
The checking of computer logic by simulation on a computer
By M. Lehman, Rayna Eshed, and Z. Netter

This paper, which was originally presented at the Cardiff conference of the B.C.S. in September
1962, describes in detail the techniques used to check the logical design of the Sabrac computer

Introduction
The proposed specification of the Sabrac digital

computer was first discussed in papers presented to the
International Conference on Information Processing
(Lehman, 1959) and to the First Annual Conference of the
British Computer Society. Since that time the specifica-
tion of the machine has changed considerably.

The revised design has produced a machine, now
in operation, which despite its low cost and small
size has many "Second Generation" features (Lehman,
1961a).

The incorporation of a number of improvements
became possible since external circumstances consider-
ably extended the time available for designing the
machine. This extension also resulted in a considerable
gap between finalization of the logical design and
availability of the main rack for commissioning purposes.
Thus during the winter of 1960 the question arose whether
it would not be possible to make use of this waiting-
time to check out the logic of the machine, exposing the
inevitable design-errors, by means of a simulation of the
logic on another computer. In effect, this implies the
continuous solution of a set of some six hundred time-
dependent, recursive, symbolic (Boolean) equations
subject to some appropriate set of initial conditions.
The latter arise from the initial behaviour (when applying
voltages) of the machine circuit elements, from the state
of any console switches, from the "initial contents" of the
simulated store and, when relevant, from the "contents"
of the input media.

A first study of the problem suggested that such a
complete simulation would not be feasible with either of
the machines at that time available in Israel. A less
ambitious program, using the Weizac computer of the
Weizmann Institute of Science and simulating only a
part of Sabrac, did, however, appear feasible.

After outlining the relevant Sabrac characteristics the
present paper describes briefly the structure and success-
ful application of the Weizac Simulation. A description
is then given of a program incorporating a general-
purpose generator which will enable the complete
simulation of Sabrac on the Philco 2000 (Transac). The
same program, with minor modifications will also permit
the simulation of other synchronous computers or
computer-like devices or of any system which may be
described by a set of time-dependent, recursive, symbolic
equations.*

•Since this paper was prepared and presented the authors have
become aware of a paper by Stockwell (Stockwell, 1962) describing
similar work.

Sabrac
The machine is a 100 Kc/s serial, thirty-six bit device

using dynamic (SEAC) type logic. The semiconductor
circuits are assembled on a total of 214 printed-circuit,
plug-in boards of 23 basic types. The relevant character-
istics of these units are listed in Tables 1 and 2.

Those units whose properties are relevant to an under-
standing of the simulation program have a logic input
in disjunctive normal form typified by:

G = AB...V CD...V . . .

All outputs G are available both directly (assertion) and
inverted (negation).

Circuits occupying the various positions on the various
cards differ in the number of their AND and OR ele-
ments (diodes). The largest AND gate has five inputs,
the largest OR gate has eight inputs. Units such as
registers and counters have a more complex structure,
separate equations defining various control and input
functions.

Thus any machine element may be described by a
lower-case identification letter defining its time-behaviour
and by an equation or ordered set of equations. The
actual gate structure need not be specified, since the
redundancies which occur are of no interest and the
number of inputs used is always implicit in the defining
equation(s).

The main memory of Sabrac is a 5000-word magnetic
drum. In addition, a ferrite-core serial memory (Lehman,
1961b) provides immediate-access storage. The order
code includes 32 basic orders which may be modified to
yield a total of 197 functions. Input and output are by
paper tape.

The Weizac simulation
The Weizac computer is a Princeton type, parallel,

one-address machine, now some seven years old. It has
a 4000-location, 16 /xsec core-store, no index registers,
a 50 fj.sec addition time, and only single-channel paper-
tape terminal facilities. At the time when the first
simulation was written magnetic tape was not available.

The above characteristics all clearly indicate why a full
simulation was not considered feasible on this machine.
Early programming studies, however, did suggest that a
system involving not more than some fifty equations
could be programmed. Hence the decision was taken to
simulate the Sabrac multiplier with the threefold purpose
of checking the feasibility of writing a simulation, of
debugging this relatively complex circuit, and of estima-
ting the value of such a project.

154

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

Table 1.—Sabrac units Table 2.—Circuit functions

CARD
TYPE

A
B,B*

c
D
E

F
H,H*
/,/',/*
L

M
P

X,X*,
X**
Y,Y*

zc
ZD

ZH

Zl

ZK

ZO

ZQ

ZR

ZT

ZV

FUNCTION OR NAME

Core store driver
Logical units with
and without delay
Counter (Modulo
27)
Delay
Clock pulse repea-
ters and logical
units
Flip-flop
Half-delays
Indicator drivers
Main logical unit
with delay
Core memory
Pulser (clock
strobe generator)
Decoders

Registers
Drum clock
amplifier
Drum track
selector
Hoot control and
amplifier
Core-store inhibit
driver
Core-store constant
current driver
Master oscillator
and mixer
Paper-tape synch.
control
Core-store read
amplifier
Paper-tape punch
driver
Voltage control

Total

CIRCUIT
TYPE

1 x b,3 x 1

d
3 x e,3 x 1

2 x f
3 x h

4 x 1

—
—.

8 x b

—

l x f

—

—

—

NO. IN
MACH-

INE

15
28

3

8
20

29
5+2

3+2+1
46

3
5

2 + 1+1

9+9
1

9

1

1

1

1

1

2

4

1

214

NO. OF
CIRCUIT
EQUA-
TIONS
PER

CARD

6
4

4

1
3

2
3

—
4

—

8

4+0

4

1

3

_

3

1

4

—

TOTAL
NO. OF
EQUA-
TIONS

90
112

12

8
60

58
21

184

—

32

36

36

1

3

:

3

2

16

—

674

Like other orders, basic Sabrac multiplication is
specified by a particular combination of the five "F-bits"
(function-bits) of the 18-bit instruction word. Variations
on the order are then defined by different combinations
of the three "R-bits". The meaning of these for multi-
plication is given in Table 3.

The Weizac program required, for each run, the
initial specification of three R-bits, a 36-bit multiplicand
and a 36-bit fractional, or seven-bit integral, multiplier.
This input sufficed to define the first operation. Subse-
quent multiplications in the same run were then performed
on pseudo-random data generated by the program.

CIRCUIT
TYPE

b

d

e

f

h

1

CIRCUIT STRUCTURE

Disjunctive Normal Logic (d.n.l.) input
stage followed by a nominally delayless
output stage

d.n.l. followed by three output stages
with delays selected to be from one to six
bit-times, (b.t., one b.t. is 9 /usecs).

Emitter followers. Clock and Strobe
pulse repeaters.

d.n.l. followed by flip-flop.

d.n.l. followed by half-delay (ib.t.) and
output stage.

d.n.l. followed by delay (b.t.) and output
stage.

Table 3.—Multiplication variants

BIT

0

1

R2

Integer

Fractional

Rl

Single-
length

Double-
length

R O (R I = O)

Unrounded

Rounded

Ro(Ri = l)

Non-
accumula-
tive

Accumula-
tive

After punching out a record of the given or generated
data, the program determined directly the true product
according to the specification of the option, using the
appropriate one of eight subroutines.

The simulation was then performed by successive
iteration on the set of symbolic equations describing the
units of the multiplier circuit. Each such iteration
determines the value of each equation as a function of the
values of its input-variables. For inputs originating
from a source with a delay, the values are those obtained
during the previous iteration. Where the source is a non-
delay, or buffer-type unit the values are those obtained
during the present iteration. From this it will be clear
that during the "Scan" the buffers must be evaluated
before delays. A Sabrac interconnection rule, that
"Buffers cannot feed buffers", obviates the need to scan
the buffer-type units in any specific order.

In this special-purpose simulation it was not deemed
necessary to simulate those phases of the operation which

155

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

Print data. Set uo Initial condition*. Set flrat-add-cyele switch I

I Cowput* and stcre'true-reoult' I

i with new ones,

. and store In temporary ntorage.

Reolace old delay values by contenta of temporary storage.

T»ot manual Print-Switch. print not required

print
required.

Bnd of add-cycle? Rea* first-add-cycle switch!

Iblrst-add-cycle switch eetflZ^Uprint out current value*. I

I Output Sabrac results. I

|aen«r»t« n«w <3«tB. I

Fig. 1.—The Weizac multiplier-simulation

select, extract and interpret the function bits determining
the order (in this case multiplication) to be performed.
At the end of these phases the units of the multiplier,
apart from those in which the data are recorded, are in a
known state. Thus, at the beginning of each multiplica-
tion, after reading in or generating the new data, the
Weizac locations whose sign bits represent the present
values of the units could be preset to the initial state
representing the beginning of the multiplication cycle.
A flow diagram of the Weizac program is given in Fig. 1.

The simulation process may be divided into two
phases, Scan and InterScan. At the beginning of each scan
the current value (state at the output) of each of the
thirty or so equations describing the multiplier is stored
in the sign-position of one of a group of Weizac store
locations (500 to 5FF) termed Current Value (CV,). For
convenience in scanning, the logical complements of
these values are stored in a second group of locations
(600 to 6FF) termed Current Negated Values (CJVF,).
During Scan, the equations are evaluated from the
contents of CF, and CNV,, for each equation, using an
individual order-sequence with a general structure
according to the scheme of Fig. 2. Computed values of
equations representing buffers, and their negations,
immediately replace the previous values in CVt and
CNVj. The current value of delay-type units, on the
other hand, may not be displaced until completion of
the scan. Hence their values, as computed, are stored
in a third group of locations (700 to 7FF) termed Future
Values (FF,).

IEnter
subroutine

(A+500) -» Ace

Collate (B«-600)&(Acc) -• Ace

(Acc)< OT Tes

No

(C +500) -» Ace

(Ace) < 0? Yes

No

(D+500) -» Ace

Collate (E+500)«b(Ace) -» Ace

Collate (F+600)&(Ace) -• Aee

Delay
Unit 8

T

Buffer

I (Ace) -» Of700
nits j

(Ace) -• 04-500

Sign dlglt+(Aec)-»Acc

(Ace) -• O+-6O0

Exit from Subroutine.

Fig. 2—Weizac evaluation of the typical equation
G = AB v C v DEF

Sabrac Registers and Counters differ from other units
in that they store not one bit but 36 and seven bits
respectively. Furthermore, they are represented by sets of
equations which in addition to the input, define functions
such as shift, count and reset as applicable. Thus the
Scan and InterScan routines for these units differ some-
what from the more standard structure of other units.

On completion of Scan, the following functions are
performed during InterScan. (See Fig. 1.)

(a) Transfer all the FVt to the corresponding CVt and
CNV-,.

(b) If required, print out intermediate values.

156

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

»0

Kultlpllar
Multiplicand

Product (la)

Spill

101
000
101

B*D
000
001
0

100
001
001

BID
000
001
0

100 100 001
000 010 000

110 101 101

111 111 111
111 111 111

010 Oil 100 111
010 001 111 001

100 100 111 110

110 000 100 000
110 000 100 001

000 000 000 110 000 100 001

Oil
010

001

Oil
110

010

010 001
111

Oil

101
101

Oil

000

101

101

001
100

Oil

110 110

001 no

000
000 000 000 000 OOO 000 000 OOO 000
111 100 101 100 000 001 000 000 111

111 100 010 Oil 000 100 Oil 110 001
111 111 111 111 111 111 111 111 111
0

110
100
100

000
100
1

001
001

010
111

100 001
111 101

Oil 010
110 101

111
111 000 OOO 110 Oil 110 000 000 110 010 Oil 010
000 000 000 Oil 110 001 110 111 100 0000000 010

Oil 111 Oil 001 000 111 001 001 001 001 101
000 111 111 111 110 100 110 100 010 100 Oil 101
0

100
010 010 000 010 Oil 010 Oil 100 Oil 101 111
011 101 000 Oil 010 101 100 110 001 111 000 110

010 000 Oil 000 100 100 000 111 100 010 111 110

110
Oil 001 Oil Oil OOO 000 001 110 110 010 100 Oil
100 101 000 001 OOO 101 001 101 Oil 110 001 001

111 010 100 110 100 111 110 001 000 001 110 110
101 010 100 Oil 100 100 101 111 101 110 111 IOC

100
111 100 101 100 000 001 000 000 111 001 111 101
101 111 101 Oil Oil 000 100 101 111 101 010 111

111 100 010 Oil 000 100 Oil 110 001 010 Oil 010
000 001 101 100 001 000 000 Oil 111 101 101 110

110
100
100

OOO
100

111
101 111 101 Oil Oil 000 100 101 111 101 010 111
000 Oil 111 101 101 110 110 110 000 Oil 001 101

100 100 010 101 001 110 Oil 101 001 111 110
111 111 101 010 101 101 001 Oil 001 100 110 001
0

Oil
000 OOO 000 000 000 000 000 000 000 000 010 001
111 001 001 100 111 110 111 100 001 Oil 001 111

100 001 001 Oil 101 Oil Oil Oil 101 101 Oil 100
000 111 111 .100 Oil Oil 001 111 100 100 110 101

000 000 000 000 000 000 000 000 000 001 110 010
110 001 110 010 110 111 111 Oil 111 Oil 111 101

111 010 Oil 010 111 100 111 101 010 010 110
000 111 111 100 Oil Oil 001 111 100 100 000 010
0

000 000 000 000 000 000 000 000 OOO 001 100 Oil
110 010 Oil 110 100 Oil 000 'Oil 001 010 101 001

111 010 Oil 010 111 100 111 101 010 010 110
111 111 111 111 111 111 111 111 111 111 010 110
0

010
000 000 OOO 000 000 000 000 000 000 001 180 100
010 101 000 000 110 111 100 101 110 101 101 101

101 010 101 101 101 110 001 111 110 100 101
000 OOO 000 OOO 000 000 000 000 000 001 000 001

o

111
010 101 000 000 110 111 100 101 110 101 101 101
010 101 Oil Oil Oil 100 Oil 111 101 001 010 001

110 OOO OOO 001 001 000 110 000 000 000 100 010
001 110 000 100 10b 101 111 Oil 010 010 110 001

1 Sarljr remits including "s A D"a. 2 Final resulte Including special case*. 5. Final results with rondos data.

Fig. 3—Sample results from Weizac multiplication simulation

(c) If multiplication is not completed, re-enter Scan.
(d) If multiplication is completed compare the Sabrac

(simulated) and Weizac (computed) products and if
these differ print out "BAD".

(e) In either case, print out the binary, double-length
product, as obtained from the simulation (with
least-significant zero suppression). Also print out
the contents of the unit indicating Spill. (Spill may
occur either on accumulation or on multiplication
of minus one by minus one).

(/) Generate a new, "random", multiplicand and R-
bits (options).

is) Enter a new multiplication using the old multi-
plicand as the new multiplier.

Results of the Weizac simulation

The original program was written in the space of about
fifteen days, of which two days were required for familiar-
ization with Weizac and its code, three days to develop
the general flow diagram, and about ten days for coding.
Coding of the Scan sections was done directly from
multiplier logical-circuit diagrams and equation lists.
Debugging of the resultant program required three ten-
minute runs on the machine. It is of interest to note that
several design errors were already detected during writing
and debugging of the program.

During this phase of the work it was realized that a
disproportionate amount of time was being spent on
output, each eight-minute run requiring only about one
minute of computation. The program was therefore
modified so that output, other than the actual result, was
optional. In the subsequent work it was found that even
this minimum print-out generally sufficed to pin-point

circuit faults, and on only two occasions was it necessary
to rerun a multiplication with full print-out.

Altogether, in a total of eight hours of machine time,
twelve faults were discovered and corrected. A total of
some 500 multiplications, comprising both random and
potentially pathological operands, were performed. A
final run of some one hundred multiplications, without a
single "BAD" result, suggested that the circuit was
substantially error-free. Some results of the Weizac
Simulation are shown in Fig. 3.

Conclusions drawn from the Weizac simulation

The relative ease with which the Sabrac multiplier had
been debugged provided convincing evidence that the
simulation technique was a usable and apparently worth-
while method for the commissioning of logical circuits.
Our belief on conclusion of this work, substantiated by
subsequent experience in the operation and commissioning
of actual hardware, was that the hardware and software
approaches are complementary, each capable of making
a significant contribution to the commissioning of a new
machine. Use of simulation techniques during design,
and before a rack is wired, would obviously be of special
importance, since correction of errors at this stage
involves no changes in hardware.

Thus it appeared well worth-while to go ahead with
the writing of a general-purpose simulator for the whole
of Sabrac, to be run on the Philco 2000 then on order for
the Israel Government. However, on the basis of ex-
perience with the Weizac program the following changes
appeared desirable.

(1) Programming of the equations should be auto-
mated by means of a general-purpose generator.

157

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

Input to this would be the list of equations to be
simulated, each punched in suitable form on one or
more cards. Its output would then comprise the
Scan phase of an overall simulation of the system
represented by the equations. This approach would
not only minimize effort in using the simulator.
It would also eliminate the difficulties encountered
in the Weizac program, where correction of any
equation often entailed modifications to a major
part of the Scan, and led to program inefficiency
and errors.

In practice the ideal of a general-purpose
generator was not realized. The limited high-speed
storage originally available to us on Transac,
combined with a desire to minimize simulation
costs, suggested programming techniques which
restricted the size of gates to the maximum
occurring in Sabrac (five-way AND, eight-way OR).
The punching conventions adopted for generator
inputs were also tailored for the known Sabrac
structure. In both cases, however, restrictions
arising from the adoption of these conventions
could easily be removed if required.

(2) In the first simulation program, scanning of
individual units, as shown in Fig. 2, was based on a
direct evaluation of each equation, that is, Scan was
"By Inputs". This method is clearly inefficient
since most signals in Sabrac are zero most of the
time. It seemed desirable to make use of this
known property of the inputs, and the description
to follow will introduce the far more efficient
method of scanning "By Outputs".

(3) In addition to the generated scan, the Transac
program would include sections simulating mem-
ory, peripheral, and console equipment. It would
also have to include an arrangement for controlling
print-out (printed on the Transac line-printer).
This should permit the free selection of equations
whose values were to be printed, the unit being the
behaviour of any equation during one complete
word-time. Finally, the program must contain
sections which, during any run, would permit
checking of the.simulated (Sabrac) results against
a true result calculated directly from the "order
specification".

Scanning by outputs
The sequence of orders in the Weizac routine, outlined

in Fig. 2, scans the terms of each equation by inputs.
That is, it collates together the contents of the appropriate
locations CV, or CNV(for each AND-gate combination,
until either all inputs to some one gate are found to be in
the ONE state (are one) or until all inputs to the equation
have been scanned. In view of the fact that during any
bit-time most of the equations are zero, the method
appears almost to maximise the number of inputs
inspected. In a hand-written program an attempt can be
made to avoid the most obvious inefficiencies, but in an
automatic generator this is more complex.

The alternative, "Scan by Outputs", adopted for the
present program, attempts to minimize the work-load
at the expense of increasing the storage required.

Each equation Et may be represented by a storage
location EV{ in which the values of the individual bits
EVjj represent the state of the various inputs. A second,
history, location H, records the current value of E, in the
most significant bit position H!0. For the purpose of
output it also records past values of Ex at bit-time inter-
vals. Given a list of the input-bits to which each equation
feeds, the program may proceed to scan this list, filling in
the EVij if and when they occur. That is, if Hk0 is one, a
"one" is introduced into those EV^ which represent an
input Ek. Alternatively, where Hk0 is zero, a "one" is
introduced into the EV0- representing the negated feeds
~Ek. Since the majority of feeds are assertive, and since
most equations have the value zero most of the time,
this arrangement is far more efficient than scanning by
inputs.

During the second part of the scan the EVt are inspected
for "Five-Ones" groups. According to the existence or
non-existence of such a group for each equation, the
new one or zero value is inserted into the Hi0, the //,
having previously been shifted down one place.

The TAC (Translator Compiler) DORMS order
permits the insertion of a "one" or group of ones held in
the Transac Z)-register into corresponding bit positions of
a given memory location M. Thus, if the EVt are initially
cleared, the Scan procedure outlined above is obtained
from a sequence of order pairs:

Transfer MASKfiJ) to .D-register
D or EV, to EV,.

In short: TMD MKf(j); DORMS EV,
which inserts Hk0 or Hk0 as required into the appropriate
EV,.

In this sequence the address MKf^ refers to a list of
standard bit patterns or masks. The simplest of these
each consists of a single bit in one of the 40 positions
which an input may occupy. Since not all gates have five
inputs, a second group of 40 masks is required to enable
the unconditional filling of unused inputs together with
the scanning of the last input of an under-sized group.
Thus in inserting the value of A in the equation

G = ABsBCD

a mask of form

10000,00000, . . . 00000

would be used, whereas the appropriate mask for D is

00000,00111,00000, . . . 00000.

Further time and space are saved by the building up of
compound masks where a feed appears more than once in
the same equation. The mask for inserting B in the above
equation, for example, becomes

01111,10000,00000, ...00000.

158

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

- j U«M"•">•".. r.nL
D ' " ' " ' ' t < U L i '- ••>•»• lift '

fn^-^ fJIAe- SiSilXJ^iilL IL^LnEUT . . . ajrfu-

=•»"-: g j * - t e l l . I^IJ . US', Kg .ClOU It II Ull- ClOl

Cwi

_ x

— i

a

£1= £r/?2
C«J lk,r^ -tt.

C.J. Nn. ; 3] u • ,~] c*fd. T,p.; i_

• • • • • A * * • •3
B»cord c&rd - front

Cl»«l!2*.iai.-Kl?.f>39«v-KIl.C10!»Kll.K12.Cl01>Si0lf
I • I I I II I I II I

• I 1 1

III
in:
tut

ttil

7 1 1 !

»)» !

•ill

lll1imi||t1l|IUIM!tt||ll|:

imiliilmililiiimilmti

i||iii!|nil)3ii|3|ninii|l)

in urn 17171117iii7i 117 mri

i|i

tn
rn

r?J

1 1 1

i||ii|iu|i|imiiir

>))|ii>||i])nln|n

J111771111111J11Jill}

1 1 1 1 1 1 1) 1 1 1

> > } i l l :

'111171

I 1 H

' 7 7 J)

II 1

•n

i it i
mi
Mil

' M l

Mil
111!
tin

1111

111
-ii;

n>:

771

111

111

111

17

•

•

•

•

•

•

•

•

m

\
w t

UIUI

—

JJtil

Punched

17 'itliLX '

el I . J.U '
©I Xfif lUt _ fcV . . .

• i i i n r /«i«itd. »sw«7
*r ... i&iim , _ .

« • . 38<7<.f
0| J8I3LV *8iflL
to - xAiil-w
fo . x t LtUXT
it _ _ _ .
it IHIL - - - '

io' J. j tz«r
Ji> C7

w

- -
» X0|l||£ * - *

• t JAI447 '
J <tll<>4 1 " '
7*
7t

H lai&N ' .
1 ' • '

^7 U i lLC
xi lAimrf 4<7*

47 .2*2 t.F <.«Jttf
#7 «r
n'it nte. a.H

ht.xBatf- •.<-
*»[. _ «J>

0 *U*I
a«i

° * ill
ill

!I Iti

It
Ztl

X 2SI
J6l

Ui

'
!

. 'Ill

«•.«

51.F

<*f

it O n

|><K.

>Kl R.I.

• » • * •
Bvcord card - b«ck

Fig. 4—A Sabrac record card and its punched-card equivalent.

The generator
Fig. 4 shows one of the Sabrac record cards on which

are recorded all the relevant details appertaining to one
equation and the unit which realizes it. The punched card
illustrated records all the information required for a
simulation, and in general includes:

(1) The name of the unit.
(2) The type—which defines its delay characteristic

and any special properties.
(3) The equation.*
*At least one of the present authors (M.L.) objects strongly to the

use of addition and multiplication symbols to represent the logical
functions V — OR and A, & — AND, but from the set of Transac
symbols available these were the most appropriate.

Entry tol Generator

Generate Basic List of Masks.

Input card and decode It Into skeleton orders and Key (Kl)

building and uslns Main Directory (ND)

[Is this last card of pack?

Sort l i s t of keya according to unit types.

I Calculate entry points to unit scan and Insert In K̂ I

Build up final order palra and group according to outputs.

InBert Jump orders (back to"Progran Sequeaoins") after order grouosl

I Allocate appropriate addresses to"pro(p*a» control"unlt?l

(contract and adapt MB for later use In prlntlng-out. J

Exit from aeneratsr

Fig. 5—Simplified block-diagram of equation-scan generator
(Transac)

(4) The number of assertive and negative loads. A
multiple feed to another equation is recorded as a
single load since it requires only a single (com-
pound) mask.

Equations are punched directly, without special
column allocation, the variable-length fields being
separated by control symbols. Thus in the example given
the equation becomes:

C126 =L(R2* .KU. - K\2 . P35*
+ -K\l . C101 +KU .K\2 . C101)2,0; 8

The combination 2, 0; indicates that C126 feeds to two
equations assertively and to no equations negatively.
The § symbol terminates the data for this unit. If
necessary, the data for one unit may be spread over
several cards.

The purpose of the generator is to convert the "state-
ment" comprising the set of symbolic (Boolean), time-
dependant equations, recorded as above, into a program
which evaluates them at discrete bit-time intervals.

Fig. 5 shows a much simplified flow diagram of the
generator. Entry is via a Mask Generator which generates
and lists the eighty basic masks. The compound masks are
generated as the need arises, during "Card Decode",
and are stored as a continuation of the same list.

159

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

Cards are decoded as read, the equation being trans-
lated, in the first place, into a key, K,, and a sequence of
skeleton orders as described below. In addition, a
"Main Directory" MD records the following details of
each unit.

(1) The address of K,.
(2) The number of assertive feeds.
(3) The number of negative feeds.

K, includes
(1) The address of the associated entry in MD.
(2) The unit-type.
(3) An index number i determining the addresses

EV, and H,.
(4) Assertion entry point to "Unit Scan".
(5) Negation entry point to "Unit Scan".

Fig. 5 shows that the last two items are calculated and
inserted into K, after completion of Input.

The Key-list is maintained during input in the order in
which equation cards are read. The Main Directory is in
modified alphanumeric order. An algebraic relation
between the equation name and the MD address permits
minimization of the storage space required by the list, by
removing the need to reserve large blocks of locations for
non-existent blocks of names.

The one-word skeleton order pair contains at this
initial stage

(1) The name + Ek of the feed unit.
(2) The appropriate Mask address MJ-Q} derived from

EV,,.
(3) The address EV,.

When reading of the pack has been completed, the
key-list is re-sorted by unit-types, the sequence within
types remaining aribitrary. The blocks of types are
ordered according to their delay characteristics, since the
latter determine the order in which equations must be
scanned.

Key-sort is followed by the insertion of the TAC
function codes TMD, DORMS, into the skeleton order-
pairs, yielding the final order pairs. After sorting into
groups, according to the + Ek, these order-pairs form
the heart of the scan program whose flow diagram is
given in Fig. 6. Each order group, representing a set of
assertive or negative feeds, is terminated by a jump order
to "Program Sequencing", which controls the Scan
sequence.

To some extent the program is controlled by the state
of a small number of specific units, such as those indicat-
ing the end of a word-time or the beginning of a store-
read. Thus the index number i of these units must be
recorded by the generator for use during InterScan, since
there is no recorded connection, after generation, between
the name of the unit and its H,.

The final task of the generator is to provide a list of
data for use during print-out. Each item in the list
comprises the alphanumeric name of the unit, its address
H, and a flag, which may be inserted or modified at the

Inter I Scanr
Set Init ial

Head Kejr {

condition,Index (l)-ol

Zt) froo l i s t of Keys 1

| From Ki extract addreaa of History (Bĵ)j

| (HI) - «cc

| (Ace) < 0 T

1
Insert masks Mf/jjlnto
equations EVj fed by negation
of Hi (Order pairs IKD.DORHS

produced by generator.)

1

1
1 Last reed eon]

1
1(1 1 to 1

pl«t«lT(1

1
Irea fc

J *

Insert mask.* Mf/.j lnto
aquations EVj led by assertion
of Hj. (Order pairs TKD.DOWB
produced by generator)

1
> «.*!) |-Xlnr m Exit from

Scan

Fig. 6—Block diagram of "Scan by outputs"

beginning of each run, defining whether the unit is to
be printed or not printed.

The generator is largely self-checking and, in particular,
any deviation from the permitted card-format is noted
and printed out. Similarly the stated number of loads for
any output is compared with the number actually occur-
ring in the equations, and any deviation is once again
noted. In general, an attempt has been made to foresee
those errors which are likely to occur, and to detect them
when they do occur.

The program (InterScan)

Apart from its general supervisory activity, which
includes the sequencing of Scan, the program has the
following functions:

(1) Timing.
(2) Initial Conditions.
(3) Simulation of all hardware not represented by

symbolic equations.
(4) Checking of results.
(5) Print-out.

Timing
The timing of the simulation in "Sabrac time" is

intrinsically determined by the Scan, each complete cycle
representing one bit-time (approximately 9 /xsec.) How-
ever, the existence of asynchronous devices for input and
output makes it imperative to provide the program with
a clock which is advanced by the 9 ^tsec unit during each
scan. The use of this clock will become clear from the
subsequent description.

160

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

Initial conditions. This part of the program makes
provision for presetting the contents of the Sabrac store
as simulated in Transac. It also permits the specification
of any switches initially required to be in the ON con-
dition. Finally, the contents of any "paper tape required
to be read by Sabrac" are also stored in the Transac store.

Hardware simulation. The following components require
special treatment:

(1) The core store.
(2) The drum.
(3) Console switches and push-buttons.
(4) The paper-tape readers.
(5) The paper-tape punches.

The core-store. The serial Sabrac store consists of 224,
36-bit locations divided into three systems: Po of 32
locations, and Systems I and II each of 96 locations. At
any one time Po and one of the Systems function together
as a normal program store, termed the P-system, while
the remaining system, termed the T-system, is available for
concurrent (autonomous) input, output or core-drum
transfers. A "Change system and transfer control" order
may at any time interchange the function of the two
Systems. The simulation of this compound store presents
no special difficulties since its whole behaviour is deter-
mined by the equations of the associated units. Sabrac
core-store is simulated by a block of locations in the
Transac core-store, with a simple one-to-one correspon-
dence between the Sabrac and Transac addresses. The
program has then to calculate the relevant bit-position
in the Transac store whenever the simulated logic
indicates the appearance of a bit on the Sabrac read or
inhibit wires, and to read from or write into that position.

The drum. The drum consists of a 4096-word main
backing store and a 1024-word library. It is represented
in Transac by a block of core locations, with each
Transac address fully specified by the Sabrac track
number and track location, obtained from the logic. The
track location (or drum position) which on the drum is
determined by an "address track" is specified in the
simulation by a counter associated with the main clock,
counting once per word-time, modulo 32. The "word-
rate clock track" is simulated by a decoder fed from the
main clock, while the "bit-rate clock track" which in
effect governs the speed of the machine, need not be
simulated at all.

Switches and push-buttons. All switches and push-buttons
which feed to the logic appear as normal inputs in the
equations. Hence, for the purposes of the simulation
they are given pseudo-equations with their state defined
by their H,. As previously mentioned, switches that are
required to be "ON" at the commencement of the run
are preset by "Initial Conditions". A full simulation of
the machine requires the occasional operation of some
switches or push-buttons at times which are random
relative to the program. This effect is obtained by a
facility which permits the change of state of a switch or

the "pressing of a button" at "times" determined by the
main clock. Such a time may be absolute or relative to
some specified event.

Input and output. Sabrac is equipped with two input and
two output channels. The former are fed by a pair of
300 characters-per-second paper-tape readers; the latter
control two 110 characters-per-second punches. The
problem in simulating this equipment lies in its asyn-
chronous nature, and in the desirability to simplify
possible changes in the specification or behaviour of the
equipment. The timing of synchronizing signals is
obtained from counters whose properties are specified
by pseudo-equations of the same structure as the counter
units of the machine. The outputs of the counters are
compared, after each scan, with appropriately random-
ized target numbers, to determine when synchronizing
signals are received. The pseudo-equations are punched
and inserted with the main pack of equation cards, and
properties of the peripheral and other asynchronous
units may therefore be changed as required.

Checking of results. Experience has shown that simulation
of any but the simplest functions is useless unless the
results of each simulation are automatically checked. Thus
each run requires the inclusion of appropriate sub-
routines which predetermine, according to the order
specification, the results required from "Sabrac". Thus
on conclusion of each order or group of orders as
required, an automatic comparison can be made and any
deviation noted.

Print-out. Full facilities are provided for printing out the
contents, over word-time intervals, of the //, forall or any
desired list of units. Thus the behaviour of specified units
may be monitored to enable the analysis of misbehaviour
and the detection of faults.

The state of the Transac simulation
At the time of writing (August, 1962) the generator has

been completed and is operating. The program is being
written and it is hoped to commence the first simulations
in the autumn. Early runs will be of part of the machine
only. The accommodation of a full 600-equation simula-
tion (with an average of six inputs per equation) in the
existing 8000-location Transac store, would have been
possible only if the program had included the use of
magnetic tapes. In view of the fact that it is hoped to
increase the store size to 16,000 locations before the end
of 1962, the use of tapes did not appear justified. Thus a
full simulation will have to await the arrival and com-
missioning of the new store.

Future plans and summary
Hardware commissioning of Sabrac has gone ahead

much faster and more easily than had originally been
anticipated. Thus it is not clear how big a part the
simulation program will play in the commissioning of
this machine. It may be available in time to assist in
clearing up some of the more obscure faults which may

161

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

Checking of computer logic by simulation

appear in the future. Even if this should not be so, the
work will by no means have been wasted, since a program
is available to check the logic of additions to or changes
in Sabrac and of any new machines or devices as these
are designed. The advantages of such parallel checking
are obvious and need not be detailed.

An extension of the present program would also
permit its use for the simulation of asynchronous devices,
but no work has yet been undertaken in this direction.

The present project has also suggested a further
research program which would investigate the possibility

References

of mechanizing all or part of the actual design process. It
would appear possible to derive automatically a set of
equations which mechanize the execution of any specified
(computable) function. Several possible approaches to
this problem exist, and it is hoped to undertake an
investigation which will determine methods yielding use-
ful results in a reasonable amount of machine time.

Acknowledgements

The work described in this paper was carried out in the
Scientific Department, Israel Ministry of Defence.

LEHMAN, M. (1959). "Specification of a Cost-Limited Digital Computer", Information Processing. Proc. International Conference
on Information Processing. Paris 1959. UNESCO-Paris, Oldenbourg-Munich, Butterworth-London, 1960, p. 365.

LEHMAN, M. (1961). "The SABRAC Digital Computer", Technical Report No. 134, Sci. Dept. Israel Min. of Defence. February,
1961.

LEHMAN, M. (1961). "Serial Matrix Storage Systems", IRE Trans. Electronic Computers, EC-10, No. 2 June 1962, p. 247.
STOCKWELL, G. (1962). "Computer Logic Testing by Simulation", IRE Trans. Military Electronics, July 1962, p. 275.

Book review: Management

Management and the Computer of the Future, edited by
M. Greenberger, 1962; 340 pages. (Cambridge, Mass.:
The M.I.T. Press; London: The Book Centre, Ltd., 57s.)

This book consists of the transcription of a fascinating series
of eight evening lectures given at the Massachusetts Institute
of Technology in 1961, its centenary year. Even more
interesting are the discussions, recorded here in full. Many
well-known names in the American computer scene appear
in them, with that of J. McCarthy well to the fore, attached
to frequent penetrating remarks.

Although the focal point was management, the lectures
represented a wide field, and much that was of interest to
managers (and, indeed, to all of us) came out of frank speaking
on a variety of technical subjects. McCarthy himself, for
example, speaking on "Time-Sharing Computer Systems,"
gives a picture of the way he sees the computer business
developing in the future. Later he gets involved in an
argument with J. R. Pierce who, in a talk on "What Computers
Should Be Doing," deprecates attempts to make computers
do things that people can obviously do better; McCarthy
feels that this is not looking far enough ahead.

J. G. Kemeny, a mathematician and editor, describes his
idea of "A Library for 2000 A.D.": many millions of volumes
stored on tape, accessible from anywhere in the country by
closed circuit television. McCarthy feels that computer
techniques at least as powerful as those projected by Kemeny
will be available in 1965. On the indexing problem, however,
little light is shed: Kemeny's picture is naive, but no confident
alternatives are put forward.

To those of us who face it, "The Computer in the Uni-
versity" as proposed by A. J. Perlis is the biggest attraction
in the book. Perlis is an extreme visionary, and even if we

do not share his views we can gain a lot from his stimulating
account of future classroom life with the computer. He
shrinks from no aspect of the subject. Some of his com-
ments seem revolutionary, at least to us in Britain, and yet
the lively discussion which follows brings out no real disagree-
ment among those present. It is, in fact, a clear illustration
of how the climate of intellectual thought in American uni-
versities has accepted the computer; a result, no doubt, of
the policy of the National Science Foundation which Perlis
praises for having provided "funds so that universities not
only could have computers, but could have good ones."

Indeed, it is a depressing reflection that one simply cannot
imagine discussions of such breadth and depth as those
reported in this book, occurring here. Even those talks which
present no really new material, "Managerial Decision
Making," by J. W. Forrester, "Simulation of Human
Thinking," by H. A. Simon and A. Newell, and "A New
Concept in Programming," by G. W. Brown, represent view-
points which, though well established in the U.S.A., would
be somewhat revolutionary in this country.

There is some comfort in the fact that the introductory
lecture, which would in fact have been more appropriate as
an epilogue, was given by an Englishman, Sir C. P. Snow.
Snow has no detailed knowledge of computers, but his
perspicacity points out their social consequences more clearly
than others could. His audience, led by E. E. Morison and
Norbert Wiener, rises to the occasion. Why do people like
Sir Charles not address British audiences on these matters?
Are there no invitations? Or are we so lacking in our
grasp of the new technology that their words would be
wasted ?

S. GILL.

162

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/154/364763 by guest on 19 April 2024

