G=1L,+ D, + U,

then equation (4) becomes

AL, + (™A + (1 — w= YD, + U,]®
+ O[L; + Qo' + (1 — 0= )D, +AU,] = 0. (7)
Equation (7) can be further transformed by using the

result (due to Friedman; see Forsythe and Wasow, 1960,

p. 249) that there exist diagonal matrices A and B such
that

(6)

ALZ —+— CDZ + Uz == '\/AA_I{LZ + ‘\/A)\DZ + U2}A,

and Ll + CDI +)\U1 == '\/)\B{Ll + Vabl + UI}B*I.
®)

If we now set ® = ADB we have reduced our problem
to that of finding the eigenvalues of

{L, + oD, + U}® + ®{L, + oD, + U,} = 0

€))
where o= A +\(/l/\_ w_l). (10)

The values of o which satisfy (9) can also be charac-
terized as the solutions of the double eigenvalue problem

[Ly + oD, + U, + yIlv, = 0,
[L, + oD, + U, — yIlv, = 0. (1

This follows from a result of Bickley and McNamee
(1960, p. 118), who showed that the eigenvalue problem

RD + S = \D (12)

where R and S can be diagonalized by similarity trans-
formations, has its eigenvalues in the form X = AL+ Ay,
where A, is an eigenvalue of R, and A, is an eigenvalue of
§ (the eigenmatrix being the dyad formed from the
corresponding eigenvectors of R and §). In particular
there is a non-trivial solution with A = 0 only if A, is
an eigenvalue of R and —A,; is an eigenvalue of S.
Thus (11) just expresses the condition for (9) to have a
non-trivial solution. The condition that the matrices
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operating on ® in equation (9) can be diagonalized by
similarity transformations is certainly satisfied in many
cases of interest. A sufficient condition is that 4 and &
can be chosen small enough to make h|f;| <2,
klg;| <2, h?|p;| <2, and k?|gq;| <2 for all i, j, for
then D, and D, are negative definite while the off-
diagonal elements in G and F are one-signed.

In special cases the equations (11) can be further
simplified. Assuming that the conditions in the previous
paragraph are satisfied, we have for each of the matrix
operators in (9)

U+ L=DVMV-! (13)

where V is the matrix of (right) eigenvectors of U + L,
and M is the diagonal matrix of the eigenvalues u taken
with respect to the density matrix D. Therefore (in an
obvious notation) (9) becomes

DyVy{ol + M}V 1®
4+ OD,V {ol + M}V =0. (14)

Case 1 Let D, be a constant multiple (a, say) of the
unit matrix /. Then D; commutes with ¥, and equa-

tion (14) can be written (setting (?) = (T)V,)
{Ly + oD, + U}® + a,®{cI + M,} = 0. (15)

From (15) we see that the ith column of @ (say 9))
satisfies the equation

{Ly + aypid + U, + o(D, + a,1)}8, = 0,
i=12,...,n

(16)

Equation (16) is an eigenvalue problem which determines
the possible values of o in this case.
Case 2 Let both D; and D, be constant multiples

of the unit matrix (D, = a,I), and let ® = V2—16 Vi;
then equation (14) can be written

ay{ol + M)}® + a,®{cl + M,} = 0.  (17)
In this case 0; satisfies
{o(ay + ax))l + (a:M, + a,u,1)8; = 0, (18)

and as the matrices within the brackets are diagonal we
have

o = J2H +apy
Y a, + a,

i=12,.. (19)

A special case of equation (19) is well known. This is
the case of Laplace’s equation for a rectangle (Forsythe
and Wasow, 1960, p. 255). Also in this reference
(pp. 250-57) it is shown that the optimum value of w
depends only on the maximum value of . A method
of calculating this maximum value of o from equation (11)
is given in section 5. No discussion of equation (11)
other than that necessary to characterize the maximum
value of o and its attendant value of y is attempted.

b

Snyj=1,2,...,m.
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Iterative procedures for partial differential equations

2. Block relaxation by lines

The iterative scheme for successive over-relaxation by
lines (Forsythe and Wasow, 1960, pp. 266-71) can be
written

h—z(l _ }%ﬂ)#sjll) + w=1[G — Qh~2 — p)[|$s+D

+ (1 — w DG — @h~2 — p)I|¢

and the eigenvalue problem determining the rate of
convergence is
Ao '+ (1 — 0w H]GD

+ OO, + P! + (1 — 0= YD, + L} =0. 1)

Applying a Friedman transformation to the post-
multiplier in (21) gives us

Ao '+ (1 — 0™

VA GO -+ D
Aw™! ] — w !
{Ll prem Oty U,} —0 @

so that the eigenvalues are determined when the values
of o for which the set of equations

0oG® + ®{L, + oD, + U} =0 (23)

have non-trivial solutions @ are known.
As before we have o determined by the double
eigenvalue problem

(0G — vI}v, = 0,
{Ll + O'Dl + Ul + VI}UI = 0. (24)

In the case D, = a,I we have, substituting L, + U, =
D, V,M V! into the second equation (24),

Vl{alMl + (alO' + V)I}Vl_lvl = 0,
and this gives the eigenvalues v in terms of o as
—vi=a(p,;+o0),i=12...,n (25)

Substituting for v from (25) into the first equation of
(24) we have

{G + a\I) + a,p,;I}v, = 0. (26)
Finally, if D, = a,I we have
G =L, + D, + U, = Viay] + a;My}V, ',
and the eigenvalues o of equation (26) are given by

— A 1P
=, 27
7ii a, + a; - aypy; @7
Again (27) is well known for the case of Laplace’s
equation for a rectangle (Forsythe and Wasow, 1960,

p. 270).
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3. The Peaceman-Rachford iteration

Our methods can also be applied to analyze the
implicit alternating direction methods for solving (5),
and here we consider the Peaceman—Rachford method
(Forsythe and Wasow, 1960, pp. 272-82). The iteration
scheme for the error matrix is

DEY — 6D o (GDED 4 OO-HF),
OO = PG — o (GO + PE-DF), (28)

Eliminating ®“~¥ gives
OO = {I +a,G}~"{I— a,G}OC~ I+ o F}~ I — o F},

T+ .G} M — 2,G}0O I {I + o,F}~!
1 r=1

r=

{I— «F}. (29)

Introducing the spectral decompositions of these
right and left multiplying matrices we may write (29) as

O = V,DV; OOV, D Vil (30)

where D, and D, are the diagonal matrices of the eigen-
values. Setting ® = V; 1®F; we have

D© = D,dOD,, €Y

and separating out the ith column ¢ we see that it
satisfies
¢Es) =d 1iDz¢§0) (32)
where d; is the ith diagonal element of D,. Thus the
rate at which ®® tends to zero is determined by the
maximum value of |d,;d,;|. 1f we call the eigenvalues of
F),, ..., A, and those of Gy, . . ., Um
Sl — o A 1 — oy
then dlide - rIle 1+ OL,.A,' 1 + ar:u’j.
Equation (33) is well known for Laplace’s equation in
a rectangle. An alternative derivation of (33) is quoted
in Martin and Tee (1961).

(33)

4. Separable equations in three dimensions

Here we indicate the way in which our results extend
to problems with more than two independent variables.
We consider the partial differential equation

d 0 0
V2 —@-f(x)b—:é + g(y)gf + 6’(2)3—,?

+ (p(x) + q(») + r(@)¢ = c(x,y,2z)  (34)

with the boundary conditions ¢ specified on the surface
of a rectangular box with faces parallel to the coordinate
planes. The standard seven-point finite-difference
approximation to this equation can be written [using

equation (5)]
€
a 2(1 — E;)(Dk, 1 (2o=2 — r) @y

ae,\.

+a 214 ) By + GO+ BF = C (35)

202 udy 61 U0 1s8nB AQ 6ZG00%/£6/1/9/8101E/|UlWOS/WO0" dNO"oIWBPEdE//:SARY WOy POpeojumod



lterative procedures for partial differential equations

where @, is the matrix of solution points ¢, for fixed k
(constant z), k =1, 2, . . ., ¢, and « is the spacing of the
mesh in the z direction.

The formula for the iterative solution of (35) by suc-
cessive over-relaxation by points, assuming each plane
®,. is relaxed before proceeding to @, .. is

21— ZE)0R, — w0 1Q2u2 — )

— (1 = @~ N2a"2 = r)®F=D

e

+ o721+ ZE)Orh+ [Ly + @ 'D]0P

+ QP + 0= 'Dy] +[(1 — 0~ YD, + U, DE—H

+ O VL + (1 — 0w )D] = C,. (36)
The rate of convergence of the iteration (36) depends on
the eigenvalue of maximum modulus of the problem

e

Ao (1= S0y — Qo= + (1 — w)

ey

Qa2 — rp®, + 05_2(1 + 7)®k+l
+[AL; + (0= A + (1 — 0= ))D, + U,]P,

+ QL + Qo' + (1 — 0w~ 1))D, + AU;] = 0.

(37

If we now apply the transformations (8) to equation
(37) we have, writing (T)k = AD,B,

e

Y21 = "VB, |~y — 1),

+ “—2(1 + ajek)ﬁk-u + VML, + oD, + U,]®,

+ ®[L, + oD, + U]} = 0. (38)

Now let the normalized, right and left, bi-orthogonal
eigenvectors, and the corresponding eigenvalues of
Ly + oD, +U, be vy, v, and pu,, respectively,
g=1,2,..., n. Also let the normalized, right and
left, bi-orthogonal eigenvectors and the corresponding
eigenvalues of L, + oD, + U, be wv,,, v;, and H2ps
respectively; p =1, 2, . . ., m. The conditions stated
following equation (12) are sufficient to guarantee the
existence of these, and also to guarantee that we can
represent O,, k = 1, ..., ¢ in the form

(39)

— T
(I)k = Z AkpquPvlq'
p,q

Using the bi-orthogonality of the eigenvectors we have
(40)

If we now substitute (39) into (38) we obtain, after
premultiplying by 3T, postmultiplying by vy,, and
using the bi-orthogonality of the eigenvectors

— 'T
Akpg = vaq)k”lq'

ey

Ao 2(1 = ZE) Ay + VA= 02272 — 1)

ey

2y + 1) kg + 2 (1 + ) A1 =0 (@D)
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If we denote by A4 the vector with components A pg
k=1,2,... ¢ and if we define H as the tridiagonal
ae’k

matrix whose kth row is
21 _ _ -2 _ -2 *Ck
a=(1 S )~ Qat—r)a (1+ > ).

and set H= L; + D; + U,, then equation (41) is
clearly the kth row of the matrix equation
ALy + VAX0D;5 + (o + 1)) + Usyd = 0. (42)

Applying a Friedman transformation to equation
(42) gives us

{L3 + oD3 4 Us + (pap, + p1)[}4 = 0. 43)

From equation (43) we see that o is determined by the
solutions of a triple eigenvalue problem which is the
natural extension of equation (11). We may write this as

Ly + oD, + U — A}V, =0,
{Ly + oD, + U, — pl}V, = 0,
{L; + oD; + U; — vI}V; = 0,
A4+ pu+v=0. (44)
The reduction of (44) in the case where some or all of

D\, D,, D; are scalar multiples of the corresponding
unit matrices follows as before.

and
where

5. Calculation of the maximum value of o

In this section we suggest a method for solving the
double eigenvalue problem given by equation (11). Our
procedure is a straightforward application of the initial
value techniques often used in solving finite-difference
approximations to the eigenvalue problems of ordinary
differential equations (see, for example, Fox, 1960).
The method can be applied with obvious modifications
to equations (24) and (44).

We write equation (11) in the form

[Ly + oDy + Uy — pI]v, =0,
[L; + oD, + U, — pal]v, =0,

pitp, =0 5)
Taking trial values of o, u, and u, we fix the scale of
v, and v, by setting (v,); = (v,); = 1, and we use

each matrix equation as a three-term recurrence for the
components of the corresponding v. By this means we
solve the equations

[Li + oDy + U, — pI]v, = Bie,,

[L, + oD, + U, — pal v, = Bre,y (46)
where e, is the n-dimensional unit vector with one in
the nth place, and e, is defined similarly. The required

values of o and u can now be characterized as solutions
of the system

and

31(‘% Hy) =0,
BZ(G’ #2) = 0’
pi+ py =0. 47
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Corrections to our trial values of o and x can now be
calculated by applying Newton’s method to (47). This
gives

d d
B%AU + S,@[:A“‘ + Bi(o, 1) =0,

d d
%AU + D%Aﬂz + Ba(o, py) =0,

p+ p2 + Apy + App, = 0. (48)

The partial derivatives of B, can be computed from the
the final rows of variational equations

[L, + oDy + U, — Muﬁ = D_B,en — Dy,
do do

) )
[LI + O'Dl + Ul —_ l.L]I]*ﬂ = Blen + vy, (49)
Opy

with the initial conditions (%) = (bvl) =0, and
g/

o/

there is a similar set of equations for the partial deriva-
tives of §,. We mention that by making a different
choice of the scale in the calculation of v, and v, it is
possible to by-pass the solution of the variational equa-
tions in calculating the partial derivatives of B, and B,.
However, this may lead to a computation which is
numerically unstable (Osborne, 1962).

We now discuss further some properties of equation
(11). We assume that the conditions stated following
equation (12) are satisfied and, in addition, that the
matrices F and G are negative definite (the most usual
case). If we set o = 1 in the eigenvalue problems

[Ly + oDy + U, — pI]v, =0,
and [L, + oDy + Uy — pylv, — 0 (50)

it follows from the above assumptions that their maxi-
mum eigenvalues u, and u, are negative. We will show
that as o is decreased these eigenvalues increase. It
then follows that there is a value of o for which the
maximum eigenvalue of one of the matrices is sufficiently
positive to cancel the maximum eigenvalue of the other.
This is the value of o required in the calculation of the
optimum value of w.

The proof is straightforward, and we consider here u,
the maximum eigenvalue of the first problem. As o
is decreased we follow the curve B,(o, u,) = 0. Using
equation (48) we see that our result holds if d8,/d¢ and
0f,/du, have the same sign on this curve. To show this
we use that the matrix on the left-hand side of equation
(49) is singular on B,(o, u;) = 0, so that the right-hand
sides must be orthogonal to the eigenvector of the trans-
posed matrix. To derive this vector we use that the
tridiagonal matrix L, + U, has its off-diagonal elements
onesigned, and so can be made symmetric by pre-
multiplying by a diagonal matrix X with positive ele-

H
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ments. The desired eigenvector is Xwv, giving the
orthogonality conditions

v{X{blgl/boen — Dyv,} =0,

and vIX{3B,/dp e, + v} = 0. (51)
Thus 3& EEL = — v1XD v,/ vTXv, (52)
oo/ oy,

and the desired result follows from this as all the ele-
ments of D, are negative.

Another useful property of the solutions to equation
(11) can be deduced by noting that the principal minors
of the matrices occurring in equation (50) form Sturm
sequences with respect to u for fixed o. It follows that
the eigenvectors v, and v, associated with the maximum
eigenvalues u, and u, have the property that all their
components have the same sign. This suggests that a
suitable choice of o and p to start our iteration would
be one which leads to positive vectors v, and v, (this
property can also be used to verify that the solution
produced by our iteration is the correct one). A choice
compatible with the assumptions made about F and G
in this section is o = 1, u; = pu, = 0.

To illustrate the calculation consider the case of
Laplace’s equation for which explicit results are avail-
able. Taking h=k=1, m=19, n=15, o =1, and
#1 = = 0 we found the corrections to o and pu,
given in the Table below.

Ao Apy

—0-0466 1654 —0-0781 9549
—0-0214 9499 —0-0354 4978
—0-0048 0259 —0-0076 7722
—0-0002 2850 —0-0003 3983
—0-0000 0052 —0-0000 0062

This gives o = 0-926 857, u; = — 0-121 663 agreeing
N w

to all figures with the values of %(cos 7_6T + cos X))’ and

cos % — cos % taken from Chambers’ 6-figure tables.

6. Some connections with the general theory of over-
relaxation

In the iterative procedures considered in this paper
we may represent the unknowns (a) as a column vector,
and (b) as a rectangular matrix. The representation (b)
has an advantage for our purposes as separability of the
partial differential equation is mirrored by independent
operations on the rows and columns of the solution
matrix, as in equations (5) and (29) for example. The
representation (a) has the merit of much greater generality
as it applies to non-rectangular regions.

In the general theory of successive over-relaxation
(S.O.R.)) a key result is that the components of the
solution vector can be so arranged that the matrix of
the set of linear equations is block-tridiagonal, with the
additional property that the blocks on the leading
diagonal are diagonal matrices. After this has been
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done it is fairly easy to show that the study of S.O.R.
can be reduced to a study of a simpler iteration called
the method of simultaneous displacements (Forsythe and
Wasow, 1960, pp. 247-50). The essential steps in this
development are paralleled in our work in the passage
from equation (7) to equations (9) and (10). Equation (9)
is the eigenvaiue problem for the method of simultaneous
displacements translated into our formalism, and
equation (10) which relates the eigenvalues of the S.O.R.
iteration with the method of simultaneous displacements
is the same in both treatments.

Certainly some at least of the results obtained in this
paper can also be obtained by applying known theorems
to the matrix of the eigenvalue problem for the method
of simultaneous displacements. As example we give a
derivation of equation (16), that for (24) being similar.

We take as our starting point equation (9)

[LZ -*‘ O'DZ “{— Uz]q) + (I)[Ll + O'Dl + Ul] = O

We assume that the elements of the ith row of

Ly + oD, + U are 11, ¢d®, and u", and that the

ith column of @ is the vector Q;. With this notation (9)

implies the equations

180,01+ [Ly+ o(Dy+ dVI) + U,]Q; + u? (Q;_ =0,
i=1,2..,n (53)

Assuming that D, = a,I we may write (53) as

1, L, +U, u
52+ ;/}T)Qi 1+ {m‘ﬁ) + ol }Qi + Ez’ ;F'E]ifl)Qi— 1=0,

i=1,2...,n (54

If we now define an mn-rowed vector by the equation

v =

Q-ifl
90

L (55)

then we see from equation (54) that — o is an eigenvalue.
and v an eigenvector of the block tridiagonal matrix

A:‘ —LZ +U2 /(21) ]

a, +d" a, + d{V
W LUy
a, +d{"" ay + d{" a, - dib
Uy L, U,
| ay +d" ay 4+ dv ] L (56)

References

To calculate the eigenvalues of 4 we apply a result due
to Afriat (Afriat, 1954) which may be stated as follows.
Let an mn x mn matrix M have the property that it can
be partitioned into blocks M;; = Ri(B), i,j=1,2,...,n,
where R;;(B) is a rational function of the m X m matrix
B, and let X be an eigenvalue of B, then the eigenvalues
of the n X n matrix with elements R;i(A) are eigenvalues
of M.

As D, = a,l is a multiple of the unit matrix, we have
the eigenvalues of L, + U, given by equation (13) in
the form a,u,;, j=1,2,...,m. Applying Afriat’s
theorem to the matrix 4 we have the o given by the
eigenvalue problems

T arf2; 5o 1 ]
a, +d{V a; +d"
unﬂ)i arftaj _;lsi'_)ﬁ_
<l ay +dVay + diY ay + diP + ol -t=0.
uy 1 @y
L a +d ay +dP] ] (1)

Equation (57) is equivalent to the eigenvalue problem
[Li + o(Dy + a)) + Uy + pyard)t =0

which is precisely the form taken by equation (16) in
this case.

Strictly, as 4 + ol is not diagonally block-tridiagonal,
the general theory of S.O.R. would associate a matrix
other than A with the eigenvalue problem for the
method of simultaneous displacement, the actual form
of this matrix depending on the ordering of the com-
ponents of the solution vector. However, there will be a
permutation matrix P such that this matrix is equal to
PAP" (Forsythe and Wasow, 1960, pp. 242-45), and
this transformation does not change the eigenvalues of A.

7. In conclusion

In this paper we have considered only the five-point
difference approximation to partial differential equations
in two independent variables. For the more accurate
nine-point formula to be applicable we must have f(x)
and g(1) equal zero in equation (1). We find that the
approach used in this paper works only for the case of
line over-relaxation, and here we require the further
condition that at least one of p(x) and ¢(1) must vanish
identically.

We wish to acknowledge the assistance of Dr. D. W.
Martin of the National Physical Laboratory who,
besides providing the derivation of equation (16) given
in section 6, has made many suggestions concerning
presentation which have greatly improved the paper.
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The LL” and QR methods for symmetric tridiagonal matrices

By James M. Ortega and Henry F. Kaiser

Introduction

It is known (Rutishauser, 1958, 1959 and 1960) that for
a positive definite real symmetric matrix 4, the algorithm:

Decompose A4; into L;LT; i—1.2..
Form 4;,, = LTL; oo

where the L; are lower triangular matrices and L] is the
transpose of L;, produces a sequence of matrices A;
which are all similar to 4, and which converge to a
diagonal matrix A4.

A similar algorithm due to Francis (1961):

Decompose 4; into Q;R;; P12
Form A4;,, = R;0; 525 00

where the Q; are orthogonal and the R; are upper trian-
gular, also produces a sequence of matrices which tend
to a diagonal matrix. This algorithm has advantage
that the similarity transformations involved are
orthogonal congruences.

Now when A4, is tridiagonal, that is a; = 0 for
|i —j| > 1, then the matrices 4; produced by either
algorithm are also tridiagonal [Rutishauser (1958) and
Francis (1961)] and we might hope that these algorithms
would be effective for the important problem of finding
the eigenvalues of A,. If we carry out the algorithms in
a natural way, however, it would seem that each iteration
would require n square roots and consequently would
be inefficient compared with the Sturm sequence process
now in common use.

It is the purpose of this paper to show that both
algorithms can be carried out using no square roots.*
Limited experiments have shown that with accelerating
techniques involving translations of the origin (see, e.g.,
Rutishauser, 1959 and 1960), these modified algorithms
produce eigenvalues of high accuracy three to ten times
as fast as the Sturm process.

The modified LLT algorithm
Let A, be a real symmetric positive definite tridiagonal
matrix with diagonal elements a,, . . ., a, and off-diagonal

* J. H. Wilkinson, of Teddington, England, has also noted that
the LLT algorithm can be carried out without square roots for
tridiagonal matrices [private communication].
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elements b, . . ., b,_, and let A, A5 ... be the matrices
produced by the LLT algorithm. Our modified algorithm
produces the diagonal elements and squares of the
off-diagonal elements of the A4;, and clearly this is suffi-
cient since the signs of the off-diagonal elements do not
affect the eigenvalues.

Let ay, ..., a, and by, ..., b,_, be the diagonal and
off-diagonal elements of A,; it will suffice to describe
the transition fromay, . .., a,and b},.. ., b2_,toay,...,
a,and b?,. .., b2_,. NowA, = L{L, where L|\L{ = A4,.
Ifweletd,, ... d,ands,, ..., s,_ be the diagonal and
sub-diagonal elements of L, and carry out the indicated
matrix multiplications we then obtain:

2 4.
di =a; ,

2 __ H2/42

s7 = bi/d; ‘

. — ]2 2

@ =di + 5 i=1,.. ., n—1;
d2 — . ] LIRS ) B
,'il*—al—kl S ’

242 2

bi =di. s J‘

a, = d2.

To carry out the algorithm in practice only two
temporary storage registers are required to retain the
current s? and d?; the old a; and b} are also replaced by
a? and b? immediately, so that a total of only 2n + 1
storage positions are needed. [Each iteration requires
no square roots, n — 1 divisions, n — 1 multiplications
and 2(n — 1) additions.

Note that we have not included any acceleration pro-
cedure in the algorithm, and one must be added to make
this a practical process.

The modified QR algorithm
Again leta,, ..., a,and by, ..., b,_; be the diagonal
and off-diagonal elements of A4,, and a,..., a, and
B,, ..., b,_ the corresponding elements of 4, where now
A, = R\Q,
and A, = O R,
where Q, is orthogonal and R, upper triangular. As
with the modified LLT algorithm it will suffice to describe
the transition froma,, . . .,a,and b3,. . ., b3_,toay,...,

a,and b3, ..., bi_,.
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