
A novel finite-difference approximation to the biharmonic operator

By G. J. Tee

The two-dimensional biharmonic operator is approximated by a finite-difference operator over a
square (h x A) net, which connects each node with 16 neighbouring nodes in such a manner that
the resulting matrix has "Young's Property A," for simple boundary conditions. It is shown that
the local truncation error, the convergence rate of S.O.R. for solving the finite-difference (or
"net") equations, and the truncation error of the solution of the net equations are each of order
O(A2) as h -> 0. Comparisons are made with the conventional 13-node approximation to the
biharmonic operator: in particular, numerical experiments indicate that the convergence rate of
S.O.R. for solving net equations based on the conventional 13-node operator is considerably less
than that for the novel 17-node operator.
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1. Introduction
The conventional finite-difference operator which, on a
square net {h X h), approximates to the biharmonic
operator V4, is symbolized by the "molecule" of Fig. 1.
This mnemonic scheme represents the following relation
between V4<£ at node (J, k) of a square net and the finite-
difference approximation thereto (including the first
term of the local truncation error)

4>j,k-2 + <i>j.k + 2 + <t>j+2,k

/ - l , * - l + «£/-!, k+l

+ <t>j+\,k-\ + <f>j+t,k

( 0.1)

Here and subsequently, in the truncation terms we use
the abbreviation

(1.2)

where the values of the derivatives are taken at the central
node (J, k) (Collatz, 1960, p. 543).

The expression for the local truncation error is valid
provided that all 6th derivatives of <f> are assumed to
exist over the region covered by the molecule. If these
6th derivatives are to exist, then it is clearly necessary
that all second derivatives of V4<£ itself must exist. But
if V4<f> varies so irregularly that all 5th derivatives of (f>
exist but not all 6th derivatives, then the local truncation
error will be of order O(/i) rather than O(h2).

Thus, for sufficiently smooth <f>, the 13-node molecule
of Fig. 1 represents the biharmonic operator with a local
truncation error of order O(/i2).

Ignoring this local truncation error, we may equate
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Biharmonic operator
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Fig. 1

the algebraic expression on the right of (1.1) to the
known value of V4<£ at every internal node of a net
covering a region R. If the boundary conditions can be
approximated in a simple manner by assigning fixed
values to <f> at each node of a double layer enclosing the
boundary r of R (Fox, 1950), then it can be shown
that the resulting system of linear algebraic equations
in the (unknown) values of <f> at all the internal nodes
has a positive-definite matrix (cf. §4.3). Hence the
system of net equations may be solved by S.O.R. (i.e.
Successive Over-Relaxation), and the process will always
converge provided that the over-relaxation parameter o»
remains between 0 and 2 (Ostrowski, 1954). But it is
exceedingly difficult to analyse the effect of S.O.R. in
more detail, since the matrix of net equations does not
possess "Young's Property A" (Young, 1954; Forsythe
and Wasow, 1960, §22). On the other hand, if a matrix
does have "Property A" then the effects of S.O.R. applied
to the matrix (when it is "consistently ordered") can be
analysed in considerable detail. (Young, 1954; Engeli,
1959; Forsythe and Wasow, 1960).

Therefore we shall construct (§2.2) a novel finite-
difference approximation to the biharmonic operator,
such that the system of linear algebraic equations result-
ing when this novel operator is applied at all internal
nodes of a net covering R + r (with simple boundary
conditions) has a matrix with "Property A." Indeed
we shall construct (§2.4) a one-parameter family of such
operators with local truncation error of order O{h2),
and shall consider in detail a 17-node operator (from
this family) which appears best-suited to iterative methods
of solution (§2.5).

The matrix F resulting from the application of this
operator at all internal nodes of a net covering R is
proved to be positive-definite (for simple boundary

conditions). Furthermore, by regarding F a s a principal
minor of a compound-circulant matrix, an upper bound
is attained for its eigenvalues. From this and from the
fact that F has "Property A," a positive lower bound is
deduced for the eigenvalues of/"(cf. §3.7).

When the system of net equations (whose matrix is F)
is solved by S.O.R., an under-estimate of the convergence
rate (for optimum oS) is deduced from the eigenvalue
bounds for F (cf. §3.8): this convergence rate is shown
to be of the order O(/i2) as h -> 0. The truncation error
of the solution (i.e. the difference between the exact
solution of the net equations and the exact solution of the
differential equation at the nodes) is shown to be of the
order O(h2) for the simplest boundary conditions: other
simple boundary conditions give a truncation error of
order O(/i) (cf. §4.2). The truncation errors of the
solution are also examined (in §4.3) for the 13-node
molecule.

Finally, (in §5), we describe the results of numerical
experiments in which the 17-node molecule is applied to
test cases and the empirical convergence rates of S.O.R.
are compared with the theoretical underestimates. Com-
parisons are also made with the convergence rates of
another molecule of the family (cf. §2.2), and with the
convergence rate of S.O.R. for solving the net equations
based on the 13-node molecule (cf. §5.2).

2. Construction of molecules
Consider a square (h X ft) net, with the nodes segre-

gated into two classes (X and O) in "chessboard" fashion:

o x o x o x o x o x o x o x
x o x o x o x o x o x o x o
o x o x o x o x o x o x o x
x o x o x o x o x o x o x o

Fig. 2

If each molecule associated with a node of one class
(e.g. X) connects that node only to nodes of the opposite
class (i.e. O), then the matrix of the equations will have
"Property A" (Engeli, 1959, p. 86, Fig. IV). Further-
more, if the equations are so ordered that in each cycle
of S.O.R. all nodes of one class are adjusted before all
nodes of the other class, then this is a "consistent
ordering" known as the (7,-ordering (Young, 1954, p. 108).
For any consistent ordering, the eigenvalues of the S.O.R.
operator will be known functions of u> and of the eigen-
values of the matrix (Engeli, 1959, p. 87).

Accordingly, we shall construct linear algebraic
expressions containing the values of a sufficiently smooth
function <f> at a node of one class (say X) and at nearby
nodes of the other class, and we shall choose the
coefficients in such a manner that the algebraic
expression approximates to the value of V4<£ at the
associated X-node, with a local truncation error of
order O(/i2).

Take the origin of coordinates at a typical X-node, and
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Biharmonic operator

label typical O-nodes at distances h, h^5, 3h and h\/l3
by a, /9, y and 8 respectively.

y

0 0. 0
0 . 0 . 0 . 0<5
. 0 . 0 . 0 / ? .
0 . 0 X 0a . Oy-*x
. 0 . 0 . 0 .
0 . 0 . 0 . 0
. 0 . 0 . 0 .

Fig. 3

2.1 Taylor series expansion
We shall apply the two-dimensional form of Taylor

series, given formally by

3,0). (2.1)

Denote the sum of values of <j> at the four a-nodes by A,

the sum of values of <j> at the eight j3-nodes by B,

the sum of values of <f> at the four y-nodes by C,
and the sum of values of <f> at the eight S-nodes by D.

We shall express each of these sums in terms of <f> and
its derivatives at the central node. Unless otherwise
stated, <f> and its derivatives will be evaluated at the
associated A'-node (i.e. the origin in Fig. 3). Then the
Taylor series expansion (2.1) shows that for the a-nodes

»A = ( e*^ + e

= 2 ( 1 + ^ 1 ,

h2 ~d2

+ 1 + ^ • 7̂5 +

*e *y + e

h4 d4 h6 ~i>6

~4l Ix4 + 6! lx~6

4 ^4 n6 J)6

3 ^ ^ 0 , 6 + ••• (2.2)

where we have used the 6th-order term of the Taylor
series expansion to express the local truncation error,
on the assumption that the 6th derivatives of <f> do exist
throughout the region being considered.

Next, for the j3-nodes,

B = \e S* J; -)- c h -\- e

-f- e

= 2 1 1 +
2! 4!

I * I
2!

6!

+ •
TiyJ

4!

2!

6]

4!

6!

+ 1 + +2! 4!

I - 2h^

6!

+ 8/i4

(2.3)

Then for the y-nodes, by analogy with (2.2) we get

81.

729
+ 360^^0,6 + • (2-4)

Finally, for the S-nodes we get

-ih± _ 2* *
e s* *y

= 2 1+ 2! 4!
6

6!

179

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/177/364788 by guest on 19 April 2024



2!
|-

Biharmonic operator
4 This equation may be symbolized by the molecule:

4!

6!

(2h° + 3* «

2! 4!

1 I
2!

~f

4!
, 6

6!

97

360 i 6 + 4,860£2>4) + . . . (2.5)

2.2 Finite-difference approximation to V4

The three equations (2.2), (2.3) and (2.4) may be
solved to give the quantities

in terms of A, B, C and truncation terms. It may readily
be verified that

•7n£o,6 + . . . (2-6)

~dx4 ~6h4
 3£o,6 +

64<£ — 21A +3B — C
24/J4

h2.

• (2-7)

. (2.8)

Combining (2.7) and (2.8), we get

128<ft - 39A + 3B + C
\2h4

. . . (2.9)

12

Fig. 4

However, this molecule is not particularly convenient
for the application of iterative methods of solution to a
system of such equations, inasmuch as the equations (2.9)
do not give "diagonal dominance" (q.v.).

2.3 Diagonal dominance

The matrix of a set of equations is said to possess the
property of "diagonal dominance" if in each row the
diagonal term is not less than the sum of the moduli of
the non-diagonal terms, and in at least one row we can
replace "not less than" by "strictly greater than."
(Fox, 1962, p. 288). It can be shown that the Simul-
taneous and the Successive Displacement iterative
methods will each converge when applied to such a
matrix. Roughly speaking, the greater the degree of
diagonal dominance in a matrix, the more rapidly will
any iterative process converge.

Any algebraic approximation to a differential expres-
sion (such as (1.1) or (2.9)) must have the sum of its
coefficients equal to zero; for when the finite-difference
operator is applied to a function $ which is constant
over the region involved (say, (f> = 1), then all derivatives
of <f> are zero so that the truncation term will be strictly
zero, and hence the sum of the coefficients must be
exactly zero. Therefore the matrix of a system of
finite-difference approximations to differential expres-
sions can have diagonal dominance (for suitable boundary
conditions), if and only if in each row of the matrix
every non-zero non-diagonal coefficient has sign opposite
to that of the diagonal coefficient. Thus, neither the
conventional molecule (1.1) nor the novel molecule can
give diagonal dominance, and the convergence of the
Simultaneous and Successive Displacement methods
cannot be guaranteed a priori. Indeed, it can be proved
(Heller, 1960) that the Simultaneous method diverges
when it is applied to the conventional 13-node molecule
of (1.1).
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Biharmonic operator

Therefore we shall construct a molecule approxi-
mating to V4<£ which produces a matrix which is more
nearly diagonally dominant than that based on (2.9),
by introducing also the nodes 8 at distance h\/l3 from
the origin. When S.O.R. is applied to the set of
equations based on such a molecule, it is expected to
converge more rapidly than when a molecule (e.g. (2.9)),
which is less nearly diagonally dominant is used. Of
course, the spectral radius of the matrix is a precise
criterion of the convergence rate of S.O.R.; but this is
more difficult to estimate.

2.4 Family of biharmonic molecules
Inserting into (2.5) the -expressions (2.6), (2.7) and

(2.8), we get that

5l2<f>— 114A + 27B - 2C - 3D

(2.10)

Multiplying equation (2.10) by TXT4 (where e is any

number) and then subtracting it from the right-hand side
of (2.9), we get

Table 1
Measure of Diagonal Dominance

£

-1
1

oi

640
384
128
71*
13A
0

128

4y2

852
504
156
78}
0
18
192

8>3

240
132
24
0
244*
30
84

4y4

4
0
4
4£
sM6
8

8>-5

24
12
0
2-J
5?i
6
12

4^2 + 8.V3 +

1,120
648
184
86#

60
296-

0-571
0-592
0-696
0-825
0-372
0
0-433

Table 1 gives the values of r(e) for suitably chosen
values of e, including those values for which

y, = 0 (1 = 1, 2, 3, 4, 5).

Each of the y,(i = 1,. . ., 5) is a linear function of e
over any range of e for which that yt remains non-zero.
Therefore both the numerator and the denominator of
(2.13) are linear functions of e over each such range of e.

(128 - ( - 39 (3 -

-h2 59
288

94e /60_ J8e
V288 + n

(2.11)

This is the required expression for a one-parameter
family of molecules, each approximating to V4<£ with a
local truncation error of order O(/i2).

2.5 Optimization of molecule
As was indicated in §2.3, it is advisable to fix the

parameter e at a value which will give the nearest
approach to diagonal dominance in the equations con-
structed from the equation (2.11), in order to improve
the likelihood that any iterative process will converge
rapidly.

Define:
j , = | 128 — 512e|,
y2= | -39 + 174e|,

yi = I 3 - 27c|,
v4 = I 1 + 2e\,
ys = |3e|. (2.12)

Then for equations based on (2.11) (ignoring the trun-
cation terms), the ratio of the modulus of the diagonal
coefficient to the sum of the moduli of the non-diagonal
coefficients (which may be taken as a measure of diagonal
dominance) is given by

v^/ AT, i oT! i ~A7, i o , , " V.-^-*-'/

Hence r(e) varies monotonically within each such range
of e, i.e. over the ranges

e = ( - oo, - * ) , ( - i, 0), (0, i), (* if), (S , i), (i, + =o).
Accordingly, Table 1 shows that the measure r(e) of

diagonal dominance assumes its maximum value when
e = £. Hence we expect iterative methods of solution
to converge the most rapidly (in general) when equa-
tion (2.11) is taken with e = £, when it assumes the
form

640^.- 177/4 + 11C+3D
108/J4

3,407
( 2 1 4 )

This may be represented by the 17-node molecule of
Fig. 5.

Note that the /S-nodes are absent from the 17-node
molecule.

3. Eigenvalue analysis
Molecules of the general type (2.11) may be applied

at any internal node of the net over a region which is
surrounded on each side by three or more rows and
columns, so that each of the a, j3, y and S nodes is
actually included in the net. But some other types of
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Biharmonic operator

108

©
©

Fig. 5

equations must be applied at nodes near the boundary
P of the region R—these other equations must express
the boundary conditions.

We shall examine the complete set of equations result-
ing from the application of the biharmonic molecule at
each internal node, when the boundary conditions can be
approximated by fixing $ at a triple layer of nodes
enclosing r . These equations may be solved by the
S.O.R. process, but in order to estimate the convergence
rate we shall need an estimate of the maximum eigen-
value of the matrix F of the complete set of equations
(cf. §3.8). Further, a lower bound for the minimum
eigenvalue of F is needed for estimating the accuracy
with which the solution of the complete set of equations
approximates to the solution of the differential bi-
harmonic problem (cf. §4.2).

Bounds for the eigenvalues can be found with the aid
of the theorem that the eigenvalues of a principal minor
of a symmetric matrix lie within the range of eigenvalues
of the matrix itself (cf. §3.7). If R is not a rectangle, we
shall first add rows and columns to F so as to form a
compound band matrix G of regular structure, con-
taining F a s a principal minor (cf. §3.3). The eigen-
values of G are shown to be those of a family of 7-band
matrices (cf. §3.5), which can themselves be regarded as
principal minors of a family of circulant matrices, whose
eigenvalues are known (cf. §3.6). The maximum of all
eigenvalues of this family cannot be less than the maxi-
mum eigenvalue of F, and hence we can find a lower
bound for the convergence rate of S.O.R. (cf. §3.8).

3.1 Boundary conditions
We shall confine our attention to the simplest boundary

condition, in which <f> and its normal derivative -z— are

specified everywhere on F. This boundary condition
may be approximated by fixing the values of <f> at each

node within a layer enclosing r . For example, if a
node (J, k) lies on r , then whatever may be the direction

of F at that node we can compute ^ and -~ there from

the known values of <j> along the boundary and of —
at the node itself. <*"

Fig. 6

Then, neglecting errors in <£ of order O(h2), we have

h
(3.1)

<f>E= <f>A~

Similarly, even if T passes between adjacent nodes,
we may fix <f> at nodes close to F, with errors again of
order O(h2). Roughly speaking, a triple layer of nodes
enclosing r may have values of (f> fixed at them, so
that the biharmonic molecule (2.11) can then be applied
at all nodes inside this layer. We shall call these the
"boundary nodes" and the "internal nodes," respectively.

3.2 Complete set of equations
Let $ be a vector of the values of <j> at the internal

nodes, numbered in any order. Then if equations of the
form (2.11) (neglecting the truncation terms) are written
for each node (j, k) in the same order as for O, and if
all the values of <f> at boundary nodes are transferred to
the right-hand sides of the equations, we shall have a
set of equations (say, n in number) which may be
written as

= b. (3.2)

Here, F is an n x n symmetric matrix (in view of the
symmetry of the molecule based on (2.11)), whilst b is a
function only of the values of 4> at the boundary nodes
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Biharmonic operator

and the values of V4<£ at internal nodes, each of which
is postulated to be known. Thus F has real eigenvalues,
and of course it has "Property A" (cf. §2).

The eigenvalues of/" are the same for all permutations
XlF n r of F (where n is a permutation matrix), and
hence for any ordering n $ of the values of <j> at internal
nodes. Therefore, as far as the eigenvalues of F are
concerned, without loss of generality we may assume
that <J> numbers the internal nodes in the so-called
"pagewise" ordering, i.e. consecutively across each row,
with the rows taken consecutively.

3.3 Extended rectangular net

If the region R is not a rectangle, extend the net to
become a rectangular net which includes all the internal
and boundary nodes of R + r . Let the extended net
have (M + 3) rows and (N + 3) columns, so that there
are (M — 3) rows and (N — 3) columns containing
internal nodes of the net. Thus if r passes through
nodes and does not cut net lines between nodes, the
maximum depth and width of the region are exactly
Mh and Nh respectively (cf. Figs. 5, 6 and 7).

Nh

Mh

/

R

J

• - -

r

Fig. 7

Consider the matrix G of order (M — 3)(N — 3) x
(M — 3)(N — 3), which would result from applying the
equation (2.11) at each internal node of the extended
net, transferring to the right-hand side each term
referring to a node distant not more than 2h from the
outer boundary of the extended net, with the nodes
being taken in pagewise order. It is readily seen that
the matrix F could be constructed by selecting from G
those rows and columns which correspond to the internal
nodes of R, so that F is a principal minor of G. We
shall compute upper and lower bounds for the eigen-

values of G and deduce therefrom bounds for the eigen-
values of F, from which we shall obtain a lower bound
for the optimized convergence rate of S.O.R. for solving
the system of equations.

3.4 Eigenvalue analysis of extended matrix

From now on, we shall confine our attention to
equations based on the optimized 17-molecule of Fig. 5.

By inspection of Figs. 5 and 7, it is seen that the
extended matrix G has the following form:

abed
b a b c d
c b a b c d
d c b a b c d

d c b a b c d
d c b a b c d

(3.3)
108/i4

d c b a b c d
d c b a b c

d c b a b
d c b a

The compound matrix 108/i4C? is symmetric, and is
composed of {M — 3) rows and columns of
(N — 3) x (N — 3) submatrices. These submatrices
are each symmetric band matrices, with structures given
by

a = 11 0 - 1 7 7 640 - 1 7 7 0 11 (3.4a)

- 1 7 7 (3.46)
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c = 3 0 0 0 0 0 3

Biharmonic operator

Then substitution of (3.5) and (3.6) into (3.7) shows that

[a + (P + pM-*)b + (p2 + pM~2)c
+ (p> + pM~i)d]v = At;

[a + (p + p-*)b + (p2 + pM~2)c
+ (p3 + pM~ >)d]Pv = Xpv

[a + (P + p~l)b + (p2 + p-2)c

( 1 4 C )

3 0 1 1 0 3 (3.4d)

Each of a, b, c and d has half-bandwidth not greater
than 3.

The matrix 108^4<J is itself a principal minor of the
following matrix:

abed
b .
c
d

d c b a

d
c d
bed

deb
d c

deb
d c

d

bed

a b c
b a b
c b a

(3.5)

H is a symmetric matrix with M compound rows and
columns, and its structure may be called "compound-
circulant."

3.5 Eigenvalues of compound-circulant matrix
By analogy with the eigenvalue analysis of circulant

matrices (Marcus, 1960, p. 9), we shall require a com-
pound vector w to be an eigenvector of H, where w is
partitioned into M subvectors each with (N — 3)
elements, and p is a scalar.

w =

Pv
p2v

(3.6)

If A is the eigenvalue of H corresponding to w,
Hw = Aw. (3.7)

[a + (P (p2 ~2)c

+ 0>3 + p-3)d]Ph = \ P \ etc. (3.8)

All of the equations (3.8) will be satisfied, provided
that

P
M = 1 (3.9)

i.e.

' = -17 (r = 0, 1 , 2 , . . . , M - 1 ) (3.10)

and provided that A and v satisfy an equation of the
form

+ (p3
r + p~3)d]v = Xv. (3.11)

Substituting (3.10) into (3.11), and labelling A and v
with double suffixes, we get

[a +2 cos rd.b + 2 cos 2rd.c

+ 2 cos 3rd.d]v,<s = Xr,svns (3.12)

(r = 0, 1, 2, . . ., Af - 1; .y = 1, 2 , . . ., N - 3).

Thus, A r> j is the Jth eigenvalue of the rth (N—3)x(N — 3)
matrix Jr, where

Jr = a + 2 cos rd.b + 2cos2r8.c

+ 2 cos 3rd.d (3.13)

and « r J is the corresponding eigenvector. Each Jr is
symmetric, in view of (3.4) and (3.13), so that all Ar_,
and vr< s are real.

It has been shown above that each such Ar>J is an
eigenvalue of H: we shall now prove that all the eigen-
values of H are given by the Ar> s, even if some of the
Ar_, happen to be multiple eigenvalues of H. Take the
scalar product of two eigenvectors of the form w.
Using w* to denote the conjugate complex transpose of w,
we have

W*sWf, u = [vT,ts P~rVT,s ffyT,! • • • P™~ >v?,s] I" V,t u

Pt v,,u

,M-I«
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= \l+e
2j-.iU — r) 2r.i(l - <•) x 2

' " ~ + e M

Biharmonic operator

where
Z-iU-rYM- If

p M

(3.14)
1 - e

The numerator of the coefficient of vjjv, u is always
zero. Accordingly, the scalar product of wr s and w, „
is certainly zero unless the denominator is also zero.
But r and t are each confined to the range 0 to M — 1,
so that the denominator will be zero if and only if r — t.
In that case

<«"r . , = (1 + 1 + . • • + \Vr,f>,,u
= M$tflttU. (3.15)

But since the matrices Jr are symmetric, the {N — 3)
eigenvectors of Jr can be taken as being mutually ortho-
gonal, whether or not any eigenvalues are multiple.
Indeed the eigenvectors may be taken as orthonormal:

»J>r .«=8, .B (3-16)
where 8S „ is the Kronecker delta, defined by

ls'ullVsZl} (117)

(Faddeeva, 1959, p. 45).

Thus we have shown that
w*,sW,tU = M 8 n l 8 S U (3.18)

i.e. each pair of vectors of the form (3.6), with A and v
satisfying (3.12), are mutually orthogonal, unless they
are identically labelled. Hence the M(N — 3) vectors
wr>s are mutually orthogonal, i.e. they form a complete
set of eigenvectors of H, whether or not any eigenvalues
happen to be multiple.

The argument from (3.6) to (3.18) is obviously applic-
able to a general symmetric compound-circulant matrix.

3.6 Eigenvalues of circulant matrix
The (N —3) x (N — 3) matrix Jr is a 7-band matrix

(cf. (3.13) and (3.4)), whose first row may be written as
(xQ, xt, x2, x3, 0, . . ., 0); where

x0 = 640 — 354 cos rd + 22 cos 3rd,

*i = - 177,
x2 = 6 cos 3rd,

x3 = 11 + 6cos2r0. (3.19)

It is readily seen that Jr is itself a principal minor of a
symmetric N x N circulant matrix K, whose first row
contains the elements

xQ, XU X2, xh 0,. . ., 0, x3, x2, x,. (3.20)

The eigenvalues of this circulant matrix are given
(Mdrcus, 1960, p. 9) by

Hr,s = x0 + 2xt cos sip + 2x2 cos 2ŝ < + 2x3 cos 3sip

(3.21)

1. (3.22)

Substituting (3.19) into (3.22), we get

/x,,, = 640 — 354 (cos rd -f cos sifi)

+ 22(cos3r0+cos3.yi/<)

+ 12 (cos 2/-0.cos 3s>p + cos 2^ .cos 3rd). (3.23)

(3.24)

Let
yr — cos rd,

zs = cos sijj.

Substituting (3.24) into (3.23), we get:

^ = 6 4 0 - 3 5 4 ( ^ + 2 , )

+ 22(4 y\ - 3yr + Az] - 3z,)

+ 12{(2 / r - l ) (4z J
3 -32 i )

+ (2z2 - 1) (4 y\ — 3 yr)}. (3.25)

Note that /xr>s is a symmetric function of yr and zs.
In order to find the maximum /nr> s (for all r = 0,

1,. . ., M — 1, and s = 0, 1,.. ., N —I), we shall first
treat y and z as continuous variables, but subsequently
we shall take account of the fact that y and z must
assume the discrete values yr and zs. Differentiating
(3.25) partially with respect to y whilst z is held constant,
we get

^(y, z) = - 354 + 264y2 - 66 + 48(4z3 - 3z)y

+ 144(2z2 - \)y2 - 36(2z2 - 1)

--= (264 + 144 cos 2s>p)y2 + (48 cos 3sip)y

- (420 + 36 cos 2s<P). (3.26)

This is a quadratic expression in y, which is positive
for y = + oo. But when y = + 1, then according to
(3.26)

J=. = 264 + (144 - 36) cos 2s<fi - 420 + 48 cos 3s<p

< 264 + 108 - 420 + 48 = 0.

V..
(3.27)

Since r - i s a quadratic expression in y, it follows that

-y^< Oforall-1< (3.28)

Similarly, in view of the symmetry of y and z in (3.25),
we conclude that

< Ofor all - 1 < z< 1. (3.29)

Thus, when y and z are restricted to the discrete
values yr and zs, the maximum value of ^ r , , will be
given by the minimum values of yr and zs. If M is even,
then the minimum y, is given by r = \M, in which
event ymin = — 1; and similarly zmin = — 1 if ./V is even.
But we shall first consider the case when both M and N
are odd. Let

M=2m+\
N= In + 1 }• (3.30)
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Biharmonic operator

(The cases where M and/or TV are even are considered
in §3.7.) Then the maximum value of /xrtS for all r
and s will be equal to /nm> „ where

= cos = cos V -

and similarly

Write

(3.32)

(3.33)

Substituting (3.31) and (3.32) into (3.25) and using
(3.33), after rearrangement we get

itm, „ = 1,280 - 1,728( Y2+Z2)2 + l ,O88( Y2+Z2)3

3,072y2Z2(K2+Z2- Y2Z2)(l-Y2-Z2).
(3.34)

Let the mesh of the net covering the region R be
refined, i.e. h -» 0. Then M = O(h~l) and TV = O(/*-');
and equations (3.33) and (3.34) show that

IMmin = 1,280 - 10STT\M-2+N"2)2 + O(h6) (3.35)

so that
1,280 ^- (3.36)

3.7 Maximum and minimum eigenvalues of matrix of
equations

Consider a symmetric matrix A, and a principal minor
B of A. Then if x is any vector with the same number
of rows as A, normalized so that xTx = 1, the maximum
and minimum values (for all x such that xTx = 1) of
the "Rayleigh quotient" xTAx are equal to the maxi-
mum and minimum eigenvalues of A (Fox, 1957, p. 162).
Since B also is symmetric, its maximum and minimum
eigenvalues will be the maximum and minimum values
of vTBv, for all vectors v with the same number of rows
as B, normalized so that vTv = 1.

Expand v to form a vector u with the same number
of rows as A, by the insertion of zero elements corre-
sponding to those rows (and columns) of A which have
been deleted to form B. Then

uTAu = vTBv,

uru = vTv= 1. (3.37)

But the class of vectors u cannot include all vectors x
with the same number of rows as A, since certain ele-
ments of u are fixed at zero. Accordingly

Max (xTAx) > Max (uTAu) = Max (yTBv)
xTx= 1 uTu= 1 VTv= I

> Min (vTBv) = Min (uTAu) > Min (xTAx). (3.38)
vTv — 1 uTu = 1 xTx = 1

Thus the spectrum of eigenvalues of B is contained

within the spectrum of eigenvalues of A; i.e. all eigen-
values of a principal minor of a symmetric matrix lie
between the minimum and maximum eigenvalues of the
original matrix.

We have seen in §3.6 that the circulant matrix K
contains the 7-band matrix Jr as a principal minor, and
hence all the eigenvalues Ar> s of Jr are less than or equal
to fim< „ (cf. (3.34)). The eigenvalues of the compound-
circulant matrix H were shown to be the Afi s (cf. §3.5),
and the compound 7-band matrix lO8h4G is a principal
minor of H (cf. §3.4). Finally, the original matrix F
(cf. (3.2)) of the complete set of equations is itself a
principal minor of G. Thus we conclude that all eigen-
values of lOSh*F are less than or equal to /xm> „, i.e. if A
is any eigenvalue of F, then

108A4A < 1,280 - 108TT4(M-2 + W"2)2 + O(h6);

(M = 2m + 1, N = 2/i + 1). (3.39)

Until now we have assumed: that M and N are both
odd (cf. (3.30)). If either M or N is even, let the extended
net be further extended by a single row if M is even and
by a single column if ./V is even. Then the extended
net will have an odd number of rows and columns, and
the above reasoning will be valid with M and/or N
replaced by M + 1 and/or TV + 1 respectively. On the
other hand, if M, say, is odd then the expression on the
right of (3.34) (which equals \im< „ if N also is odd) will
be increased if M is replaced by M + 1, in view of (3.27)
and (3.33); and similarly if N is odd the expression on
the right of (3.34) will be increased if N is replaced by
N + 1, in view of (3.29) and (3.33).

Hence, whether or not M and N are even or odd, the
following inequality holds:

108A4A < 1,280 - 108TT\(M + \)~2 + (N + I)-2)2

+ O(h6). (3.40)

But M — O(/i-'), N = O(/*-')> and accordingly

((Af + l ) - 2 + (N.+ l)-2)2

= (M-\\ + M-1)2 + N-\l + TV"1)2)2

= (A/~2(l - 2M-1 + O(/22))

+ N~2(l - 2N~l + O(h2)))2

= (M-2 + N-2 - 2M-3 - 2W-3 + O(/»4))2

= (M-2 + TV-2)2 + O(//5). (3.41)

Thus the inequality (3.40) may be simplified to give

108A4A < 1,280 - 1087r4(Af-2 + TV"2)2 + O(/J5). (3.42)

The diagonal elements of the matrix F are all equal to
640

(cf. (3.3) and (3.4a)). Therefore, if as above A is108/i4

any eigenvalue of F, the Simultaneous Displacement
Method (or S.D.M.; named variously after Gauss,
Jacobi, and Richardson) will have an eigenvalue equal to

1 (Engeli, 1959, p. 90). Hence if j9 is the
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maximum eigenvalue of S.D.M. applied to the complete
set of equations F<& = b, then

IO87
-(A/-2 + N-2)2 + O(/i5). (3.43)

^ 640

But the matrix F has "Property A," from which it can
be shown that all non-zero eigenvalues of S.D.M. occur
in pairs with equal modulus and opposite sign (cf.
Young, 1954, p. 98). Therefore the minimum eigenvalue
of S.D.M. is — j8, from which it follows that the minimum
eigenvalue of F satisfies the inequality:

108/i4Amin > 108774(Af-2

therefore Amin > it
\(Mh)2

- O(/i5) (3.44)

O(/0

where Wx and Wy are the maximum dimensions of the
region R in the directions of the x and y axes, respec-
tively (cf. Fig. 7)*. The matrix F is symmetric, and since
all of its eigenvalues have been shown to be strictly
positive, then Fis positive-definite. Therefore S.O.R. will
converge when it is applied to F, for any 0 < u> < 2 (cf.
Ostrowski, 1954).

3.8 Convergence rate of S.O.R.

When the equations /"$ = b are solved by S.O.R.,
then for every fixed value of a> (the relaxation parameter
of the S.O.R. process), the convergence rate is maxi-
mized if the equations and the unknowns are permuted
into a "consistent ordering" (Varga, 1959). Apparently
the only type of consistent ordering which can be applied
with the optimized 17-node molecule (cf. Fig. 5) is a
"(^-ordering" (Young, 1954, p. 108), in which during
each cycle of S.O.R. all estimates of (f> at nodes of one
class (say X, cf. Fig. 2) are adjusted before those at the
nodes of the opposite class. The eigenvalues of F are
unaffected by such a permutation into a consistent
ordering, and hence the eigenvalues of S.D.M. (including
/}) are also unchanged.

With the equations FO = b permuted into a consistent
ordering, the convergence rate of S.O.R. is maximized
by using the optimal value cu0 of w, where w0 is given by

1 -

• " o - i T i + v ( i ^W) ( 3 4 6 )

(Young 1954, p. 95; Forsythe and Wasow 1960, p. 253).
When w > CD0, all eigenvalues of the error operator
have modulus equal to o> — 1.

Substituting (3.43) into (3.46), after simplification we
get:

* A positive lower bound for Amin cannot be deduced directly
from the fact that the eigenvalues of \0$h4F are contained within
the range of values of \r,s; for it is readily shown that in view of
the fact that the sum of the coefficients of the basic molecule is
zero (cf. (2.3)), then Ao,o = 0.

Defining the convergence rate p as minus the natural
logarithm of the spectral radius* of the error operator
(Young, 1954, p. 96), we see from (3.46) that the con-
vergence rate of S.O.R. with optimal w satisfies the
inequality

P = — Ln (OJ0 - 1)

= 2((1 - j82)"2 + i( l - |32)3'2 + 40 - P2)5'2 +•••)

Of course, (3.48) is a rather coarse under-estimate of
the actual optimized convergence rate, in view of the
chain of inequalities by means of which it has been
established. However, it shows that for a fixed region R,
the optimized convergence rate of S.O.R. is of the order
O(h2) as the mesh size h -*• 0.

4. Truncation errors
The principal term in the local truncation error for

the 17-node molecule is (cf. (2.14))

= h
-3,407 „ , , , 1,787
12,960

. \1

(4.1)

The principal term in the local truncation error for
the conventional 13-node molecule is (cf. (1.1))

(4.2)

l)y6

= h2{-

In many problems, V4^ varies quite smoothly over R;
indeed it is often true that V2(V4<^) = 0 over R. If this
is the case, then the principal terms in the local trunca-
tion errors of the 17-node and 13-node molecules reduce

1 787
to ' Ji2l2. 4 and \h2l2< 4, respectively. Thus despite

the fact that the 17-node molecule connects the central
node to nodes which are more distant (on the average)
than does the 13-node molecule, the local truncation
error (with which the molecule approximates to the
differential equation at an internal node) is only about
1-24 times that for the 13-node molecule.

The equations (3.1) fix the values of <f> at a triple layer
of nodes enclosing r , with errors in <j> of the order O(/i2).
Similar formulae may be applied when the conventional
13-node molecule is applied, but in that case only a
double layer need be constructed. In the case of a
straight boundary, this means that the net could be so
drawn that r lay midway between mesh lines, in which
event the errors in the values of <f> at nodes distant \h
from r will be about \ as large as those when the nodes

* The spectral radius of a matrix is defined as the maximum
modulus of any of its eigenvalues.
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Biharmonic operator

are distant h from F, as in Fig. 6. Thus the errors at
the boundary nodes when the 17-node molecule is used
will be only a few times (c4) as large as when the 13-node
molecule is used.

4.1 Effect of errors in representing boundary condition

Let the differential biharmonic problem be

V*<P=f(x,y)mR 1

(4-3)
= n(s) on T j

where s represents arc length along F from some fixed
point. Let accented Greek capitals (O' and *F') be used
to represent vectors of the exact nodal values of con-
tinuous functions, which are themselves denoted by
small Greek letters (<p and ip); whereas <1> is a vector of
approximations to the nodal values of <£, satisfying
equation (3.2), i.e. <D = F~xb.

Instead of (3.1) we may write the exact equation:

where

= b' + h2r

b'=f+h~4b

(4.4)

(4.5)

H e r e / i s a vector of the values of V4<p at internal nodes;
b" is a vector containing values of <f> at boundary nodes,
multiplied by coefficients —3, —11 or +177; and h2r
represents the local truncation errors, so that each
element of r represents the value of

3,407
12,960 4 o ' 6 + * " . « + •••

at an internal node (cf. (2.14)).
Almost never does it happen that the values of <f> are

known exactly at all boundary nodes—usually they will
be determined as in (3.1) with errors O(A2). In that
case the elements of b will differ by O(h~2) from the
elements of b' (cf. (4.5)). The errors of order O(h2) in
<p occur at nodes which are distant from F by O(/i).
Let the exact solution <p of (4.3) be perturbed to give a
continuous function ip, such that V4<£ = V4>p in R and
<p = ip on F, and such that ip equals the values assigned
to <p at the boundary nodes. Then (ip — <p) = 0 on F
and V4(̂ < — <£) = 0 in R, but (ip — <£) = QQi2) at nodes

distant O(h) from F- Hence — (</r — </>) = O(h) on F-

The fact that the biharmonic problem (4.3) is well-
posed under the given boundary conditions may be
expressed more precisely in the following manner. Let
F possess a continually turning tangent, and let g(s),

dg
n{s) and -j- be continuous on F (cf. (4.3)). Then

Miranda has shown (cf. Collatz, 1960, p. 407) that the
solution of the biharmonic problem with f(x, y) = 0
(i.e. V4</> = 0 in R) satisfies the inequalities

= K

\<KP)\

=£) \<Q

Max \n\ + Max
r r

S + Max \g\.
r

+ K2 Max \g\
r

• (4-6)

Here P is any internal point of R, 8 is the minimum
distance from P to any point of F; and Kt, K2 are con-
stants depending only on the geometry of R: the com-
putation of numerical values for these constants is
somewhat laborious.

Applying Miranda's Theorem to the function (</r — <£),
we see that

(4.7)

In particular, at each internal node </> differs from <f> by
O(h), i.e. the elements of the vector f ' — $>' are each O(/i).

Note that this argument applies equally well to equa-
tions based on the conventional 13-node molecules,
when the boundary conditions are approximated by
fixing <j> (with errors O(h2)) at a double layer of nodes
enclosing F-

4.2 Truncation error of the solution
Applying (4.4) to the perturbed function <p, we see

that the vector T" of its nodal values satisfies the equation

r = b+ h2r (4.8)

where the boundary values contained in b are the values
computed for <f> at boundary nodes according to (3.1),
but the 6th derivatives in the elements of r are those of ip
rather than <p.

The solution of (4.8) is

(4.9)= 0) +h2F~lr.

Now the matrix G is symmetric, and hence F is sym-
metric, and so also F~l is symmetric. Therefore the
spectral norm o f f " 1 is equal to its spectral radius, i.e.
the maximum modulus of any of its eigenvalues.*

Now we have seen (cf. (3.45)) that all eigenvalues of
F are greater than the constant

(ignoring O(h)). Therefore all eigenvalues of F~' are
positive and less than

- 2

* The spectral norm \\Aj\ of a matrix A is defined as V<*i.
where X\ is the spectral radius of A*A. The corresponding norm
I |JC| | of a vector x is the Euclidean length of x, for which

(Faddeeva, 1959, p. 59).
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Accordingly

From this, we see that the ratio of the root-mean-
square of the elements of OF' — O) to the root-mean-
square of the elements of r is of order O(/i2) as h -*• 0.
If it is assumed that <f> can be perturbed into tfi in such
a manner that the sixth derivatives of ip remain bounded
as h ->• 0, then the elements of r remain bounded. (On
the other hand, if the exact values of <f> at the boundary
nodes are known then ip is simply <f>, and we need only
assume that the sixth derivatives of § itself are bounded.)

The number n of internal nodes of the net is O(h~2).
Since the elements of r are assumed to be bounded, we
have:

IM|2 = r\ + . . . r\ = O(«) = O(h~2) (4.11)

')- (412)therefore | |r | | =

Substituting (4.12) into (4.10), we get

(4.13)

Thus the vector O which is actually found as the solution
of (3.2) differs from the vector *F' of the exact nodal
values of ip by an error vector whose length is O(h).
Hence the individual elements of OF' — O) are not
greater than O(/J), whilst their root-mean-square is
O(/i2). (cf. (4.10)).

We have seen in §4.1 that the elements of the vector
OF' — $') are O(A). Combining this with the result
of (4.13), we see that the elements of (<J> — O') are
bounded by quantities of order O(/i).

Note that the effects of errors in <j> at boundary nodes
could not have been investigated profitably by using
norms, since the elements of b will contain errors of
order O(h~2) (cf. (4.5)).

On the other hand, the root-mean-square truncation
error would be of order O(/i2) if the values at the boundary
nodes were fixed with errors of order O(/i3). This
suggests that the accuracy of the results could probably
be improved significantly by first solving the net equa-
tions with boundary values specified as in (3.1), esti-
mating the second derivatives of <j> at nodes near the
boundary by finite-difference techniques applied to the
results, and then using these estimated values of

l2d> ld>
~7, <—v and .r-f
ox2 7>xoy oy2

extrapolated to r to correct the values of <f> assigned to
the boundary nodes. The process could be repeated
until the values computed at internal nodes cease to
alter significantly. However, a more economical proce-
dure would be to specify the values at boundary nodes
as in (3.1), then partly solve the net equations (3.2) by
applying S.O.R. until the estimated second derivatives
of the current solution have settled down to steady

values. These may then be used to improve the values
assigned to boundary nodes, and S.O.R. may then be
resumed to continue the improvement of the values at
internal nodes. The boundary values may be adjusted
repeatedly in this manner during the process of solution
by S.O.R.

4.3 Errors of 13-node molecule

The local truncation errors of the 13-node and 17-node
molecules have already been compared in (4.1) and (4.2).
In order to compare the truncation error of the solution
for the sets of equations based on the respective mole-
cules, it is necessary to know also a lower bound for the
eigenvalues of the matrix based on the 13-node molecule.

As in §3.4, the eigenvalues of the original matrix will
lie within the range of eigenvalues for the matrix corre-
sponding to an extended rectangular net containing the
original net, with a double layer of fixed values of <f>
around the boundary of the rectangle. Reasoning in a
manner similar to that employed in §3.5-§3.8, we could
deduce an upper bound for the eigenvalues of the matrix;
but since the matrix does not have "Property A" we
could not deduce therefrom a positive lower bound for
the eigenvalues as in (3.44): the circulant matrix could
only show that zero was a lower bound (cf. footnote
below (3.45)).

Consider in more detail the matrix L resulting from
the application of the 13-node molecule at each internal
node of the rectangular net as in Fig. 7, with each value
of <j> at a boundary node transferred to the right-hand
side as a known quantity. The outermost of the triple
layer of nodes of the net has no effect on the values at
internal nodes in this case (since the 13-node molecule
only "reaches" over 2h), so that we need only to consider
a rectangle of M x JV squares (each h x hi) with (f>
fixed at the outermost nodes and at the adjacent internal
nodes. Thus L has (Af — 3)(N — 3) rows and columns.
Number the nodes in pagewise order.

Next, consider a matrix P with (M — l)(N — 1) rows
and columns, corresponding to the 5-node approxi-
mation to the Dirichlet problem over the rectangle with
dimensions Mh x Nh. This means that the values of <f>
are specified on the rectangular boundary and the values
of V2<f> are known inside the rectangle. At each internal
node of the rectangle, an equation is written of the form

Jpifa-uj + 4>i,j-\ ~ 4<f>i,j + <f>i,j+i + <f>i+i,j]

= ( V 2 # , , . (4.14)

which may be symbolized by the Laplace molecule of
Fig. 8.

The 13-node molecule of Fig. 1 is, in a certain specific
sense, the square of the harmonic operator of Fig. 8.
By this it is meant that the elements of the matrix P2 in
the rows and columns corresponding to the (M — 3) net
rows and the (N — 3) net columns at which the 13-node
molecule is applied are, as may be verified by inspection,
identical with the elements of L in the corresponding
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/xf_, are strictly negative). Hence the minimum eigen-
value of P2 equals p\A , so that all eigenvalues of L are
greater than (or equal to)

rows and columns of L*. Thus the matrix L is a prin-
cipal minor of P2, and hence its eigenvalues lie within
the range of the eigenvalues of P2, which are of course
the squares of the eigenvalues of P.

The eigenvalues of P may be found in the following
manner (Frankel, 1950). Consider the set of {M + 1)
(N -f- 1) quantities

(4.15)

(0 < i < M)
(0 < j < N)

for fixed r and s, where 0 < r < M and 0 < s < N.
Substituting e-;f for </>,_, in each term on the left of
(4.14), we find that at each internal node of the rectangle
(0 < i < M, 0 <j < N)

[1 f + </ 4</ + </ + fo]

COS Q 2 cosG) -
Thus for any fixed r and s the set of e-;f form an

eigenvector of the matrix P of the set of equations (4.8),
corresponding to the eigenvalue

(4.17)

(0 < r < M, 0 < s < N).

It is easy to show that (4.15) gives a complete set of
eigenvectors of P, and hence all eigenvalues of P are
given by (4.17). The maximum and minimum eigen-
values of P are therefore given by (r, s) = (1, 1) and
(r, s) = (M — 1, N — 1), respectively. (Note that all

* P2 is actually the matrix appropriate to a biharmonic problem
over the rectangle of dimensions Mh x Nh, when the boundary
conditions specify the values of <f> and V2$ on the boundary; as
occurs for example in the deflections of a simply-supported
rectangular plate.

Comparing (3.45) with (4.18), we reach the remarkable
conclusion that the lower bounds deduced for the eigen-
values of the matrices based on the 13-node and the
17-node molecules are identical (apart from quantities
of order O(h) and O(h2)). Thus all eigenvalues of the
matrix based on the 13-node molecule within the actual
region R will be greater than or equal to the same lower
bound (4.18) as was used for the 17-node molecule.*
In particular, the matrix is positive-definite.

Referring to §4.1, we see that when the exact values
of <j> are used at the boundary nodes the norm of the
truncation error of the solution will be related to the
norm of the vector of local truncation errors by the
same inequality (4.10) whether the 13-node or the
17-node molecule is used. The local truncation errors
for the two molecules are compared in §4, in which it
was shown that if V4<̂  is itself a harmonic function then
the local truncation error of the 17-node molecule is
only about 24% greater than the local truncation error
for the 13-node molecule. We conclude that the bounds
for the truncation error of the solution when the 17-node
molecule is used will be only about 24 % greater than when
the 13-node molecule is applied over the same net.

However, the errors in fixing the values of <f> at nodes
adjacent to r will introduce further errors of order O(h),
in exactly the same manner for both molecules (cf. §4.2).

5. Numerical experiments
In order to compare the under-estimate (3.48) of the

S.O.R. convergence rate with the actual convergence
rate for specimen problems, a program was written in
TOPIC autocode to perform S.O.R. (with arordering)
upon the net equations resulting from applying the
17-node molecule at all internal nodes of a rectangular
region surrounded by a triple layer of zero boundary
values, i.e. the matrix F is G of (3.3).

The solution of the equations is of course zero at
every node, so that if arbitrary initial values are taken
at internal nodes the current estimate at any stage will
equal the error at that stage. Accordingly, the decay

* There would be little point in investigating further the upper
bound HM-I.N-I for the eigenvalues, since it is not possible to
deduce therefrom the optimized convergence rate of S.O.R. for a
matrix without "Property A."
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Biharmonic operator

rate for any value of w may be computed from obser-
vations of the decay rate of the current estimates, when
all their elements decay uniformly.

5.1 Test cases
If S.O.R. is applied with w < to0, then the successive

current estimates will ultimately decay uniformly by a
decay factor /*, where w0

 IS related to /x by the formula
(Carre, 1961):

w0 — (5.1)

This value may be checked by applying S.O.R. with a
value of <o slightly less than the value predicted by (5.1),
and re-estimating w0 from the observed decay factor
with this new value of w.

The nets chosen for the test problems had (M, N)
= (13, 13) and (17, 13); i.e. there were 10 (or 14) rows
of internal nodes and 10 columns of internal nodes.
The convergence rates predicted by (3.48) (neglecting
O(/i3)) are

(a) Pa

Pb

~2) = O'135

= °- 1 0 8 >
and the optimal values of a> predicted by (3.47) (neg-
lecting O(h3)) are

(a) a>Oa -

(b) W o t _

13"2) = ° ' 8 6 5

(5.3a)

3~2 + 17-2) = 0-892.

(5.3b)

In Table 2 there are given for each case a value of u>,
the value of w0 predicted by (5.1) from the observed
decay factor /x when S.O.R. is applied with that value
of co, and the number «, of cycles of S.O.R. which were
found to be necessary for producing a reliable estimate
of fj.. In each case the initial estimate was taken as unity
at all internal nodes. The table also gives the estimate
of the optimized convergence rate R = — Ln (u>0 — 1);

Ln2
and it gives v = —=-, which is an estimate of the number

K.
of cycles of S.O.R. which ultimately are needed to halve
the errors.

Comparing Table 2 with (5.2), we see that in both of
the test problems the actual optimized convergence rate
for S.O.R. is nearly double the theoretical lower bound.

5.2 Other molecules

The molecule of Fig. 4 (containing only a, /3 and y
nodes) produces matrices with "Property A," but it
was discarded in favour of the 17-node molecule of

Table 2

Estimation of too

M

13
13
17

N

13
13
13

1
1
1

•625
•75
•797

« i

24
28
40

1
1
1

•77
•770
•806

0
0

R

•262
•215

2
3

V

•64
•22

Fig. 5, which is more nearly diagonally dominant.
However, as a check this molecule of Fig. 4 was also
applied to the test case with (M, N) — (13, r3); i.e.
with 10 X 10 internal nodes. A TOPIC program was
written to perform S.O.R. upon the resulting equations,
and it was found that the optimized w0 was 1 • 809,
whereas the molecule of Fig. 5 gave co0 = 1 • 770
(cf. Table 2). This confirms our expectation that S.O.R.
would converge more rapidly for equations based on
the 17-node molecule of Fig. 5, rather than on that of
Fig. 4.

In order to compare the 17-node molecule with the
conventional 13-node molecule of Fig. 1, the 13-node
molecule was applied to the test problem with 10 X 10
internal nodes. Since the resulting matrix does not
have "Property A," it is practically impossible to decide
which ordering of the nodes is most advantageous for
S.O.R. (Engeli, 1959, p. 92, and Heller, 1958) and for
any particular ordering it is practically impossible to
predict the optimum value of a>. For simplicity the
nodes were numbered pagewise, and the DEUCE IIA
program BHM1 was employed to perform S.O.R. upon
the 100 equations for various values of to. Table 3
gives the observed value of 1 — /x for each value of w,
where /x is the ultimate decay factor of the errors. It
also gives the number n2 of cycles of S.O.R. which were
necessary for estimating fi correctly to three decimal
places.

Table 3
Observed decay

CO

1
1-25
1-5
1-625
1-6875
1-75
1-8125

62
35

125
85
59
63
52

factors

l -JJ.

0 008
0011
0-022
0 037
0 057
0 062*
0031*

The asterisks indicate that the errors decayed in an
oscillatory manner, and the values cited for fi represent
approximate mean decay factors (corresponding to the
moduli of the complex dominant eigenvalues).

Table 3 indicates that several hundred cycles of S.O.R.
were needed in order to determine the optimal value of
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to (for which /A was minimized) for the 13-node molecule,
whereas Table 2 shows that 24 cycles were sufficient for
OJ0 to be estimated with adequate accuracy for the 17-node
molecule. Further, Table 3 shows that the minimum
value of /x is equal to 1 — 0062 = 0-938. The corre-
sponding optimized convergence rate p = — Ln (1 — p)
= 0 062, whereas the optimized p = 0-262 for the
17-node molecule. Thus the convergence for S.O.R. is
4-2 times as fast as with the 13-node molecule. How-
ever, during one cycle of S.O.R. each internal node
requires 18 multiplications and 18 additions with the
17-node molecule, but only 14 multiplications and 14
additions with the 13-node molecule. Thus in terms of
the number of arithmetic operations required, the 17-node
molecule gives equations with which S.O.R. converges
3-3 times as rapidly as for the 13-node molecule

4-2 X £ * 3-3) .

5.3 Conclusions

The 17-node molecule has the following advantages
over the conventional 13-node molecule, when net
equations are constructed over a region with simple
boundary conditions and the resulting equations are
being solved by S.O.R.

(a) An upper bound can be predicted for co0 and a
lower bound for p.

(6) The actual optimal u> can be computed after a
small number of cycles of S.O.R.

(c) The optimized convergence rate is several times as

large as that for the 13-node molecule (in the test
cases, at any rate). The number of arithmetic
operations per cycle is only slightly greater than
with the 13-node molecule.

The local truncation errors at internal nodes, and the
corresponding part of the truncation error of the solu-
tion are each about f times those for the 13-node mole-
cule. However, the major part of the truncation error
of the solution in each case is due to errors in fixing
values of <j> at boundary nodes, and these are about
the same with the 17-node molecule as with the 13-node
molecule.

It is intended that further test cases be computed, for
comparing the accuracy of the solution and the S.O.R.
rate of convergence of equations based on this 17-node
molecule with those for the conventional 13-node
molecule.
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