
Accelerating the Jacobi method for solving simultaneous
equations by Chebyshev extrapolation when the eigenvalues of
the iteration matrix are complex

By H. E. Wrigley

Chebyshev extrapolation has been applied successfully to accelerate the convergence of iterative
solutions of simultaneous equations which arise in the numerical solution of partial differential
equations. Its use is based upon the assumption that the eigenvalues of the iteration matrix are
real. In this paper, the analysis of Chebyshev extrapolation is extended to the case when the
eigenvalues of the iteration matrix are complex.

1. Introduction

The numerical solution of many elliptic and parabolic
partial differential equations reduces to the problem of
solving a set of simultaneous equations of the form

x = Mx + b (1.1)

where x is an unknown vector of length N (say), b is a
constant vector of equal length, and M is an N x N
matrix with real elements. If the form of the matrix
M is such that a direct solution, x = (/ — M)~lb
would be too time-consuming, then, provided the eigen-
values of M are bounded by the unit circle, the equations
are likely to be solved by the iterative process

je<"+» = J l f x M + * . (1.2)

Several schemes have been devised to accelerate the
convergence of this iterative process. One of the most
powerful is the so-called "Chebyshev Extrapolation"
scheme (Stiefel, 1958), which takes the form

(1.3)

= A/Jc<"> +b

where «„ and j3 are extrapolation parameters, the first
of which, as the notation implies, varies with iteration
number. This formulation of the extrapolation proce-
dure is preferred since, at each iteration, only one para-
meter, <xn, need be calculated. Also, an can be deter-
mined from <%„_, by means of a simple recurrence
relation. It is assumed in applying Chebyshev extra-
polation that the eigenvectors «, of M form a complete
set, and that the corresponding eigenvalues, A,, are real.
Although these properties have been shown to hold
(Varga, 1961) for only a limited number of idealized
problems, the success of the method in application
confirms the belief that they hold for a wide variety of
practical cases also.

There are problems expressable in the form of
equation (1.1) for which the eigenvalues of the matrix
M can be complex. The author had applied Chebyshev
extrapolation to a number of such cases without appre-
ciating that the eigenvalues were complex. The conver-

gence of the iteration scheme had been accelerated,
although in a number of cases, subsequently identified
as those in which the imaginary parts of the eigenvalues
were large, the acceleration achieved was not great.
Several questions arose naturally from these observations.

1. Why does Chebyshev extrapolation produce an
acceleration in the complex eigenvalue case?

2. Is Chebyshev extrapolation the best acceleration
scheme in these circumstances?

3. How does its effectiveness depend on the imaginary
parts of the eigenvalues?

4. What information on the eigenvalue distribution is
required in order to make the best use of the
extrapolation procedure? •

In Section 3, question 1 is answered by showing that
the answer to question 2 is in the affirmative provided
the eigenvalues lie within a particular region of the
complex plane. It is also shown that question 3 can be
answered by considering the effect on this region of a
change in the imaginary parts of the eigenvalues. In
the same Section, the theory of Chebyshev extrapolation
is extended to consider complex eigenvalues, and the
relationship between the convergence rate and certain
acceleration parameters is determined. The dependence
of the optimum values of these parameters upon certain
eigenvalues of the matrix M is established. In Section 4,
it is shown how the required eigenvalues may be deter-
mined during the course of the calculations. Iterations
begun with non-optimum values of the acceleration
parameters can be interrupted and the extrapolation
process re-started using the optimum values to give an
improvement in the convergence rate. In Section 5, a
strategy is described which can be applied in certain
cases to increase the effectiveness of Chebyshev extra-
polation when the imaginary parts of the eigenvalues are
large. Finally, in Section 6, there is a discussion on the
types of problem to which the method described in this
paper can be applied.

Before these points are considered, however, a brief
description of Chebyshev extrapolation as applied in the
real-eigenvalue case is presented, together with formulae
which are needed later for comparison with the complex-
eigenvalue case.
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Chebyshev extrapolation and complex eigenvalues

2. Real eigenvalues
Application of Chebyshev extrapolation in the real-

eigenvalue case requires a knowledge of two parameters,
a and b, which are respectively the upper and lower
bounds of the eigenvalues of M. The extrapolation
parameters ocn and j8 are then given in terms of a and b
as follows:

j8 = 2/(2 - a - b)
<x0 = 1
an = 2yTn(y)/Tn+ ,(y) for n > 1

(2.1)

where y = (2 — a — b)/(a — b) and Tn(y) is the
Chebyshev polynomial of degree n in y. For y < 1,
T^y) = cos (n cos~'y) while, for y > 1,

^n(y) = c o s n (« cosh-'y)-
For « > 1, an can be determined from <%„_, by means
of the recurrence relation

« - = [1 -(«—1/4V2)] - 1

Let e("> be the error in x(n) so that xw = x + e(n),
where x is the solution of equation (1.1). Then, if e(0)

is expressed in terms of the eigenvectors of M as follows:

e<°> = S ajUj
J= i

it is a simple matter to show, using equations (2.1) and
(1.3) that the error £(n) is given by

TJyA\u.
Tn(y)J J

(2.2)

where y, = (2Ay — a — 6)/(a — £). As Ay varies from
6 to a, yj varies from —1 to + 1 . Thus over the range
of the eigenvalues, Tn{(2X - a - b)/(a - b)}/Tn(y) is
the smallest polynomial, of degree n in A, which is equal
to unity when A = 1, in the sense that its maximum
absolute value is smaller than that of any other poly-
nomial of the same degree. For this reason, Chebyshev
extrapolation is considered to optimize the convergence
rate, and the optimum values of a and b are denned as
those for which a = A1; the largest eigenvalue, and
b = XN, the smallest eigenvalue.

In general, the eigenvalues of the matrix M will not
be known, and the extrapolation process is likely to be
applied with non- optimum values of a and b. If a > A]
and b < A ,̂ the reduction in convergence rate need not
be serious, since yy, and hence Tn(yj) remains bounded
by unity. However, convergence is retarded because
the quantity y is reduced by increasing the value of
(a — b). On the other hand, if any of the eigenvalues
lie outside the range {b, a), the convergence rate can be
seriously affected and the extrapolation can cause the
iteration process to diverge. For eigenvalues outside
the range (b, a), |yy| > 1. Thus

Tn(yj) = i exp [n cosh"1 y,-] + ± exp [— n cosh"' y,]

and the ratio \Tn{yj)jTn{y)\ is asymptotically equal

to exp {rtfcosh-1 y; — cosh"1 y]}. If \y\ > |yy| > 1,
\Tn(yj)/Tn(v)\ ^ 0 as n -> oo, and the extrapolation pro-
cess is convergent. If |y| = |y,| > 1, \Tn(Yj)/Tn(y)\ -> 1
as n ->• oo, and the process will not converge for general
£«». If |y,| > \y\ > 1, \Tn(Yj)/Tn(y)\ ^ oo as n ^ oo,
and the process will, in general, diverge. |yy| > |y|
if Ay > 1 or Xj, < a + b — 1. The first condition can be
discounted, but the second can be satisfied if care is not
exercised in the choice of b.

The reduction factor pW for eigenvalue Ay- over itera-
tion n is seen from equation (2.2) to be

p'f = {T^^yj)

For those eigenvalues such that |y;| > 1, pW tends to
a limit p, independent of n for n sufficiently large. The
reciprocal of pj is termed the asymptotic convergence rate,
ft, of theyth eigenvector contribution, and is defined by
the equation

fjLj = exp {cosh~'y,- — cosh"1 y}. (2.3)

The asymptotic convergence rate, /x, of the extra-
polation process is defined by p. = ŷ x My where
J = {_/; \y.\ > l}. No asymptotic convergence rate,
in the sense defined above, exists for eigenvectors such
that \yj\ < 1, although it would not be correct to infer
from this that nothing is known about the convergence
rate of the extrapolation process in the case when all
eigenvalues are real and |yy| < 1 for all j . (See, for
example, Golub and Varga, 1961.)

3. Complex eigenvalues
Before the optimum covergence parameters a and b

are defined for the complex-eigenvalue case, some of
the fundamental properties of Chebyshev polynomials
of complex argument will be established. The follow-
ing definition is taken for any value of the complex argu-
ment z:

Tn{z) = cosh (n cosh-' z). (3.1)

The alternative definition, Tn(z) — cos (n cos"1 z), could
have been taken; only the detail of the following analysis
would have been changed. It is convenient to introduce
the variables u and v defined by the equation

z = x + iy = cosh (w + iv) (3.2)

so that u and v can be determined from the equations

JC = cosh u.cos v, y = sinh w.sin v. (3.3)

Since cosh and cos are both even functions, while sinh
and sin are both odd, u and v will be of indeterminate
sign. The w-positive solution can be taken without loss
of generality.

Consider the special case of z real. Then y = 0 and
either u = 0 or » = 0 or ir. If JC > 1, v = 0 and
Tn(z) — cosh {nu) = cosh (« cosh"1 x). If x < — 1,
v = IT and u = cosh~'( — x). Thus

Tn(z) = cosh (« cosh"1 (— x) + inv)
= (— 1)" cosh (/? cosh"1 (— x)).
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Finally, if |JC| < 1, u = 0 and
Tn(z) = cosh (inv) = cos nv = cos (n cos~' x).

Thus equation (3.1) is consistent with the usual definitions
of Chebyshev polynomials of real argument. Further,
it is a simple matter to show that Chebyshev polynomials
of complex argument satisfy the well-known recurrence
relationship Tn+ ,(z) = 2zTn(z)-Tn- \(z). Thus the analysis
of Chebyshev extrapolation for real eigenvalues applies
in the case of complex eigenvalues also. For an and /3
defined as in equation (2.1) with real a and b, the error
after n iterations is given by equation (2.2) in which the
numerator polynomials for complex eigenvalues are
defined by equation (3.1).

Two further properties of Chebyshev polynomials of
complex argument are established in the following
lemmas:
Lemma 1: Whereas |rn(x)| < 1 for all n when x is real

and |JC.| < 1, \Tn(z)\ -+ oo as n -> oo when z is
complex, even though \z\ < 1.

Proof. From equations (3.1) and (3.2)
l^«(z)|2 = cosh2 (nu) cos2 (nv) + sinh2 (nu).sin2(nv)

— cosh2 (nu) — sin2 (nv).
cosh2 (nu) is an increasing function of n while
sin2 (nv) remains bounded by unity. Thus, unless
u = 0 (z real, \z\ < 1), \Tn(z)\ -><» a s /n -oo .

Lemma 2: If x is real, the ratio Tn+l(x)/Tn(x) tends to
the limit exp (cosh~' x) for large n only if JC > 1.
On the' other hand, if z is complex, the ratio
Tn+i(z)ITn(z) tends to the limit exp (cosh"1 z) for
all values of z.

Proof: From equations (3.1) and (3.2)
Tn(z) = cosh (nu + inv) x \ exp (nu + inv) for large
n, since the M-positive solution of equations (3.3)
has been chosen. Thus
Tn+I(z)/Tn(z) x exp (u + iv) = exp (cosh"1 z) for
large n.

The first lemma implies that, after a sufficient number
of iterations, the error will be dominated by contribu-
tions from eigenvectors whose eigenvalues are either
complex or real and lie outside the interval (b, a). The
second lemma implies that, after a sufficient number of
iterations, these dominant error contributions decay at
a steady rate given by the ^ of equation (2.3).

Thus, after a sufficient number of iterations, and con-
sidering only those eigenvectors which at that stage are
likely to dominate the error, the effect of the extra-
polation process is to change the eigenvalues of the
problem from the A, of matrix M to the \ij of equation
(2.3). Taking the logarithmic form of cosh"1,
equation (2.3) can be written

_ [(Ay - a)"2 + (A; - bV'2]2

Chebyshev extrapolation and complex eigenvalues

where c = [(1 - a)1'2 + (1 - 6)"2]2. Define
variables / and w by means of the equations

the

r> [(I - a)"2 + (1 - b)1'2]2

of, expressing A; in terms of /x; and deleting the suffix,
2A — a — b ( c/x a — fr\

a — b \a — b c/x j

(3.4)

t = (2A - a - b)j(a - b), w = cy,](a - b).

Then equation (3.5) becomes a special case of the
Joukowski transformation

(3.6)

Consider the ellipse in /-space with semi-axes \(k ± I/A:)
where k is some parameter. Then, according to equation
(3.6), the ellipse is mapped into circles in w-space
of radii k and \jk. The interior of the ellipse is mapped
into the space between the circles. From the point of
view of the iteration process, if A = JC + iy, then the
ellipse in A-space with the equation

[(2x - a - b)/(a - b)Y + [2y/(a -
+ l/k)]2 - I/A:)]2 = i

is mapped into concentric circles in ^.-space with centres
at the origin and radii /x0 and l//x0 where

Mo = k(a - b)/[(l - ay2 + (1 - b)112]2. (3.8)

The interior of the ellipse is mapped into the annulus
between these two circles.

Before these results can be applied, it is necessary to
discuss what is meant by optimum convergence. In the
real-eigenvalue case, optimum convergence is obtained
by setting a and b equal to the largest and smallest eigen-
values, respectively. Consequently, all eigenvector
contributions to the error decay at approximately the
same rate. In the complex-eigenvalue case, the situation
is different. Eigenvalues, A, which lie on the ellipse
defined by equation (3.7) are transformed into eigen-
values, /x, which lie on the circle of radius /x0 given by
equation (3.8). Since it is impossible to find an ellipse
which passes through all the eigenvalues, A, it is impos-
sible to find values of a and b in the complex case which
make all eigenvector contributions decay at the same
rate. However, the ellipse defined by equation (3.7)
can be made to pass through any two points in the
complex plane. In particular, it can be made to pass
through the eigenvalues corresponding to the two largest
error contributions. Values of a and b can then be
found which minimize the radius, /A0, of the circle into
which this ellipse is transformed. Thus the two largest
error contributions can be made to decay at the same
rate which will be, moreover, the fastest rate for these
two eigenvectors considered together. In the present
paper, this is taken as the definition of optimum con-
vergence in the complex-eigenvalue case. Eigenvector
contributions whose eigenvalues lie outside the ellipse
will decay at a slower rate, but, since the two largest
error contributions have been considered explicitly, it is
often found that such contributions are small. Their
slower convergence rate does not necessarily delay the
overall convergence of the iteration process.
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Chebyshev extrapolation and complex eigenvalues

Let Xd be the eigenvalue of the dominant error contri-
bution, and Aj the eigenvalue of the sub-dominant
contribution. Assume Xd and Â  to be known. The
ellipse in A-space denned by equation (3.7) is to pass
through these two points. Thus, given k, substitution
in equation (3.7) enables corresponding values of a and
b to be determined. Substitution of these values in
equation (3.8) gives the asymptotic convergence rate
which would result for the two largest error contribu-
tions if Chebyshev extrapolation were to be applied
using the derived values of a and b. It is desired to
minimize /A0, i.e. to find the value of k, and hence of a
and b, for which /xo = 0 where the prime indicates
differentiation with respect to k. It is convenient at this
point to introduce the variables 6 = (2 — a — b) and
•q = (a — b), so that y = 6/rj. Then

and
Mo = k/[y + (y2 - I)"2]

Mo =-j{l - [ky'/(y2 - I)"2]}.

In equation (3.7), a and b can be expressed in terms of
6 and rj. Substitution of Xd and Xs gives two equations
from which expressions for 6 and 17 in terms of Â , Â
and k can be obtained. Differentiation with respect to
k gives expressions for 6' and rj'. Since rj2y' = t]8' — drj',
the values of y and y' and hence of fA0 and n$ corre-
sponding to any value of k can be obtained. The
iterative method of Muller (1956) for solving algebraic
equations can then be applied systematically to find the
required zero of /XQ.

In the next Section, a method of determining the
required eigenvalues, Xd and Xs, is described. Before
this is undertaken, however, consideration should be
given to the question of whether Chebyshev extra-
polation is the optimum acceleration scheme in the
complex-eigenvalue case.

In Section 2, Chebyshev extrapolation was termed
optimum because the polynomials on the right of
equation (2.2) were in some sense the smallest over the
range of the eigenvalues. In the complex-eigenvalue
case, one would expect these to be replaced by poly-
nomials which possess, over the domain in the complex
plane containing the eigenvalues, the mini-max property
associated with Chebyshev polynomials of real argument
in the range (—1, +1). However, the eigenvalues are a
set of points in the complex plane. They do not form a
continuum and hence can be considered to lie within an
infinity of different domains. Moreo'ver, the polynomial
possessing the required mini-max property will depend
upon the choice of domain. Clayton (1963) has shown
that if Pn(z) is the class of nth degree polynomials with
real coefficients and equal to unity when z = 1, then
that member, P*n(z), which over the ellipse of semi-major
axis A ( < 1) and eccentricity E has the smallest maxi-
mum modulus value is given by

P'n(z) = Tn(z/AE)/Tn(\/AE).

If the centre of the ellipse, still assumed to lie within the
unit circle, is transferred to the point (C, 0) the mini-max
polynomial takes the form

Pfc) = Tn{{z - C)/AE}/Tn{(l - OlAE). (3.10)

In applying Chebyshev extrapolation, it is assumed that
the eigenvalues are contained within some member of
the family of ellipses defined by equation (3.7). Writing
this equation in the form

{x - b)Y
« - b\k + I/A:)}2 {\{a - b){k - I/A:)}2 = 1,

it can be seen that these ellipses have their centres at the
point ($(a + b), 0) and are such that the product
AE = i(a — b). The mini-max polynomial over their
interior is, from the equation (3.10),

Tn{(2z - a - b)/(a - b)}/Tn{(2 - a - b)\(a - b)}.

Comparison with equation (2.2) indicates that, over the
ellipse assumed to contain the eigenvalues, Chebyshev
extrapolation as described in Section 2 is the optimum
acceleration scheme.

This conclusion will no longer hold if the shape of the
domain is changed. For example, Zarantonello (1957)
has shown that over a circle of radius A < 1, the mini-
max polynomial, P'n(z), is simply z". That is, if the
domain containing the eigenvalues is assumed to be
circular, no extrapolation scheme can be devised which
will improve the convergence rate of the iteration process
of equation (1.2). Determination of the bounding
ellipse in the above analysis was seen to require a know-
ledge of at least two eigenvalues. To delineate a more
irregularly shaped domain would require further infor-
mation on the eigenvalue distribution. If the situation
is to be avoided in which more time is spent in deter-
mining the eigenvalues than in solving the simultaneous
equations, it would seem that, except in special circum-
stances, Chebyshev extrapolation will be the best
acceleration scheme to apply.

To answer question 1 of the introduction, it is necessary
only to note that z" belongs to the class of polynomials
of which P'n{z) defined by equation (3.9) is the member
possessing the mini-max property over the ellipse.
Question 3 can be answered by noting that the eccen-
tricity of the ellipse will be small when the imaginary
parts of the eigenvalues are large. For small E,

Tn(z/AE) x i exp (n cosh~' (z/AE))

Hence

w 2"-\zlAE)\

l im YTn(\/AEJ = z".

(3.9) Thus, as the ellipse containing the eigenvalues tends to a
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Chebyshev extrapolation and complex eigenvalues

circle, the mini-max polynomial degenerates into Z",
and the acceleration achieved by Chebyshev extra-
polation decreases to zero.

4. An example
In general, when applying Chebyshev extrapolation to

the complex-eigenvalue case, neither the eigenvectors
which dominate the error nor the corresponding eigen-
values are likely to be known. Thus the extrapolation
process must be started with estimated values of a and b,
and an attempt made to extract from the calculations
the information required to compute their correct, i.e.
optimum, values. For any a and b, the asymptotic con-
vergence rate of the error contributions which ultimately
dominate will be given by equation (3.4). If fid and ns
can be determined from the iteration process, the eigen-
values Xd and Xs can be deduced from equation (3.5).
The optimum value of k, and hence the optimum values
of a and b, can be found from equations (3.7) and (3.8).
The extrapolation process can then be restarted with
consequent improvement in the convergence rate.

As an illustration of this technique, consider the
following example. The solution of equation (1.1) is
required for the case when

Table 1

M =

0-9205
10961
0 0677

-0-9395

-0-8526
-0-6522
0-2922
0-8977

0-3265
0-8152
0-8561

-0-5330

0-3054
0-3284

-0-1328
0-6556

and b' = (0-4999, -0-5573, - 0 0876, 1-0876).

The eigenvalues of M are

A, = 0-9612, A2 = 0-8018, A3 = 00064 + 0-3981/

and A3.

The corresponding eigenvectors are:

u[ = (-01798, 0-3188, 0-9228,-0-1204)
«2= (0-1890,0-3645, 00309, 0-9113)
HJ = (0-3732, 0-5133, -0-1410, -0-2782)

+ i(0-5715, 0-3454, -0-2322, -0-0118)
and 53.
The solution of the equations is x' = (1, 2, 3, 1).

The iteration process is started with an estimate, x(0),
of x given by JC<°> = (1-7556, 3-7099, 3-6717, 1-2344).
By this choice,

e(0) = xm _x = (0-7566, 1-7099, 0-6717, 0-2344)
= H, + ll2 + H3 + H3.

All eigenvectors contribute equally to the initial error
which is therefore in its most general form. The initial
values of a and b are 0 • 75 and zero, respectively. These
values are quite arbitrary and it remains to be seen
whether or not they are satisfactory. The results of the
calculations are summarized in Table 1.

It is seen that a poor choice of extrapolation parameters

ITERA-
TION

NUMBER

n

0
1
2
4
6
8

10
11
12
13
14
15
16
17

x\

1-7556
-0-2078

1-7435
-0-3292

0-7731
2-1577
0-3158
2-1604
0 0759
0-7347
2-0249

- 0 1270
1-1527
1-7745

ESTIMATE OF

3-7099
1-5025
2-7345
1-0704
2-5601
3-1209
1-2485
3-2177
1-7177
1-5148
3-1984
1-3875
1-8393
3-0644

SOLUTION, X

Xi

3-6717
4-3486
3-4543
4-1466
3-6317
2-9797
3-6339
2-8871
3-6984
3-3839
2-8705
3-7051
3-1540
2-9151

1-2344
1-8526
1-3552
1-4619
0-5550
0-7358
1-4580
0-6055
0-8646
1-4074
0-5233
10404
1-3099
0-4926

Table 2

ITERA-
TION

NUMBER

n

10
11
12
13
14
15
16
17

1-8446
-2-0845

0-6588
1-2902

- 2 1 5 1 9
1-2798
0-6218

— 1-9786

(
y — J

y\")

1-9692
-1-4999
-0-2029

1-6836
-1-8108

0-4518
1-2251

-1-9085

C + l) jr«

*r

-0-7469
0-8113

-0-3145
-0-5134

0-8346
-0-5511
-0-2389

07612

-0-8525
0-2591
0-5428

-0-8842
0-5171
0-2695

-0-8173
0-7054

has been made since the estimate of x after 17 iterations
is not markedly closer to the true solution that it was
initially. Before the convergence rate can be improved,
however, it is necessary to determine from Table 1 the
asymptotic convergence rates \x.d and \i.s of the dominant
and sub-dominant error contributions. These could be
determined from the vector sequence eM, e(n+l), etc.,
if the absolute error in each estimate of the solution
were known. In the absence of such information, it is
necessary to consider the quantity

yW — x(n+\) _ XM _ £(n+l) _ €(n)

The vectors yM, y("+'\ etc., form a sequence in which
the contributions from the dominant eigenvectors decay
asymptotically at the same rate as in the vector sequence
£(n), e(n+1), etc. Thus both \id and ft, can be determined
from yM. Values of >><"> derived from Table 1 are given
in Table 2.
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The variation in sign and magnitude of the elements
of y(n) indicates the presence of a complex dominant
eigenvalue, \id. This can be determined by the method
described by Wilkinson (1954). If \xd and /Id are the
roots of the equation /x2 + p/x + q = 0, then for
sufficiently large n

f.n + 2) (.n+\)y^n-n.) _|_ py\n-cu _|_ qy(") = 0.

This relationship will be satisfied in particular for any
two components of the vectors y(n), y^+v and y<-»+2\
Thus

y(n + 2) ^ py{n+\) _|_ qy(n) _ Q

^(n + 2) _ |_^(n+l) _J_ qy(n) _ Q

giving

P = y(n)y(n+l) _

_ y(n+2)y(n+])

The values of p and q estimated from the- *'th and y'th
elements of the vectors j7<">, _)><" + >) andj>(n+2) are denoted
by pn(i,j) and qn(i,j), respectively. In Table 3, the
values of pn and qn are recorded for n = 14, 15 for all
combinations of / and /.

In a practical problem, it would not be possible to
consider all estimates of p and q. A number of element
combinations would be selected, and the values of p
and q computed for these points only. However, some
of the elements chosen may retain, except for very large
n, significant components of eigenvectors other than the
dominant one. Such elements give rise to poor esti-
mates of p and q as is shown in Table 3 for i or j = 3.
To overcome this, a further selection process is required.
The following method has worked well in practice.
Continue the calculation until successive estimates of p
far some element combination agree to within a certain
prescribed accuracy. Let this be P, and let the value of
qn for this same element combination be Q. Then form
the average of those /7-values which differ from P by
less than (say) 4%. Estimate q by forming the average
of those q-values which differ from Q by the same amount.
The roles of P and Q can be interchanged if desired.
For example, in Table 3, <7M(1, 2) and 9,5(1, 2) agree
to two decimal places, i.e. Q = 0-96, P= 1-20. All
q\5(i,j), except those in which either i or j — 3, differ
from Q by less than 4%. Their mean is 0-98. All
PisOJ), except those in which j = 3, differ from P by
less than 4%. Their mean is 118. Thus fxd and fLd
are the roots of the equation

IX2 + 1 18/u. + 0-98 = 0

i.e. ix = — 0-59 ± 0-79/ and |^| = 0-986. Substitu-
tion in equation (3-5) gives Xd = 0 006 ± 0-394/. Thus
the error is dominated by contributions from the complex
eigenvectors «3 and u

3. Further, their asymptotic con-
vergence rate is of modulus 0-986, so that after 17

Table 3

/ \

1
2
3

2

1-12

3

0-04
0-95

4

116
1-17
1-10

914

2

0-96

3

0-31
0-91

4

0-98
0-97
101

1
2
3

Pis

2

1-20

3

315
1-25

4

118
119
1-16

Cis

2

0-96

3

002
0-84

4

0-97
1-00
0-88

Table 4

ITER-
ATION

NUMBER

n

10
11
12
13
14
15

zT

0 0068
0-0248
00162
0 0049
0 0230
0 0093

z(n) = jrfn + 2) -|-

zf

-00431
- 0 0258
- 0 0231
-0-0351
-0-0164
- 0 0201

py(n+1) 4- qy(n)

z'3
n)

- 0 0891
-0-0894
- 0 0794
- 0 0694
-00713
- 0 0608

zf

0-0132
00103
0-0058
00132
0-0075
0 0052

iterations their error contribution is reduced by a factor
of only 1 • 25, which explains why the error was still large
when the iterations were discontinued. The asymptotic
convergence rate, fxs, of the sub-dominant error contri-
bution is determined by forming the vector sequence z(n)

denned by the equation
_|_ py(n +\) (4.1)

The dominant contribution to z(n) is made by the eigen-
vector which provides the sub-dominant contribution to
yM. The values of z(n) derived from Table 2 by means of
equation (4.1), in which p = 1-18 and q = 0-98, are
given in Table 4.

The elements of zM are of constant sign and are
generally decreasing. This implies that [is is real, positive
and less than unity, and the fact that the largest element
is zf identifies the sub-dominant error contribution
with the eigenvector «,. Successive estimates of jus are
defined by the relation ^ = (z<"+1>, zM)l(z<-"\ i'"'),
and their values are recorded in Table 5.

Differences between successive estimates decrease in
magnitude up to n = 13, and thereafter increase. This
is because the values of p and q deduced from Table 3
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Table 5

ITERATION
NUMBER

0

10

•937 0

11

•870 0

12

•907 0

13

•919 0

14

•828

are only approximate, so that the sequence z(n) retains
contributions from the complex eigenvectors n3 and B3.
Moreover, since these contributions decay more slowly
than those from «,, the convergence rate of the sequence
z(«) wiu eventually become that of the complex eigen-
vectors. Only by improving the estimates of p and q
can this difficulty be avoided. However, for practical
purposes, it is generally adequate to truncate the sequence
/x<n) as soon as differences between successive estimates
start to increase, and to determine the limit of the
sequence from the last few reliable values. If these values
oscillate, the mean of the last two generally gives an
improved estimate of the limit. If the last two differences
are of the same sign, Aitken's S2-process can generally
be applied. This is the case in the present example
where extrapolation using n = 11 — 13 gives /*, = 0-921.
Substitution in equation (3.5) gives A, = 0-961. With
Xd = 0006 + 0-394/ and A, = 0-961, equations (3.7)
and (3.8) give an optimum value of k = 1-627. The
corresponding values of a and b are 0-867 and —0-697,
respectively. The value of /x0 for the two dominant error
modes is 0-915. For the correct values, Xd = 0 0064
+ 0-3981/and A, = 0-9612, optimum A: = 1-635 giving
a = 0-865, b = - 0-697 and /x0 = 0-915. Note that
the largest change from the initial estimate is in the value
of b. This often proves to be the case. If the extra-
polation process is divergent with the initial estimates of
a and b, it is likely to be due to a poor choice of b. Also,
the above technique is likely to break down if \nd and fts

are of equal modulus. If this is the case, it will be
necessary to interrupt the calculations and re-start the
extrapolation process using different values of a and b.
The accuracy with which the optimum values of a and b
are computed in this example is due, in some measure,
to the simple nature of the problem. Nevertheless, it
serves to illustrate the feasibility of the method for large-
scale calculations.

From iteration 18 onwards, the optimum convergence
parameters can be used, although a further 78 iterations
will be required to reduce the error by a factor of
l/(0-915)78 « 103. In the absence of Chebyshev extra-
polation, a total of 174 iterations will be required to
reduce the error by a factor of l/(0-961)174 » 103. If
the expected convergence rate is not realized when the
extrapolation process is re-started, it implies that eigen-
vector contributions other than those originally con-
sidered have come to dominate the error. It has then
to be decided whether to accept the new asymptotic
convergence rate or to repeat the above calculations to
deduce the new optimum values of a and b.

5. A strategy
The optimum asymptotic convergence rate for

the above problem is 0-915. The convergence rate
of the unextrapolated scheme is 0-961. Thus extra-
polation doubles the rate at which the error is reduced.
Chebyshev extrapolation applied to a real-eigenvalue
case would generally achieve a greater improvement over
the unextrapolated scheme. The reason for the relatively
poor improvement in the above example is the existence
of a complex eigenvalue, A3, with a substantial imagi-
nary part. A strategy is described below which over-
comes this difficulty in the present example by effectively
reducing the imaginary parts of the complex eigen-
values. When no such technique is available, Cheby-
shev extrapolation is likely to achieve a small, though
none the less welcome, acceleration of the iteration
process.

The following strategy is applicable whenever the
squares of the eigenvalues have smaller imaginary parts
than the eigenvalues themselves, i.e. whenever the
complex eigenvalues have real parts of modulus less than
i. This occurs in many physical problems where th&
high-order modes, and hence the smaller eigenvalues,
are complex due to inadequacies in either the mathe-
matical or numerical treatment. As an example, con-
sider the matrix formed by squaring the 4 x 4 matrix
introduced in Section 4. This will have eigenvalues
A2 = 0-9238, A2 = 0-6429, A|,'A|= -0-1584 ±0-0051/.
With Xd = A2 and Xs = A2, the optimum value of
k = 1 02, giving a = 0-924, b= - 0-209 and |/x|=0-610.
Thus Chebyshev extrapolation applied to every other
iterate with these values of a and b results in a mean
convergence rate per iteration of (0--61)1'2 = 0-78.
Further, since (0-96)6 « (0-92)3 x 0-78, Chebyshev
extrapolation every other iteration is three times faster
than Chebyshev extrapolation every iteration, and six
times faster than no extrapolation at all. The calculations
reported in the previous Section were repeated with
Chebyshev extrapolation applied every other iteration
using values of a = 0-924 and b = — 0-209. The
results of the calculation are summarized in Table 6.
Note that the error is reduced by a factor of about ten
every nine iterations, so that the solution has been
achieved to the required accuracy after a total of 28
iterations.

Table 6

ITER-
ATION

NUMBER
(«)

0
10
18
28

ESTIMATE OF SOLUTION

1-7556
10318
1-0072
10006

*?

3-7099
2-1500
20166
20017

xf

3-6717
3-1262
30117
30010

1-2344
10036
0-9709
0-9984
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6. Concluding remarks
The method outlined in Section 4 for determining the

optimum convergence parameters is too complicated to
be worth while if the equations (1.1) are to be solved
only once. If this is the case, and complex eigenvalues
are known to be present, it is probably better not to
apply Chebyshev extrapolation unless one has a reason-
able approximation to the optimum values of the con-
vergence parameters. For many problems, however,
equations of the type (1.1) have to be solved repeatedly
with little or no change in either the matrix M or its
eigenvalues and eigenvectors.

Typical of such cases is the problem of solving the non-
linear reactor-kinetics equations in three-space dimen-
sions (Curtis, Tyror and Wrigley, 1961). When finite-
differenced in both space and time, the neutron diffusion
equation for advancing the solution one time step
assumes the form of equation (1.1). The coefficients of
matrix M depend upon control-rod penetration and
temperatures which are themselves dependent upon the
neutron flux x. This non-linearity introduces a coupling
between points widely separated on the finite-difference
mesh, which is reflected in the form of the matrix M,
and it is not unusual for some of the eigenvalues of M
to be complex. As reactor conditions are controlled to
change slowly with time, the optimum convergence
parameters will also change slowly, and need not be
determined for each time step.

A second example derives from the same problem. It
is desirable to distribute the mesh points unevenly over
the reactor and to concentrate them in regions where the
neutron flux, x, is rapidly varying, e.g. in the neighbour-
hood of control rods. If the mesh lines run from
boundary to boundary, there will be unimportant regions
of the reactor where-the mesh-point distribution is dense.

On the other hand, if the mesh lines terminate at points
within the reactor, the solution will be inaccurate unless
many-point finite-difference formulae are used where
the mesh lines end. Again, a complicated coupling
between mesh points is produced which can cause the
finite-difference coefficient matrix to have complex
eigenvalues.

A further example is provided by the Carlson (1959)
SNG method for solving the neutron transport equations.
In this case, parameteric studies require the solution to
be obtained for a succession of slightly varying matrices
M. Chebyshev extrapolation has already been applied
to this type of calculation by Blue and Flatt (1959).
Since they assume parameter b to be always zero and
make no acknowledgement of the fact that the eigen-
values can be complex, their method can, on occasion,
seriously affect the convergence. Moreover, in the
complex-eigenvalue case, their method is seldom likely
to optimize the convergence rate. Equations of the
type (1.1) in which the matrix M has complex eigenvalues
can also be set up in multigroup collision-probability
studies.

That these examples all derive from problems in the
field of nuclear energy, is due solely to the author's
preoccupation with work of this kind. Examples of
complex eigenvalues in repetitive calculations can doubt-
less be found in other fields of study (see, for example,
Kjellberg, 1958). Experience has shown that sub-
stantial economies can be effected by devoting time at
the start of the calculations to the determination of
optimum convergence parameters.
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