
An iterative least-square method suitable for solving large
sparse matrices

By I. M. Khabaza

The purpose of this paper is to report on the results of numerical experiments with an iterative
least-square method suitable for solving linear systems of equations with large sparse matrices.

The method of this paper gives satisfactory results for a
wide variety of matrices and is not restricted to real or
symmetric or definite matrices. We consider a system
of n equations:

Here au = — rfrfrp

Ax = b. (1)

As a library program the method requires from the user
an auxiliary sequence which, given x, produces y = Ax.
Thus no knowledge of the elements of A is required. A
need not be a matrix; it could be any linear operator.

Given an approximate solution x we calculate the
residual vector r:

r = b - Ax. (2)

We seek a better approximation x of the form

x' = x +f(A)r (3)

where f(A) is a matrix polynomial of the form

f(A) = c , / + c2A + c3A
2 + ...+ cmA"'-K (4)

The true correction in (3) is A~xr, and from the Cayley-
Hamilton theorem, A-1 may be represented as a poly-
nomial in A of degree n— 1 in general. Thus f(A)r is an
approximation to A~xr, but/(^) is of order m—\ where
m is a small integer, about 3, whereas n, the dimension
of the vector x, may be large. The polynomial / is
determined by the vector c of dimension m:

c = (c,, c2, . . . , cm)T. (5)

The superfix T denotes transposition so that c is a column
vector.

We define the polynomial g(A) as follows:

g(A) = 1 - A/(A) = 1 - c,A - c2X
2 - . . . - cjr. (6)

The coefficients cuc2, . . ., cm are determined by the
method of least-squares so that ||g(/4)r|| is a minimum;
the double strokes here denote the usual norm, i.e. the
square root of the sum of the squares of the moduli of the
components of a vector. We take, as an example, m = 3.
We define /•, = Ar, r2 = Aru r3 = Ar2. Then we deter-
mine cuc2, c3 from the system of equations

anc2 + al3c3 = bt

a22c2 + a23c3 = b2

ai2c2 + a33c3 = b3.
(7)

Let the eigensystem of the matrix A be:
a = A,, A2,.. ., An = b

5i, $2, • . . ,§„
where J-,- is the eigenvector corresponding to the eigen-
value A;. In general we can express the residual vector r
of equation (2) in the form

r = fll§, + a&2 + ... + a£n (8)

where a, is the component of r along %,.
If we apply the iteration (3) 5 times the residual becomes

+ . . . + ang^n (9)

where g, = g(A,).
Thus convergence occurs only if |g,| < 1 for all i.

The graph of g(A) in the range (a, b) will indicate the rate
of convergence. The iteration (3) will eliminate rapidly
the components corresponding to roots where g(X) w 0;
it will blow up components corresponding to roots where
|g(A)| > 1. We note that g(0) = 1.

The program
We give here a description of the program developed

for testing the method of this paper. Starting with an
approximation .v we calculate the residual r; if no
approximation is known we can take x = 0. To obtain
the coefficients c,, c2,..., cm of equation (4) we require
m multiplications by the matrix A and an extra multiplica-
tion to find the new residual r'\ the new approximation
x' is determined by using the same multiplications by A
used for determining c. For each further approximation,
obtained by iterating with a previously calculated set of
coefficients c, we require m — 1 multiplications by A to
calculate x' and a further multiplication to calculate r'.
Let

«=l | r | | ; « '=| | r ' | | . (10)

After each iteration we compare v with v'. Iteration
with the same set c is continued as long as v' < Cv, where
C is a convergence control parameter; otherwise a new
set of coefficients c is calculated. The parameter C is
given a small value such as C=0-2, if we expect rapid
convergence, for slow convergence we take C = 0 • 8 or
0-9. If v' > v, as may happen if g(A) blows up some

202

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/202/364798 by guest on 13 M
arch 2024

Method for solving large sparse matrices

components of the residual, it may be thought that it
would be better to discard the latest approximation x'
and its residual r' and calculate a new set c from r. In
fact this turned out to be wrong. This phenomenon is
similar to over-relaxation. Indeed it often paid to iterate
once more although the residual is increasing. The
program contains further parameters, D and F (e.g.
D = 2, F = 10) which determine when to stop iterating
when the residual is increasing (e.g. when v' > Dv0
where v0 is the smallest previous residual), and when to
reject the latest approximation (e.g. when v' > Fv0).
The required solution is obtained when v' < E where E
is another parameter (e.g. £ = 0000001). Finally,
another parameter specifies the value of m which deter-
mines the dimension of c or the order of the polynomial
g(\) and the system of equations (7). Various small
values of m were tried; in most cases m — 3 seemed to be
the most suitable value.

Numerical examples
We give the numerical results for five examples. In each

of the first four examples the initial approximation x was
taken to be 0; a known approximation, however rough,
would of course be better. To measure the efficiency of the
method we count the number of multiplications by A
and this number is compared with the corresponding
number required to obtain the same accuracy by existing
methods. The existing methods tried were the method of
Gauss-Seidel with over-relaxation (see Martin and Tee,
1961, equations 2-5 and 2-12) and the method of
Conjugate Gradients (op. cit. equations 7-10 and 711).

In the first three examples the right-hand side b of
equation (1) was taken to be e = (1,1,. . J)7"; n = 20;
A = [1, W], the codiagonal matrix for which Au = 1,
AUi-x = Au+l = W, otherwise A,, = 0. We considered
the values W = — 0-25, — 0 5 , — 0-6, respectively. The
roots A, of A are given by the formula A, = 1+2W

cosf——)• This result is used to determine the range
\n + 1/

(a, b) of the roots of A and draw the graph of g(A) in
this range.

In each example we give a table. The c-column gives
the coefficients cu c2, c3. The v-column following it gives
the values of the residuals for approximations obtained
by repeated iteration with c.

The computation was carried out on the Ferranti
Mercury Computer of the University of London Com-
puter Unit. This is a machine with a single-length,
floating-point accumulator consisting of 10 binary digits
for the exponent and 30 binary digits for the argument.
All calculations were carried out in single-length arith-
metic.

Well-conditioned matrices
We consider the case when W = —0-25.
The roots of A lie between 0-5 and 1 • 5. The graph of

g(A) in Fig. 1 corresponds to the first set c of Table 1.
The final solution obtained has eight figure accuracy;

\

\
Fig. 1

3
-4
1

c
•91
•76
•81

0
0

V

•035
•003

Table 1
c
3-

-2-
0-

08
96
90

0-
0-

V

000009
0000002

this required a total of 14 multiplications by A. To obtain
the same accuracy by the method of Conjugate Gradients
required 16 multiplications by A, and by the method of
over-relaxation required 14 multiplications by A,
counting each iteration as equivalent to one multiplica-
tion, and using the optimum over-relaxation parameter
w = 107. As in practical problems the optimum w is
not known; this suggests that the method of this paper
may be faster.

Ill-conditioned matrices
We consider the case W= — 0-5; this is the one-

dimensional Laplace operator.
The roots of A lie between 0 01 and 1-99 giving a

condition number of about 200. Fig. 2 gives the graph of
g(A) corresponding to the second and third sets c of
Table 2. The graph of the larger set is not drawn to scale,
it oscillates between 3 and —82 in the range.

The final solution obtained has eight figure accuracy;
this required a total of 48 multiplications by A. The same
equation was solved by the method of over-relaxation
using the optimum over-relaxation parameter w = 1 • 74',
to get the same accuracy required the equivalent of 67
multiplications by A (counting each iteration as equiva-
lent to one multiplication). The method of conjugate
gradients broke down in this case; this is because, for
ill-conditioned matrices, some of the intermediate
calculation requires accumulation of double-length
products, which is not easy on a single-length accumu-
lator.

We observe that the vectors c fall into two categories,
small and large, which occur alternately. We could make
use of this "alternate directions" phenomenon to
economize on the calculations of new sets c. Thus by

203

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/202/364798 by guest on 13 M
arch 2024

Method for solving large sparse matrices

qft)

Fig. 2

c
12

-20
8

Table 2

c v
3-74
3-74
9-90

5-22
-516
1-41

2-57
2-40
2-26

v

8618 0-56
-209-93 72-28

117-49

vC V C V C

3-57 0137 91-29 0 00028 4-89 0000005
-3-63 0132 -157-85 00087 -4-64
108 0126 66-88 1-23

applying the second and third sets alternately it was
possible to achieve the same accuracy, but it required a
total of 57 multiplications by A.

Ill-conditioned non-definite matrices
We consider the case W = —0-6.
The roots of A lie between — 0-19 and 2-19, and one

of the roots is equal to 0 • 0085, giving a condition number
of about 250. Fig. 3 gives the graph of g(\) corresponding
to two consecutive sets c.

The final solution has eight figure accuracy; this required
a total of 98 iterations. This large number is partly due
to the fact that g(S) cannot be numerically small through-
out the range (a, b), since the origin is within the range
and g(0) = 1; but it is probably mostly due to the ill-
condition of the matrix. The method was also tried for the
case W = — 10; convergence was a little faster because
the matrix is better conditioned. In this case the roots
are about equally spread on both sides of the origin;
in such cases there is some advantage in taking m even,
e.g. m = 4.

Fig. 3

Table 3

-3-47
901

-3-81

6-48
-7-71
2-36

v

1-58
02
08

5-54
-5-32
1 -37

1 0 2
0-91
1-26

c
- 9-78

25-27
-11-66

017
007
003
002
004

-2-62 00096 —5-87
14-62 00073 9-85

- 6 0 6 00318 -3-68

0-29
118

0 004
0 006
0012

9-76 0001
-14-74 0003

4-85

C V C V

- 1 1 0 4 00002 4-33 0000023
13-21 00007 -5-20 0000022

- 3-76 1-57 0000038

-2-63 0-000007
13-26 0000015

-5-83

7 09 0-000004
-8-62

2-77

The two-dimensional Laplace operator
In this case the components of the vector x correspond

to the values JC (/, j) of a function of two variables which
satisfies the Laplace equation in discrete form at the 81
internal points of a 10 by 10 square mesh. The internal
points correspond to i, j = 1, 2, . . ., 9. The boundary
points correspond to i = 0 or 10, or j = 0 or 10; at
these points x was specified by the formula

x(i,j) = i3 - 3y2. (11)

We denote x{i, j), x{i, j-l), x(i—l, j), x(i, j+ 1),
x(i -f 1, j) by x0, JC|, x2, x3, x4, respectively. Then equa-
tion (1) takes the form

204

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/202/364798 by guest on 13 M
arch 2024

Method for solving large sparse matrices

+*4) = 0 i,j = 1,2,.. .,9. (12)

The operation y = Ax is obtained by setting x = 0
at the 40 boundary points and applying the substitution

at the 81 internal points. The residual r = b — Ax is
obtained by first setting the boundary values according
to (11), and using the substitution

*0 (I4)r0 =

at the 81 internal points.

Equations (12) are equivalent to the equation Ax = A
where A has the form I—L—U (Martin & Tee, 1961,
equation 1-2). To speed up convergence (A, b) are re-
placed by 04',*') where A' = / - {I-L)~lU, b' =
{I—L)~ '*. This is done by replacing the substitutions (13)
and (14) by the following:

Mo=i(«i+"2+*3+*4) Jo=^o—"o i,j= 1,2,...,9 (13')
*4) ro=uo—xo i,y=l,2 9. (14')

In (13') as in (13) the values of u and x are set to 0 at
the boundary points. In (14') as in (14) the values of u
and x are set at the boundary points according to equation
(11). The values of u obtained in (14') form the solution
one would obtain after a single Gauss-Seidel iteration
(op. cit., equation 2-2), and r0 is the corresponding dis-
placement.

The initial approximation in Table 4 was x = 0.

Complex matrices
The method of this paper was also tried on an 11 by 11

complex matrix of the type which arises in Power
Systems analysis in Electrical Engineering (Laughton &
Humphrey Davies). Iterative methods in this field are
particularly suitable because a good approximation is
usually known; because the matrices are very sparse and
can be very large; because the solution is usually required
only to about four or five significant figures; and finally
because the solution itself is part of an iterative procedure
which may involve altering the coefficients of the matrix
after each iteration.

The matrix studied was typical: it is symmetric not
Hermitian; in any row the sum of the elements is 0, or
nearly 0, and the diagonal element is the largest in
modulus; the smallest diagonal element is 0—7-69/ and
the largest is 7-960—44-277/.

The coefficients ay and b, of equation (7) are defined
as follows:

au = = r"r

where the superfix H denotes the complex conjugate
transpose.

0-033+0-235/
00125-0004/

-0 • 00007-0 00013/

Table 5
V C V

0-73 0-964+1-652/ 005
0-46 0-396-0-596/ 2-46
0-34 - 0 0 1 0 - 0 0 0 4 /

c
4-31

-5-89
2-58

Table 4
c v

348
137
72-2

49-52
-1514

6-60

29-9 704
100 —11-36
5-78 4-46

0-574
0-254
0 097
0 030
0013

10-64
-24-60
13-73

0 0037
0 0026
0 0033
0 0036

c
2-85

-2-79
0-94

0000041
0-000022

The final solution obtained has eight figure accuracy;
this required a total of 55 multiplications by A'. The same
equations solved by the method of over-relaxation, using
the over-relaxation parameter w = 1-518, required the
equivalent of 44 multiplications. In this case the method
of this paper requires more multiplications than the
method of over-relaxation. In practical problems, how-
ever, one has only a guess at the optimum w; thus taking
w =* 1 -4 requires more than 70 iterations to obtain the
same accuracy. It would appear that in such cases the
method of this paper still has an advantage over the
method of over-relaxation.

0-025+0-121/
0 004-0 • 002/

-0-00002-0 00004/

0031 3-58+2-45/ 00009
0028 0-63-2-12/
0 0278 -0-033-0-003/

The last approximation has a maximum error of one
in the fifth significant figure; this accuracy required 55
multiplications by A. To obtain the same accuracy by
the method of Gauss-Seidel required much more than
100 multiplications.

Concluding remarks
The method of this paper seems to be an efficient way

for solving large sparse matrices or linear operators.
It compares favourably with existing iterative methods.
It also copes with complex or non-definite or un-
symmetric matrices, whereas existing methods usually
require the matrix to be symmetric definite. As for other
iterative methods, its advantage over direct methods is
that it requires few iterations if an approximation is
already known or if only few figures accuracy is required
or if the matrix is well conditioned; it requires little
storage if the matrix is sparse, and indeed A may be
stored not as a matrix but as a program to apply a linear
operator.

The method is being tried on Atlas for matrices of
order several hundreds which arise in Electrical and

205

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/202/364798 by guest on 13 M
arch 2024

Method for solving large sparse matrices

I am indebted to the Director of the University of
London Computer Unit, Dr. R. A. Buckingham, for
encouragement, and to my colleague, Dr. M. J. M.
Bernal, for frequent discussions.

Structural Engineering; this was not possible before
because of the relatively small size of the Mercury fast
store; I hope to report on the results in the near
future.

References
MARTIN, D. W., and TEE, G. J. (1961). "Iterative methods for linear equations with symmetric positive definite matrix", The

Computer Journal, Vol. 4, p. 242.
LAUGHTON, M. A., and HUMPHREY DA VIES, M. W. "Numerical methods for Power System Load Flow studies". To be published

in the Proceedings of the Institution of Electrical Engineers.

Note on the numerical solution of linear differential equations
with constant coefficients
By R. E. Scraton and J. W. Searl

The numerical solution of the differential equation

ay" + by'+ cy = f{x) (1)

where a, b, c are constants and f(x) is a numerically
specified function, can be obtained by a variety of
methods. For automatic computation the Runge-
Kutta method is normally used, but this may be unstable.
The procedure described below provides an alternative
method which has been found satisfactory where the
Runge-Kutta method has failed.

Suppose that f(x) is tabulated at interval h. In the
usual notation, let/,, denote f(x0 + ph) so that equation
(1) may be written

a
dJy + bh

dy + ch2y =
dp2 dp

(2)

It is assumed that y0 and y0 are known, so that a
procedure for determining j , and y[makes it possible
to tabulate both y and y' in a step-by-step manner.

Let the sequence Ar be defined by the equations

aXr+2 + bh\r+1 + ch2\r = 0, r > 0

(3)

and let
+ 2

~mKFJ m\ ' (m + l)\ ' (w+2) !

It is easily verified that

. . . (4)

f 0 if m = 0, 1 I

p"-2 (5)

If, therefore, fp can be expanded in the form

fp = Ao + AlP + A2p
2 + A3p> + . (6)

it can be shown that the solution of (2) satisfying the
required initial conditions is

= J'oD - chW2(p)] + ahyiUi(p)
+ h2[A0U2(P)+Al.l\U3(p)

+ A2.2 \U4(p) +

Thus

and

hyl — —

where

um = UJl) =

(7)

h\Aou2 +AlAlu3+A2.2\u4...) (8)

(9)

(m + 1)! ' (m+2)!
The coefficients Ar of equation (6) may be taken from

any polynomial interpolation formula. For automatic
computation, Lagrangian formulae are appropriate,
and a four-point formula will be used as an illustration,
viz:

2p*-p + 2)/0

(10)
Equations (8) and (9) may then be written

206

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/2/202/364798 by guest on 13 M
arch 2024

