
The extrapolated modified Aitken iteration method for solving
elliptic difference equations

By D. J. Evans

This paper describes a new approach to the extrapolation (over-relaxation) and linear acceleration
of the Aitken iterative method, and presents theoretical and experimental evidence concerning its
application to 5-point elliptic difference equations. Comparison is made between the performance
of the new method and that of existing procedures on a Laplace problem, and on a boundary-value
problem in one independent variable.

1. In this paper we shall be concerned with iterative
methods for solving large systems of linear algebraic
equations which arise in the finite-difference solutions
of boundary-value problems associated with elliptic
partial differential equations. We seek the solution
vector x to the equation

Ax = d (1.1)

where A is a given (N x N) real, symmetric and positive
definite matrix, and d is a given column vector. Without
loss of generality, we suppose A to have the form
I — L — U, where L and U are respectively lower and
upper triangular matrices with zero diagonal entries,
and 7 is the identity matrix. Since A is symmetric,
L is UT.

The simplest form of iteration is that of the stationary*
methods, which involve the application of an unmodified
computational cycle to the successive estimates x(n) of
x(n = 1, 2 , . . .). A simple example of this type of
iteration is the Simultaneous or Jacobi iteration, defined
by

jc(»+i) = (I, + f/)x<">+ </. (1.2)

Denoting by e(n), the error vector, x(n) — x, we have

(1.3)

where the error operator H is (L + V). In this simul-
taneous displacement iteration, no element of x(n + X) is
used until every element has been calculated and conse-
quently the elements of the displacement vector,
x(.n+n _ J:W) a r e independent of the order of com-
putation.

Another simple stationary method is the Gauss-Seidel
iteration, in which the components of x(n+1) are used
as soon as they have been calculated. In this case, we
have

or (7 — L)JC("+1> = UxM + d. (1.4)

The error vector again satisfies (1.3) but now the error
operator is (7— L)~lU. It is easy to see that the rate
of convergence of this successive displacement method

* For a classification of iterative methods, based on the same
terminology as that used here, we refer the reader to Martin and
Tee (1961).

may depend upon the order in which the elements of
xM are modified.

Aitken (1950) proposed a symmetric Gauss-Seidel
process in which each iteration consists of two sweeps
of Gauss-Seidel type, the second sweep adjusting the
components of the approximate solution in an order
reverse to the first. The first sweep is given by equa-
tion (1.4) with x("+1) written in place of x(n+1), whilst
the second is defined by

" +0

or (7 - £/)*("+'> = Z,x<n+1> + d.

The error vector satisfies

c<»+') = ( / _ U)-XL(I-

(1.5)

(1.6)

and Aitken showed that the error operator is non-
negative definite with all its eigenvalues less than 1.

We may regard (1.4) as derived from (1.2) by the use
of the superscript n + 1 in place of n for the term Lx in
(1.2), and we note that this still permits the calculation
of the successive elements of x("+1) by means of a simple
algorithm which is explicit in form. We propose here
to extend this approach to include the term Ux, and to
do so we use the forward and back substitution processes
to solve the equation

•»-Z,£/*<"+'>

by means of the equivalent form

(7 - L)(7 - C/)*(n+1) = LUxW + d. (1.7)

The error operator of iteration (1.7) is
(7 — U)~\l — L)-XLU and, since the two inner factors
commute, this operator is identical with the operator in
the Aitken iteration given by (1.6). However, since this
iteration will be undertaken in a manner different from
that envisaged by Aitken, we shall refer to it as the
Modified Aitken method.

In this iteration, we replace the vector xM by a new
vector x("+l) after a series of operations involving the
triangular matrices of the original matrix A. Hence, no
rounding errors are involved in the coefficients, and any
sparseness of the original matrix is retained. Further-
more, since the operations defined by (7— U)~x and
(7— L)~l amount to no more than the processes of
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Aitken iteration method

forward and back substitution, storage of only one
vector is required for the method to operate. Finally,
it will be shown in Section 4 that when A is derived
from a 5-point finite-difference approximation to an
elliptic partial differential equation, the matrix LU can
be generated by a simple algorithm based on the mesh
geometry. Thus, the proposed method has the possi-
bilities of an efficient iterative method for use on a
digital computer.

2. A standard technique for improving the conver-
gence of the iterative methods mentioned in Section 1
is that of extrapolation or over-relaxation. Both the
Extrapolated Simultaneous iteration,

= XM 4- d - (2.1)

and the Successive Over-relaxation (S.O.R.) method,

x(.n+n = (2.2)

have been investigated and reported upon. (See, for
example, Forsythe and Wasow, 1960). We shall initiate
our investigations without discussion of these earlier
methods, but overall comparison with them will be
included in the numerical experiments.

Sheldon (1955) extended Aitken's method (1.4) and
(1.5) by an analogue of S.O.R. and showed that the
eigenvalues of the error operator are real, positive and
less than unity for 0 < to < 2. Accordingly, a further
fundamental improvement to the method can be made
by linear acceleration using Chebyshev polynomials.
Each iteration of the accelerated Symmetric Successive
Over-relaxation (S.S.O.R.) method is a three-step process
given (Habetler and Wachspress, 1961) by the equations

4.

4- 4-

= XM 4. («+D - 4-
where an and /3n are denned below.

The error vector for this scheme satisfies

w and

where

and
= I— a>(2 —

4-

(2.3)

!)> (2-4)

L)~l A

If the eigenvalues, A, of Ma satisfy 0 < A < 1 — 17,
we require that each contribution to e(°) from an eigen-
vector of Ma shall be weighted in eM by the factor

r(
 2 A _

where rn(*) is cosh (/i cosh"1 x). This is achieved if
an and j8fl satisfy

(2.5)

and

3n = ^ 4 ^ > ( » = 1 , 2 , . . . )

where y is (1 +

Frank (1960) has recently reported favourably on the
advantages of using the three-term relationship outlined
in (2.3). Briefly, for the small disadvantage of retaining
a further vector, the problem of numerical instability is
overcome and at each stage the iteration reduces the
error in the 'best' minimax sense.

Although the iteration (2.3) will work for any value of
oi in the range 0 < w < 2, the best convergence rate
results from the use of that value of to for which the
spectral radius (i.e., the modulus of the largest eigen-
value) of Mw is minimized. Wachspress and Habetler
(1961) have shown that the required value is

"opt 1 + V(2TI - 1 + 4A:,)'
(2.6)

where T, = A : , = and ^ is the eigen-4 ty
vector corresponding to the largest eigenvalue of
at the optimum a> (here, we have changed their notation
to suit our purposes), and that the corresponding spectral
radius JL{M^), denoted above by 1 — 17 satisfies

V(2T,-1+4*

-V/(2T, - 1 4 4A:,
(2.7)

The average rate of convergence per iteration, defined
as the lower bound of

— -log
n

'-(nh-OJ
is not less than

^' - i 1 0 8 ^ ) } (2.8)

Since

lim log {cosh (n cosh"1^)}1'" is cosh-'y, and

cosh"1 (1 + 2T;) ~ 2-v/1? for 7) < 1,

we have immediately for large n, optimum an, j8n, and
Jl(Ma) close to 1,

(2.9)
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Ait ken iteration method

Wachspress and Habetler investigated the dependence
of -q on e, where e = 1 — ji(H) and £(//) is the spectral
radius of H, the error operator of the Simultaneous
Iteration (1.3) for some typical diffusion problems, and
were able to compare the convergence rates of the S.O.R.
and the accelerated S.S.O.R. methods. We now state
some of their results which we need for comparison in
a later section of this paper.

For a value of co satisfying (2.6) and

T, < V ( 2 T , - 1 + 4*,),

we have

7) ~
2 T .

(2.10)
V(2r, - 1 + 4*,)'

and since £, < 1 and T, > e = 1 — /!(//), we obtain as
2e

a lower bound for 77, the result ——. Hence, the

accelerated S.S.O.R. will have an average convergence
rate at least as large as

31/4
;l/2 _ (2.11)

3. We define our extrapolation of (1.7) by

d —

which can be written in the form

( / - coL){I-
= [to2LU + (1 - to)/]je<"> + cod. (3.1)

This iteration, which we call the Extrapolated Modified
Aitken iteration, is the subject of the present investigation.

The error vectors in this iteration satisfy

*("+!> = Qael"\ (3.2)

where g u = / — c o ( / - coU)~\l — LOL)~XA,

and if co is the same for each iteration, we have the usual
expression (1.3) for a stationary method.

We define the matrix Tu by the similarity transfor-
mation

- coU)-\ (3.4)

and we consider the matrix

A(I-coU)~' (3.5)

Since A is a positive definite symmetric matrix, it pos-
sesses a positive definite square root, A*, defined as
YAY-* wheie Y is the matrix of the eigenvectors of A
and A is a diagonal matrix whose elements are the
positive square roots of the eigenvalues of A. Thus, we
may write

- coLT)-'].

G*

Hence, - ( / — Ta) is the product of a matrix times its
CO

transpose, and so has non-negative eigenvalues. More-
over, / — CJL is non singular, and A is positive definite.
Consequently, the matrix / — Ta is positive definite for
co > 0 and so is / — Qa, since its eigenvalues are those
o f / - Tu.

We shall now investigate the convergence of the
iteration process (3.1) in order to determine the optimum
value of the iteration parameter co. Let us assume that,
for a particular value of co, the eigenvalues and eigen-
vectors of Qa are 0, and ty, for 5 = 1 , 2,. .. N,
respectively.

Then, by definition we have for 5 = 1, 2 , . . . n

g

2cvks + T,} +
(3.6)

Ps~

where

and

ks =

Now, the criterion for convergence is

- 1 <es < 1 fo rS= 1,2, ...N.

The upper limit is satisfied when co > 0, whilst the lower
limit is given when co = cof and pN = 0, i.e., when

2(1 - COy) + 2cojkN -f COyT̂  = 0. (3.7)

Unfortunately, it is not easy to discern the form of
variation of the largest eigenvalues of Qu with to.
Accordingly, we have proceeded empirically, and have
calculated (see Section 4) the extreme values of 6 for the
lowest-order finite-difference representation of two model
problems, namely

Problem I: ^ + ^ = 0
Tix2 ly2

in the unit square with prescribed boundary values;

Problem ^
dx2

on a unit interval with prescribed terminal values.
The results are displayed in Fig. 1, while Fig. 2 shows

the corresponding results for S.S.O.R. We observe
that the extreme values of 6 are monotonic in co, and
for convergence to be possible, co must be in the range
0 < co < coy where coy is given by (3.7). Furthermore,
it is clear that the optimum value of co is that for which
the extreme positive and negative values of 8 are of
equal magnitude, that is, such that

P\ — T\\ = _ (PN —
J = _ ( (3.8)
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Aitken iteration method

-0-b

J I
0-1 0-^ 0-6 Of rf

• \ l !

Fig. 1.—Extrapolated Aitken iteration: Problems I and II

Thus, the optimum u> is given as the solution of the
quartic equation,

2(1 — O)0 + OJ0Tl — O)0 + WQTN

- (3.9)

Finally, the spectral radius of the Extrapolated Modified
Aitken Method at the optimum to is

Pl ~ for oi =

2(o,0-0 - « -

3.10)

Furthermore, since the eigenvalues of Qu are real
this method can also be accelerated by means of
Chebyshev polynomials. In this case, we require that
each contribution to e(0) from the eigenvectors of Qu
shall be weighted in e(n) by the factor

where S < 1 is the spectral radius of Qu.

OJf

i : i . . - - -

Fig. 2.—Symmetric successive over-relaxation: Problems I
and II

Thus, we now describe the iteration in full by the
equations

( / - a>L)(I- coU)x<-" + l'> = (co2LU + (1 - o>)/)jeW + cod

*<« + !) = JCW + an(Jc("+1> - xW) + j3n(x<"> - xf"- ' )) ,

(3.11)

where the coefficients an and /?„ are determined from the
relations,

(3.12)

and a0 = 1.
Obviously, the iteration process will work satis-

factorily for any u> in the range 0 < w < a>f, but once
again, as in the S.S.O.R., the best convergence rate is
attained when the optimum <o0 is used. The average
rate of convergence per complete iteration for the
optimum acceleration of the Extrapolated Modified
Aitken method is not less than

/?2 = - - log
n

1
(3.13)
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where 8 = " as given in (3.10) and

Aitken iteration method

(3.14)

Now, for T, < 2 ( ^ 1 - 1) + 2co^cl + T, and large n,
(3.13) further simplifies to

R2 - 2Vv. (3.15)

We shall now compare R2 with /?, for the Laplace
problem and deduce some general conclusions on the
average convergence of the new method. Substituting
k\ = 1, T, = e and w0 = 1 -5 in (3.14) we obtain as a
lower bound for v, the result

= 0-428e, (3.16)

and thus the accelerated Extrapolated Aitken iteration
will have an average convergence rate at least as large as

This compares unfavourably with equation (2.11) for
the S.S.O.R. We cannot provide a more direct com-
parison, for since the optimum co's differ in the two
methods, the quantities kx and T, will differ also.
However, the lower bound in (3.16) was obtained when
we assumed kt = 1. If we now assume p, = O(e*) and

T{ = O(e) then we have v = I i = 0(6*), and it follows
Pi

immediately that the Extrapolated Modified Aitken
iteration with Chebyshev acceleration can converge
faster than the S.O.R. method. For this particular case
to occur in Problem I of the numerical experiments,
we need

kx x, 0-25, o>0 = 1-2 and T, X, 0-25 = O(e)

whence

p, = 2(a>0-l - 1) + Ico^kx + T, = 0-45 « O(e*).

These results correspond to similar conditions, stated
by Wachspress and Habetler in their study of the
S.S.O.R. method.

4. We now discuss the computational aspects of per-
forming the proposed iteration (3.1) with a generated
rather than a stored matrix. We shall consider only
matrices arising from the lowest-order finite-difference
representation of second-order elliptic partial differential
equations on a rectangular grid of mesh points, and as
illustration we obtain the numerical solution of
Problem I above.

We use the subscripts i andy to denote the column and
row locations of the point (i,j) on a rectangle of (Af x P)
mesh points. For such points, the 5-point finite-
difference equations are of the form

(4.1)

Fig. 3.—Problem I

within the rectangle specified by 0 < i < m and
0 < j < P. The coefficients /, b, t, r relate mnemonically
to grid points to the left, bottom, top and right of (i,y).

On the boundaries of the domain the equation (4.1)
holds with the coefficients

lUJ = rM_XJ=0 iot\<j<P-\\
and b,A = titp — 1 = 0 for 1 < / < M — l / }

for a columnwise ordering of points.
The equations (4.1) for l < y < P — 1 and

1 < i < M — 1 combine to form the matrix equa-
tion (1.1) in the following manner. The point (i,y) of
the network is the [(i — l)(P — 1) +j]'h equation in
the matrix array. Let q denote [(i — l)(P — 1) +y], so
that the equation (4.1) expressed in terms of the elements
a/,m of A is

~~ a
q,q p+\Xq-p+i ~ ~ aqaq,q+ lXq+\

^y-Q+P— \Xq+p— 1 = = "q V*'3)

for 1 < q < (P — \){M — 1) with the boundary condi-
tions (4.2) being expressed.in the form
aq, q-\ = 0» when q — 1 is a multiple of P — 1,
a9,9+ I = 0, when 9 is a multiple of P,
aqq_P+l = 0, when q — P + 1 is negative

j r (4-4)
and '
aq,q+p-1 = 0, when g + P — 1 exceeds

We now discuss the generation of the two triangular
matrices (/— coL) and (/ - otU) on the network of
grid lines. In the matrix array, they are of the form,

and (4.5)
, - waM + p_ 1xg

subject to the boundary conditions (4.4), and by reference
to Fig. 3 we see that these are equivalent to the
expressions

— (ulifJ<f>,_ u — ub,j<f>u_ i + <f>u and

tu ~ vtiAu+i — urijfyi+ij (4.6)

subject to the boundary conditions (4.2).
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Similarly, the matrix [co2LU + (1 — w)/] has the form,

(4.7)

for 1 < q < (P — l)(Af — 1), subject to the conditions
(4.4). This matrix is directly related to the simple
stencil, illustrated in Fig. 4, at the point ((",./) on the
mesh, and it can be generated on the mesh by the simple
equation at the point (i,j),

+ [(« - 1) + a>2(/,,,r,, +

(4.8)

subject to the boundary conditions (4.2).
Finally, we compare the amount of work done in each

iteration. For each of the two sweeps of the S.S.O.R.
method we need to do five multiplications and five
additions per equation whilst in the Extrapolated
Modified Aitken method a complete iteration involves
seven multiplications and seven additions per equation.
This is true only when quantities such as //j-f/_i,/, etc.
in (4.8) are either readily available in an auxiliary store
or are simple fractions which can be immediately
deduced, i.e., such as in the Laplace Equation. Hence,
the latter method can be more efficient by a factor of
approximately 1 • 4.

5. Experimental programs were written for the Man-
chester University Mercury computer to perform the
iteration procedures discussed in this paper for the
numerical solution of the Problem T above for the mesh
sizes, h~l = 5, 10 and 20, and Problem II, for the mesh
size, h~x = 16.

All iterations were initiated from the same approxi-
mation <f>m (i.e., an arbitrary vector whose components
were obtained by crudely interpolating between the
boundary conditions) and continued until the con-
vergence criterion

max
I F /

5 x 10- 5

ss

so

to -

J I 1 I
io 1-1 l-fc 1-8 2-o

F/iCTOR.

Fig. 5

was satisfied, for 1 < i < M — 1 and 1 < j < M — 1,
where M is the number of mesh points in the i and j
directions.

Since the iteration method proposed by (3.12) differs
from the S.S.O.R. method (2.1) prior to the acceleration
by Chebyshev polynomials, we first compare the results
from numerical experiments for the two iteration pro-
cesses without Chebyshev acceleration.

The S.S.O.R. method for Problem I, h~l = 5, 10, 20,
and Problem II, h~x = 16, are shown in Figs. 5 and 6,
respectively, the number of iterations being plotted
against the over-relaxation factor u>. The mechanism
by which the optimum factor was obtained has already
been discussed, with reference to Fig. 2. In detail, the
fundamental eigenfunction of the S.S.O.R. method was
determined by iteration, and the quantities /c, and T,
evaluated from equations denned in (2.6). Then, from
the analysis shown in Section 2 we have the final results
given in Table 1.
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Table 1

Problem

Problem

I,

II,

A"1 =

/j-i _

5

16

0-

0-

2056

2496

0

0

•2302

•0174

CO
EQN. (2.6)

1-3

1-7

CO
(EXP)

1-3
(Fig. 5)

1-7
(Fig. 6)

EQN

0-

0-

'(2.7)

39

825

iT
(EXP)

0-39
(Fig. 2)

0-825
(Fig. 2)

Table 2

Problem

Problem

I, h

II, h-

i — 5

1 = 16

0-

0-

2010

2493

0

0

•2051

•0171

0

0

kN

•0278

•0904

0-

0-

6669

3986

EQN

1

1

0)
(3.9)

2

43

CO
(EXP)

1-2
(Fig. 5)

1-43
(Fig. 6)

EQN.(3.10)

0

0

26

77

(EXP)

0-26
(Fig. 1)

0-77
(Fig. 1)

The Extrapolated Modified Aitken iteration method
was investigated for the same problems. Again, the
number of iterations versus the extrapolation factor is
plotted and shown in Figs. 5 and 6, while Fig. 1
shows the highest and lowest eigenvalues of the error
operator plotted as functions of to. As with S.S.O.R.,
the eigenfunctions corresponding to the highest and
lowest eigenvalues at the optimum co were determined
by iteration, by using equations (3.6), and the quantities
k\, T\, kN and TN determined. Then, by using the analysis
developed in Section 3, we have the final results given in
Table 2.

Furthermore, values of kN and TN were determined by
iteration, and equation (3.7) solved to determine wr and
hence the range of co for the convergence of the Extra-
polated Modified Aitken method. The results obtained
are given in Table 3.

We see that the Extrapolated Modified Aitken method
converges for 0 < w < 1 • 5 for the two problems under
investigation, and that excellent agreement between the
theoretical and experimental results was obtained.

Finally, the iterations are compared after their
acceleration by Chebyshev polynomials. The theoretical
results are given in Table 4, whilst the experimental
results for Problem I are shown in Fig. 7, together with
those for the Simultaneous iteration (1.2), Gauss-Seidel
iteration (1.4), Aitken iteration (1.4 and 1.5), the S.O.R.
method (2.2) (at the optimum over-relaxation factor),
and the unaccelerated Extrapolated Aitken and S.S.O.R.
methods.

Table 3

Problem I,
/,-> = 5

Problem II,
//- ' = 16

kN

0-100

0111

0-367

0-334

CO/

EQN. (3.7)

1-5

1-5

CO/

(EXP)

1-5
(Fig. 1)

1-5
(Fig. 1)

Conclusions
For the problems discussed in this paper, the Extra-

polated Modified Aitken method has been shown to
have results comparable with the S.S.O.R. method.
Further numerical experiments on general diffusion
equations are necessary before any general conclusions
can be made regarding the new iteration process, for
Wachspress and Habetler have recently shown that
Problem I cannot be regarded as a true model problem
for the S.S.O.R. method.
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Fig. 7.—Problem I

Fig. 6.—Problem II

Table 4

Problem I, h~x = 5

A- ' = 10

A-1 = 20

Problem II, h~x = 16

CHEBYSHEV ACCELERATION

EXTRAPOLATED MODIFIED AITKEN METHOD

ASYMPTOTIC
CONVERGENCE

RATE

0-9

0-64

0-39

0-34

NUMBER OF
ITERATIONS REQUIRED

TO REDUCE ERROR
VECTOR NORM BY A

FACTOR OF 5 X 1 0 " 5

5

8

13

12

S.S.O.R. METHOD

ASYMPTOTIC
CONVERGENCE

RATE

0-9

0-57

0-41

0-38

NUMBER OF
ITERATIONS REQUIRED

TO REDUCE ERROR
VECTOR NORM BY A

FACTOR OF 5 X 1 0 ~ 5

5

9

13

11
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Book review: Dynamic programming

Applied Dynamic Programming, by RICHARD E. BELLMAN and
STUART E. DREYFUS, 1963; 363 pages. (London:
Oxford University Press, £2 15s. 6d.)

The type of problem giving rise to the technique known as
Dynamic Programming can be formulated in a few words.
Supposing that I want to invest £1000 in 10 projects
("activities") A{ ... Al0 and that the profit of A, in terms of
the invested capital xt is given by a function &(*;). How
should I subdivide my £1000 into 10 portions xt .. . xi0 so
as to obtain the maximum, called /,0(1000), of the total
profit #,(*,) + . . . +£io(*io)?

The answer given by Dynamic Programming is this.
Assume that we already know the solution to the problem
for the case of 9 activities. Allocating £x10 to activity A10
leaves £(1000 — *10) to be invested in Ax ... A9. Naturally,
Xi ... x9 will be chosen so as to maximize the return for
Ax . . . A9, and this maximum has the known value
/9(1000 - jt10).

The return for all 10 projects is then

SioUio) +/9(1000-x1 0) ,

and by varying xl0 the maximum value /,0(1000) of this
expression can be computed.

In general, the problem of finding the maximum f^{x) of
N N

the sum £ &(*j) subject to S *, = * is solved by the
l

recurrence relation

/„(*) = max [gn(xn) +/ n_i(* - *„)]•
Xn

This method, and its modifications for solving generalized
versions of the basic problem, has already been extensively
discussed in Richard Bellman's first book published about
six years ago. In spite of this, reports of its application up
to now have been few and far between and, in contrast to
Linear Programming which, in some industries, is used
almost as widely as PA YE calculations, its "image" is still
that of an ingenious mathematical technique of doubtful
practical value.

The new book should do much to alter this situation.
While the theoretical connections between Dynamic Pro-
gramming and classical methods of analysis (such as
Lagrange Multipliers and the calculus of variations) are by
no means neglected, its emphasis is on practical applications
and on the achievement of actual numerical results. The
remarkable flexibility of the method is shown by the wide
range of its possible uses; among those mentioned in the
book are the loading of a ship of given capacity so as to
maximize the total value of the cargo; transportation problems
with non-linear cost functions; the problem of finding a
defective coin by the least number of weighings; studies of
the reliability of multi-component devices; minimizing the
cost due to shortages of replacement parts; optimum
advertising campaigns; smoothing and scheduling problems;
computation of optimal trajectories; and the minimization
of the number of steps when searching for the zero of a
function.*

The solution of these and other problems is illustrated by
detailed flow diagrams of the programs developed for the
various modifications of the method; and the tabulation of
data and results, together with statements of actual running
times on existing computers, leave the reader in no doubt
that problems of practical importance can be and have been
solved by this method. The book will be required reading
for anyone concerned with problems of optimization that
cannot be solved by more familiar algorithms.

Paper, printing and proof-reading are good, but one slip
(on page 19), though not affecting the argument, should be
corrected in future editions: the statement that 107 seconds
(actually about four months) "is something of the order of
105 hours, and thus of the order of magnitude often years."

D. G. PRINZ

* Another interesting application, using Dynamic Programming
as a subroutine in Linear Programming for minimizing the scrap
in cutting stock, was published too recently to be included (P. C.
Gilmore and R. E. Gomory, "A linear-programming approach to
the cutting-stock problem," Jour. Op. Res. Soc. Am., Vol. 9, p. 849,
Nov.-Dec. 1961)
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