A note on assignment problems
By E. S. Page*

It is shown that the Bottleneck Assignment problem can be transformed into a special case of
the classical Assignment problem. A minor modification of the Hungarian method of the
solution for the latter produces an algorithm for the former.

Assignment problems deal with the allocation of items
to locations, one to each, in such a way that some
optimum return is obtained. Four examples are the
following:

1A. Theexpected value of orders that will be obtained
by salesman i (i=1,2,...,n) in sales area j
(G=1,2,...,n)is known to be I';; Assign the
salesmen one to each area so that the total
expected value is greatest.

1B. The comfort and convenience of class i in room j
is assessed by an index I';;. It is wished to assign
the classes, one to each room, so that the least
index assigned is maximized.

2A. In 1A suppose that I'; is the distance salesman ¢
has to travel to reach areaj. Assign the salesmen,
one to each area, so that the total distance

travelled is a minimum.

2B. Mechanics have to repair pieces of equipment;
the time, I';;, for mechanic i to repair equipment
J is known. Assign the mechanics one to each
equipment to minimize the time by which all

equipments are repaired.

Thus, given the n X n matrix (I';) the four examples
require the selection of »n elements of the matrix, one
from each row and each column I'y;, I'y;,,. .. T,y js
where (j|, js, - . - J) is some permutation, 7, of (1,2,...n)
in order to:

1A. Maximize (I'y,, + Ty, + ... + Ty

IB. Maximize Minimum (T',;,, Ty, ... T';)
2A. Mlnimize (Plll + I‘ij + P + Fllfu)
2B. Minimize Maximum (T'y,, Ty, ... T',;).

The usual forms of the assignment problem are 1A and
2A. We can restate these problems as follows. Let
x;; = 1 if item i is assigned to location j, and O other-
wise. Then 1A and 2A require the optimization of
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2 ¥ x;T; subject to the conditions
i=t j=1
X2x,=1, j=1,2,...n
i=1
Zx,:,-=l, i=1,2,..-n
=
xij>0’ i’j=l’2"--n-'

Accordingly problems 1A and 2A are special cases of
the transportation problem which itself is a special case
of the more general linear programming problem.
While the algorithms for the general problems could be
used to solve these assignment problems, special methods
have been devised which take advantage of the simpli-
fying features (Kuhn, 1955).

We now show how a simple transformation exhibits
1B and 2B (the Bottleneck problems) as special cases of
1A and 2A.

The transformations

We can suppose that all the I';; > 0 without loss of
generality, since any optimum assignment for the
matrix (I';) is also optimum for (I';;) where I';; = I';; +-¢,
for any constant ¢. In 1A, 2A the optimum is increased
by nc and in 1B, 2B by c.

Let M = max ', ;; then problems 1A and 2A are

tyJ
transformed into one another by writing [';; = M — T';,.
That is, an optimum assignment for problem 1A with
cost y is an optimum assignment for 2A with cost
nM — y.

For the problems 1B, 2B we can in addition suppose
the elements I';, to be positive integers, since if they are
not we can rank the I'; in ascending order of magnitude
and make the transformation I'; = I';;, where T'j; is
the rank of I'; in the ordering. Any ties, i.e. where
I';; = Iy, will have the same rank, I'; = I';;. For
example the matrix

3-1 1-8 3-1 becomes 4 2 4
T 9 /2 5 61
e 105 4/2 371

Thus, we can suppose the I';; to be positive integers
in the range (1,n?). Then the transformation
I'y=n>+1—T, transforms 1B and 2B into one
another.

¥202 Iudy 61 U0 1sanb Ag £6009¢/L2/€/9/8101e/|ulWwoo/wod dno-ojwsepeoe//:sdiy wolj papeojumoq



Assignment problems

Consider now how to transform problem 2B into 2A.
If we can arrange that any sum of elements of the matrix
is dominated by the greatest element in the sum (or
equal greatest elements) then we shall be able to solve
2B by the methods used for 2A. We therefore need to
replace the I';, by numbers widely spread out. This
task is similar to that of isolating the root of largest
modulus of a polynomial equation and can be tackled
by methods similar to those of the root squaring
technique.

Suppose we form a new matrix I'y = I'; where « is
to be chosen. We require that

y,+.. o+ <Tig+...+Thy (D
should imply
Max (T'y;,... Ty) < Max (Tyy,, ... T ). D
Choose « so that
s>ns—1)fors=1,2,...m €)}
where m is the greatest element of (I';). With this

choice of « (1) certainly implies (2).

Alternatively the new matrix can be formed I'j; = KT¢
for a suitable choice of K. The requirement that (1)
implies (2) is met if

K> nK¢VOfors=1,2,...m @

i.e. take K > n where the matrix isn X n.
Thus either of these transformations reduces problem
2B into 2A and so may be solved by known algorithms.
The transformation of problem 1B into 1A now
follows easily. We go from 1B—>2B—»>2A—>1A. Thus
the transformations are

F;j=K’_(M_' I‘U)a

or. 'y =K’ — KM-To

where K, K are large enough integers to make I';; > 0.

Example

Consider the example given by Kuhn to illustrate the
Hungarian method of solution to problem 1A. We
modify it to get a solution of 1B, i.e. to maximize
min (Fl}v e Fll]u)‘

(Fij) =

W= N
N Q0
OO 00 \©

8
5
6
2

The elements I';; are already consecutive integers with
repetitions beginning at unity, so we have no need to
rank them and replace with the ranks.

Problems 2B considers the matrix (T')") where
I’ =9 — I';;, and then for problem 2A we can use
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the matrix (I'?), where I'? = 4T,  Finally problem
1A uses ('), where I'j = 65536 — I'?. Thus

(TP = /1200\,TP= 4 16 11
4721 256 16384 16 4
3850 64 65536 1024 1
7673 16384 4096 16384. 64
TP = /65532 65520 65535 65535
65280 49152 65520 65532
65472 0 64512 65535
49152 61440 49152 65472

Accordingly this matrix could form the input to a
program for the more general solution to problem 1A,
and an optimum assignment so obtained will be optimum
for problem 1B on matrix (I';)); the optimum cost can
then be obtained directly from (I';) or by reversing the
transformations.

Modification of the Hungarian methed

In this section we assume familiarity with the Hun-
garian method, and refer to Kuhn’s paper (1955) for
the details and a flow diagram of the solution.

The disadvantage of trying to solve 1B and 2B by the
algorithm of 1A, 2A on the transformed matrix is the
very large size of the matrix elements. Even for quite
small problems, say 10 X 10, the transformed numbers
have far outstripped single-length working in a computer.
Some minor steps can be taken to reduce the size. For
example, the element of (I';) giving the optimum for 1B
cannot be greater than the nth largest element of the
matrix. Accordingly the n largest elements of (I';)
can be replaced by their minimum without affecting
either an optimum assignment or its value. In the
example given this device reduces the numbers by about
a factor of 4, and in the n X n case by a factor of at most
n". Constants can be subtracted from rows or columns
of (I';;) changing only the value of an assignment but
not its optimality. Even after all these adjustments,
large numbers still remain. They can, however, be
avoided by changing the direction of attack: instead of
transforming the matrix for 1B to fit the Hungarian or
another method for 1A we consider transforming (very
slightly) the Hungarian method to make it applicable for
1B.

The Hungarian method first marks the positions in
the matrix of row (or column) maxima and attempts to
complete an assignment with the marked positions. If
this fails it gives rules for selecting areas,” R, of the
matrix in which further items to be marked should be
found, together with a rule for picking those to be
marked. More positions are marked until finally a
complete assignment can be made.

The only section of this algorithm which needs modi-
fication to deal with problem 1B is the rule for picking
the items to be marked. The appropriate rule is: mark
the item or items in R which are the greatest in R. (In
the modified algorithm it is not necessary to compute
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explicitly the cover (u;, v;) required for 1A.) We illus-
trate the procedure on the previous example; marked
items are replaced by X, items in the selected area are
shown with their numerical values, and other items are
replaced by —. We refer to Kuhn for an explanation
of how the areas are selected. The stages are as follows:

7XX—>X

5 2 — X SZ@X
6 1 — X 6 1 4 X
2 3 — X 2 3 2 X
»x@x_»XXX—
— 2 X X 5 2 X X
— 1 — X @l——X
— 3 — X 2 3 — X
—>X

X
X
- [

The greatest elements in the selected areas are enclosed
in a circle and the actual assignment is shown by squares,
i.e. I'yy, Iy, I'3y, Ty with optimum value

= min (7, 7, 6, 6) = 6.

We refer to Kuhn’s paper for an explanation why the
Hungarian method works. In this modification, at each
stage the selected areas are those which need a repre-
sentative item to take the partial assignment nearer a
complete one. Naturally the largest item in the area is
chosen. An algebraic justification may be written in
terms of the “‘cover” for the transformed matrix.

Comments on the method

The modification above has as its greatest virtue the
slight changes it requires to an already established
algorithm. If a computer program for the Hungarian
method is available a program for the solution of 1B
can be derived easily. If, however, only problems of
types 1B, 2B are likely to be encountered and a program
has to be written afresh the method developed by
Porsching (1963) has undoubted advantages as it is
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much easier to program. This latter method proceeds
by marking the elements starting with all the largest,
then all the next largest and so on, and providing at
each stage an easy, although possibly long, rule for
deciding whether a complete assignment can be formed
from the marked items. The modified Hungarian
method tends only to mark items that may be useful in
completing an assignment, and has another way of
deciding whether a complete assignment is yet possible.*

An entirely different approach would be necessary to
deal with very large problems. The problems con-
sidered can easily be formulated in Dynamic Pro-
gramming terms. Let C{i,, | PV P TP 2 jk} be
the cost or value of an optimum assignment of items
iy,...0 to places j,...j,. Then clearly this cost
C{iy, . .. i3 J1, - . . jix} can be obtained by examining the
costs, and picking the best, of assignments of i, to

J1sJa2s - - + Ji in turn together with an optimum assignment
of ij, ... i _, to the (k — 1) places not filled. Thus
Cliy, . . . ig3 1y - - - Ji} = Optimum
1<s<k
[Fiki. @ C{il’ tee ik—l;jl’ .. 'j;—],j;+], .o 'jk}]

where the “Optimum” and @ operations depend on
which of the four problems is being solved. Thus, to
solve an n X n problem we need to build up successively
a table of optimum costs of all the m X m problems,
m=1,2,...n that can be formed by selecting items
and places. The number of such problems is largest
when m =n/2 and is ())* ~22+1/7n, and their
costs need to be available for computing the next stage.
A practical method is obtained by grouping the items
and places into problems of a size that can be tackled
and switching the components between groups in some
way similar to that of Held and Karp (1962) in another
problem in order to improve the solution already found.
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