
Integration over multidimensional hypercubes
I. A progressive procedure
By J. N. Lyness and B. J. J. McHugh

A method of numerical integration is described which uses a low order integration rule to obtain
a high order result The error is successively reduced, using a method based on the idea of
Richardson's deferred approach to the limit. The method is restricted to hypercubic domains.

The standard methods of multidimensional numerical
integration require the evaluation of the function at a
number of points. The effort spent is normally directly
proportional to the number of such evaluations, and
consequently it is desirable to obtain an accurate result
with as few function evaluations as possible.

Methods based on random procedures, such as the
Monte Carlo method (Davis and Rabinowitz, 1956), and
the recent method using Cesaro Sums (Haselgrove, 1961,)
are easy to code and, as the number of points is increased,
convergence of successive results may be observed
directly. Such methods permit the use of additional
points to increase the accuracy of a result and provide a
convenient statistical estimate of the error.

Systematic methods based on integration rules do not
usually have these advantages and, in fact, very few high
order (order > S) multidimensional rules are known
(Hammer and Stroud, 1958). It is usual to use a low
order rule over a fine mesh and often the mesh size is
arbitrarily chosen. The error estimates of these methods
are in a form which is difficult to use.

In this paper, we outline a simple progressive pro-
cedure for integration over hypercubic domains by which
any systematic low order integration rule may be used
to yield a high order result. This method consists of a
process of elimination of errors, based on the idea of
the deferred approach to the limit of Richardson. In
Section 1, we describe the method in detail in one
dimension and illustrate it with a simple example. In
Section 2, we give a general description of the method
and, in Section 3, we apply it to a five-dimensional
numerical example.

1. The progressive procedure in one dimension
The method which we describe in general in Section 2

is a useful and powerful tool for carrying out numerical
integration in many dimensions. In the interests of
clarity, we devote this section to describing the method
in one dimension and illustrating its use by means of a
simple example. This description is primarily intended
to clarify the technique. The value of the method is
more apparent in many dimensions, where its efficiency
compares favourably with other procedures.

• This research was supported in part by U.S. Air Force Grant
No. 62-400 to the University of New South Wales.

We suppose that we wish to evaluate numerically the
integral

I=(f{x)dx. (1.1)

A simple approach is to divide the interval (0,1) into r
equal intervals of length 1/r and to use a mid-point rule
for each interval. Thus we write

for each interval and, combining these results, we obtain
an approximation I(r) to the true integral /. This we
may express as

In general, this is rather an inefficient method for carrying
out an integration. The first few approximations to

/ = exp ( - 3x)dx

obtained using this method are listed in Table 1. There
it is seen that, using ten function evaluations, the
numerical result differs from the exact result by about
one part in three hundred.

Table 1

The approximation 7(r) given by (1.3) to / given by
(1.1) when/(x) = exp ( - 3x)

/(r)
NUMBER OF

POINTS

1
2
3
4
10

0-223130
0-288883
0-303915
0-309434
0-315553

1
2
3
4
10

7=0-316738
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Integration over multidimensional hypercubes

We may obtain closer numerical results if we calculate
the same approximations 7(r), but combine them in an
advantageous way, that is in the same way as is used in
integrating differential equations, using Richardson's
deferred approach to the limit. An elementary appli-
cation of the Euler-Maclaurin expansion to each interval
in turn leads to the result

Expressions for ft, are given in Milne Thomson (1933).
02, depends on f{x) and on the rule (in this case (1.2)),
but is independent of r. In order to simplify the dis-
cussion, we assume for the moment that expansion (1.4)
converges for integer r, though this assumption is not
necessary. We may write r = 1 and r = 2 in (1.4) to
obtain

/, = 7(1) = 7 + ft + ft + ft + . . . (1.5)

(1.6)7(2) = 7 + k + .-,04 + Aft +. • • •

These equations may be combined to eliminate ft,
yielding

J2 = - ^7(1) + |/(2) = 7 - \p4 - y6ft - . . . (1.7)

To carry the procedure one stage further, we substitute
r = 3 in (1.4) to obtain

7(3) = 7 + l
§fl2 + i f t + ?-^ft + . . . (1.8)

and combine (1.5), (1.6) and (1.8) in such a way that we
eliminate ft and ft. The-result is

(1.9)

The procedure described above to generate Ju J2 and J3
is a progressive procedure. In general, if we have cal-
culated I(r) r = 1, 2 . . . p, we may determine numbers
ypr so that

£ = / + £,,02 02, + 2

(1.10)

The coefficients ypr and expressions for Eps are listed
in the Appendix (A. 16, A. 12 and Table 5).

In Table 2, we list the first four values of Jp obtained
from the corresponding values of 7(r) in Table 1.

It should be expected that Jr is closer than 7(r) to 7
as, in general, more function evaluations are required
to determine Jr. However, comparison of Tables 1
and 2 shows that, from the point of view of efficiency,
the progressive procedure is very much better. For
example, / 4 differs from 7 by less than one part in
100,000, compared with the one part in 300 by which

Table 2

The approximations Jp given by (1.10) to I given by
(1.1) when/(x) = exp ( - 3x)

NUMBER OF POINTS

1
2
3
4

0-223130
0-310801
0-316584
0-316736

1
3
5
9

7=0-316738

7(10) differs from 7. But J4 in fact requires fewer
function evaluations than 7(10) .

The reason for this improvement is easily explained.
We may define a rule for which ft = 04 = • • • = 02»=O
as a rule "of order It + 1". Such a rule integrates
exactly all polynomials of degree It + 1. In this case,
the rule we are using (1.2) is a first order rule. However,
(1.7) and (1.9) indicate that J2 and J3 correspond to
third and fifth order rules respectively. Thus, if f[x)
were a polynomial of degree 5, J3 would be exactly
equal to 7, while any of 7(1), 7(2) or 7(3) would differ
from 7.

The procedure described above is powerful and prac-
tical. It makes full use of all previous function
evaluations and provides a visual check on the con-
vergence. The normal integration procedures have
disadvantages when put into practice. For example
the integrator does not know in advance what interval
to use or what order rule to use. He usually determines
this by trial and error with the result that, although the
final rule he need use may be marginally more efficient
than the progressive procedure, he has, in fact, carried
out many more function evaluations than he needed by
searching for this most efficient rule and establishing
that it is accurate enough.

The principal drawback of the progressive procedure
lies in the build-up of rounding errors, due to the
difference in magnitudes of ypr. Reference to the
tabulated values of ypr in the Appendix (Table 5)
indicates that, if /(/•) is evaluated to n decimal places,
J6 is accurate to (« — 1) places and J9 to (n — 2) places.
Thus care must be taken to carry sufficient figures.
This presents no difficulty for an electronic computer,
but may be very inconvenient for a hand computation.

The question of rounding errors using this progressive
procedure will be treated in greater detail in a forth-
coming publication.

There is no need to use rule (1.2) in each interval.
We may replace (1.2) by any other rule of order one or
more that we like to invent. If we use a first order rule
the procedure is identical to that described above and the
results are of the various orders stated above. If we use
a higher order rule, again the above procedure may be
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Integration over multidimensional hypercubes

used, but unless modified, it is not the most efficient.
For example, Simpson's three-point third order rule
applied to each interval leads to

4/(1) + 2

+ 4/(1) + . . . 4/(2^-1) +70)}. (1.11)

The Euler-Maclaurin expansion analogous to (1.2) is

The f}2 term is zero, as Simpson's rule is a third order
rule.

If we were to carry out an identical procedure to that
above we would eliminate the non-existent term j32 to
obtain a third order result from two results already of
third order. It is clearly more advantageous to make
use of the knowledge that j82 = 0 and to eliminate the
jS4 term instead. Thus the procedure is the same, but
the coefficients y(

p) replace ypr. The resulting equations,
analogous to (1.7) to (1.9) above are

7(1) = 7 + j 8 4 + & + .• •

combining these we find

J2 = - 1/(1) + J|/(2) = / - =U - . . .

In general

15

= z

15

s=p+l
2s

and here Jp is a (2p + l)th order result.
In general, if the rule to be used is of order (2/ + 1),

the procedure should be modified by replacing ypr by
y(

p'\, and the/>th result Jp is a result of order (2p + It — 1).
The results using Simpson's rule corresponding to

those in Tables 1 and 2 are given in Table 3. In this
case, it is seen that, from the point of view of efficiency,
there is little to choose between using the third order or
first order rule, if used in this way for this particular
example. The question of which rule is preferable in
practice will be discussed in a forthcoming publication.

Finally, we should draw attention to an additional
flexibility of the method. If the function to be integrated
is tabulated, it may be possible to choose integration
intervals which restrict the required function evaluation
to points at which the function is tabulated. To arrange
this would require a progression which might differ
from r = l , 2 , 3. . . . The necessary coefficients yp'\
for any progression are given by formulae (A. 11) and
(A. 14) of the Appendix.

Table 3

The numerical results corresponding to Tables 1 and 2
when the third order rule (1.11) is used

1
2
3

/

p

0-
0-
0-

= 0-

DIRECT

323718
317259
316844

316738

NUMBER OF
POINTS

3
5
7

COMBINED

*

0-323718
0-316828
0-316738

: 0-316738

NUMBER OF
POINTS

3
5
9

2. The progressive procedure in n dimensions
To obtain an approximation to the integral of the

function/Cx) =zAxu x2, • • • •*«) o v e r an /j-dimensional
hypercubic domain D of side 2a(|x/| < a; i = 1,2 . . . n),
we first divide the domain into N = f = (a/h)n equal
hypercubic subdomains St of side 2h and centre ft.
(We term r the mesh ratio and h the mesh size.) We
then evaluate the integral by applying an integration
rule (Miller, 1960; Mustard, Lyness and Blatt, 1963)
over each subdomain and calculate

= f fffidxu dx2... dxn

where the m weights Wj and vectors «j are given by the
rule. Summing over the N subdomains gives an
approximation I(r) to the exact integral / as follows:

I = $ f(x)dxu dx2 . . . dxn

= /(r) = (2/0" S S
i j i + (2.1)

We assume in this paper that the function /(3c) is
one for which all partial derivatives of order 2q or less
are continuous within the domain D. (This condition
is probably over-restrictive.) The difference /(/•) — /
may then be expanded in a finite power series in even
inverse powers of the mesh ratio r, with a remainder of
order r"2*. For a symmetrical rule of order It + 1,
this expansion takes the form

9 - 1
R2q{r) (2.2)

where

Zsi=s
C2si, 2s2,...

Thus j32s depends linearly on the integrals over the
domain of partial derivatives of order 2s, the coefficients
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Integration over multidimensional hypercubes

depending on the particular rule. Expressions for these
coefficients are given in a forthcoming paper; there it is
shown that R2q(r) m ^y be expressed in terms of weighted
integrals over the domain of partial derivatives of order
2q, so long as 2q > n. It is easy to verify that, if the
rule used is of order 2t + 1, all of the coefficients
c2su 2*2,... f ° r which 2s, < t are zero, with the resultc2su 2*2,

ft, = 0 s < t.
As the coefficients ft, in (2.2) are independent of r,

the mesh ratio, we may proceed as follows. We may
compute two separate values I(rx) and I(r2) using
distinct mesh ratios rx and r2. Both of these are
approximations to 7 and each satisfies equation (2.2).
We may then eliminate the first non-zero error term
ft/+2 from these equations. This gives us a value J2

which satisfies equation (2.5) below and which forms the
first step in the process.

At the />th stage of this process, we have already
carried out p — 1 distinct numerical integrations with
distinct mesh ratios rx, r2,... rp_x giving results 7(r,)
of the form (2.1). The pth step is to choose another
distinct mesh ratio rp to calculate I(rp) and combine
this result with the previous {p — 1) results to eliminate
P2s(s = / + 1 , . . . t +p — 1). Thus we have the pth
value Jp given by

p

JP =

where

(2.3)

(2.4)

and
p

s
1=1

The coefficients yp0 are defined by (2.4). They are
independent of the integral to be evaluated and of n,
the number of dimensions (which occurs in the definition
°f ft*); they are algebraic functions of the mesh ratios
r~\, r2,. .. rp. Expressions for yp') are given in the
Appendix.

The process may be continued until successive values
Jp-. 1 and Jp differ by less than the required tolerance.

The expansion for Jp in terms of ft, is

V ft/ S y + S y«R2,(r,.). (2.5)
i=l

We see that Jp — I is independent of derivatives of j\x)
of order 2t + 2p — 1 or less. Thus, in view of (2.2), Jp

is a (2/ + 2p — l)th order result. It is, in fact, the
result which would have been obtained using a compli-
cated high order rule. This high order rule assigns
weights Wjyp'j/r? to each of the mr? points required by
the low order rule (2.1) when the mesh ratio is r,. In
this sense, we may consider this process as a generator
of high order integration rules.

To minimize the number of function evaluations we
make our mesh ratios as small as possible by choosing

Table 4

Approximations 7(r) and Jr to
1 1 1 1 1

7 = exp (— xix2x3x4xs) dxxdx2dx3dx4d
0 0 0 0 0

The expression for 7(r) is

.£ i: i £
f*=l k=l 1=1 m = l

2/ - 1 2/ — 1 2k — 1 2/ - 1 2m -

/to = 3 s
r ,=i

-1]
and the values of J, are obtained from (2.3) using the
values of ypr listed in Table 5.

DIRECT COMBINED

/(r)
NUMBER OF

POINTS Jr
NUMBER OF

POINTS*

1
2
3
4
5

0-969233234
0-970160833
0-970422763
0-970522498
0-970570137

1
32
243
1024
3125

0-969233234
0-970470032
0-970652591
0-970657153
0-970657188

1
33
276
1300
4425

7 = 0-970657191 = 0-970657191

the progression r, = /. Investigations of other pro-
gressions are incomplete, but tend to indicate that, while
greater accuracy may be obtained, this is at the expense
of an increase in the number of function evaluations.
The optimum progression and the related question of
the choice of integration rule are discussed in a forth-
coming publication.

3. A numerical example in 5 dimensions

To illustrate the procedure, we chose the same example
as that used by Haselgrove (1961), namely the five-
dimensional integral

. 1 , 1 , 1

JJTJW'-
Jn Jt\ J n J n Jn
urn
Jo Jo Jo Jo Jo

(3.1)

and evaluated it using the simplest first order rule, the
centre rule, and the mesh ratio progression r, = 1.

The necessary calculations were carried out on the
UTECOM (Deuce) computer of the University of New
South Wales. The function was calculated to nine
decimals and the summation was carried out using
double-length addition to reduce the accumulation of
round-off errors. In calculating the combined results
by (2.3), nine decimal figures were retained. A suitable
constant was subtracted from the /(/•) before combina-
tion. This procedure was found to give results reliable
to at least eight decimal places.

The values of I(r) and Jr for r = 1 . . . 5 are given in

* The small number of points common to certain meshes has
not been deducted.
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Integration over multidimensional hypercubes

Table 4 \.ith the corresponding numbers of function
evaluations.

The values of / , and the number of points at which
function {/evaluation was necessary may be compared
with Tatjle 3, p. 336 of Haselgrove (1961). There it is
found that the unmodified Monte Carlo method gives a
result accurate to four decimal places after 12,000 points.
Haselgrove obtains results accurate to four decimal places
using 4,000 points, and six decimal places using 12,000
points. The convergence of Jr in Table 4 above is
faster than this, yielding six decimal places in 1,300 points,
and eight decimal places after 4,425 points.

The integrand in (3.1) is a smooth well-behaved
function. In general this may not be the case. The
efficiency of this progressive procedure is strongly
dependent on the behaviour of the function and its
derivatives.

If the function itself contains a singularity, this method
is not valid unless the form of the singularity is known
and it is in some way "factored out".

A near singularity is characterized by large derivatives
and large values of j82p; in this case the progression
J2, J3 . .. should converge only in an unsystematic
manner, and this should indicate how far the results
may be taken seriously. It is still possible to be seriously
misled. An example is the integrand

fCx) = g(x) + h(x) cos {6 0 n xt}

with the domain of integration \x,\ < 1.
The centre rule would evaluate this function at points

where cos 60 IT xt is unity for mesh ratios r = 1,2, 3,4, 5
and 6. Thus the values of / would approach the integral
of g(JC) + h(~x) until we chose a higher mesh ratio.
In this case the existence of a regular pattern of what
may be termed equal and opposite near singularities
leads to deceptive indications about the value of the
numerical results.

Finally, if the function has any discontinuous deriva-
tives of order 2p' or 2p' — 1, this progressive procedure
ceases to be powerful when the number of steps p
exceeds p'. This is because the term f$2p contains the
integral of these derivatives and so ^2P'+2 does not exist.
Thus we are eliminating non-existent terms to obtain
Jp'+i and there is no reason to suppose that Jp'+\ is a
very marked improvement of Jp. However, since the
progressive procedure may be regarded as the generator
of an integration rule, the procedure does not break
down. In general a result based on a larger number of
function evaluations is likely to be better. The effect of
non-continuous derivatives is to alter the rate of con-
vergence, which should be fast until Jp- is reached and
slow thereafter.

In spite of the possibility of being misled, we recom-
mend the use of this progressive procedure until it
appears to have converged. Detailed expressions for
both an error bound and an error estimate will be
presented in a forthcoming publication. However, these
expressions are of little practical utility, except when
used to compare different integration procedures.

Table 5

The numerical values of ypi for a first-order integration
rule and mesh ratio progression i = 1, 2 , . . . p.

p

1

2

3

4

5

6

7

8

9

10

i

I

D

1
2

D

1
2
3

D

1
2
3
4

D

1
2
3
4
5

D

1
2
3
4
5
6

D

1
2
3
4
5
6
7

D

1
2
3
4

6
7
8

D

1
2
3
4
5
6
7
8
9

D

1
2
3
4
5
6
7
8
9
10

D

NUMERATOR/DENOMINATOR

+ 1

1

1
+ 4

3

+ 5
- 128
+ 243

120
"j

+ 896
6561

+ 8192

2520

+ 42
- 24576
+ 5 31441
- 20 97152
+ 19 53125

3 62880

66
+ 1 68960

97 43085
+ 922 74688
- 2441 40625
+ 1813 98528

199 58400

+ 429
46 85824

+ 6839 64567
1 39586 43712

+ 7 93457 03125
15 67283 28192
9 68890 10407

62270 20800

715
+ 328 00768
- 1 17517 54833
+ 48 85525 29920
- 534 05761 71875
+ 2115 83243 05920

3323 29305 69601
+ 1759 21860 44416

65 38371 84000

+ 4862
9269 41184

+ 79 91193 28644
- 6542 09418 52672
+ 1 29699 70703 12500
- 9 20810 27379 36384
+ 27 68303 11644 77633

36 02879 70189 6396»
+ 16 67718 16996 66569

35568 74280 96000

8398
+ 66044 55936

1351 47763 38276
+ 2 13085 35346 29888

73 92883 30078 12500
+ 885 70438 21052 55936
- 4548 15917 89638 84057
+ 10952 75429 37650 46272
- 12157 66545 90569 28801
+ 5000 00000 00000 00000

60 82255 02044 16000

VALUE

+ 1- 00000 00000 00

- 0- 33333 33333 33
+ 1• 33333 33333 33

+ 0- 04166 66666 67
- I • 06666 66666 67
+ 2- 02500 00000 00

- 0- 00277 77777 78
+ 0- 35555 55555 56*
- 2- 60357 14285 71
+ 3- 25079 36507 94

+ 0- 00011 57407 41
- 0- 06772 48677 25
+ 1- 46450 89285 71
- 5- 77918 87125 22
+ 5- 38228 89109 35

- 0- OOOOO 33068 78
+ 0- 00846 56084 66*
- 0- 48816 96428 57
+ 4- 62335 09700 18
- 12- 23247 47975 79
+ 9- 08883 11688 31

+ 0- 00000 00688 93
- 0- 00075 24985 30
+ 0- 10983 81696 43
- 2- 24162 47127 36
+ 12- 74216 12474 78
- 25- 16907 09290 71
+ 15- 55944 86543 23

- 0- 00000 00010 94
+ 0- 00005 01665 69
- 0- 01797 35186 69
+ 0- 74720 82375 79
- 8- 16805 20817 17
+ 32- 36023 40516 63
- 50- 82753 22707 88
+ 26- 90606 54164 57

+ 0- 00000 00000 14
- 0- 00000 26060 56
+ 0- 00224 66898 34
- 0- 18392 81815 58
+ 3- 64645 18221 95
- 25- 88818 72413 30
+ 77- 82965 87896 44
- 101• 29342 27443 09
+ 46- 88718 34715 66

- 0- 00000 00000 00
+ 0- 00000 01085 86
- 0- 00022 22000 93
+ 0- 03503 39393 44
- 1- 21548 39407 32
+ 14- 56210 53232 48
- 74- 77751 53076 97
+ 180- 07719 59898 82
- 199- 88746 63787 81
+ 82- 20635 24662 43

Yju may be expressed as a fraction Np,IDp; the values of N and D are given,
together with the decimal value rounded to twelve places of decimals.

* This number should be reduced by 1 in the final decimal places if it is required
to arrange yp, so that

2 fp, = I -00000 00000 00
s l
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Appendix
The coefficients Y$

The coefl." ients y$ defined by (2.4) are algebraic
functions of the p distinct mesh ratios rlt r2, . . . rp.
For convenience, we substitute

(A.1)

u x2,.. • xn) is the sum of the homogeneous
products of order s of or,, x2,... xn. Thus

and equation (2.4) may be written
p

2 y(/) = 1

Fj,'\Xl, x2,... xn) = (A.8)

= 0 s = t + l,...p + t - l ( A . 2 )

and we define the coefficient occurring in expansion (2.5)

The equations (A.2) are usually unsuitable for accurate
calculation of yp'\ by direct numerical solution of the p
linear equations, as these equations are likely to be ill-
conditioned. We list here expressions suitable for their
numerical evaluation. We do not give the derivation
in detail, but we indicate the method by listing the
algebraic results used. These results are derived in
Milne-Thompson (1933), and are as follows.

A partial-fraction theorem states that, if Jtj, x2,... xd
are distinct and g(x) is a polynomial of positive degree
d — 2 or less, then

d

Y. d
 8 =0. (A.4)

f=i n(x, - xr)
The extension of the Van der Monde determinant

1 1..
x2.

.1
• xn

n—2 Xn
- 2

(A.5)

where xt,x2t... xn are distinct and s is a non-negative
integer has the following factorization:

1> -*2, . . . Xn) — A^X), X2, . . . X^r^ \X\, X2,. . .Xn)

(A.6)

:j - x,). (A.7)

where

where the summation is extended to all positive integers,
including zero, which satisfy the relation

+S2 + ... +Sn = S. (A.9)

In the notation of Milne-Thompson, F!fXxt, x2,... xn)
is the divided difference [xt x2 ... xn] of the function x*.
This function has the expansion

**,...*„) = (-!)-»
=i U{x,~xr)

-. (A. 10)

Using these relationships, we may obtain expressions
for the first order coefficients; these are

(A.11)

p

i-1
2,... xp)

and we find that (— \)p~lEf? is bounded and monotonic
increasing in s, bounded by

(A.13)
where Xt is the maximum of the positive numbers
X\, X2 . . . Xp.

The corresponding quantities for higher order coeffi-
cients (t > 0) are given in terms of those for t = 0 by

The values of ŷ > for the sequence

that is, for the mesh ratio sequence r, = i are

2/>
(2p)lK>-tpJ'

(A.16)
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These coefficients are of widely different magnitudes.
The largest value of \yps\ for a fixed p occurs near
s = s0, where

where

* . —

We introduce coefficients LSp useful for discussing
the convergence of the iteration process. We may write

p
= V (A. 18)

The values of yW for this mesh ratio sequence may be
easily obtained using (A. 14), and the value of LSp is

given by

Up — £ - ^ 4 = Lf>{F$\l, 4, 9 , . . . p2)}~1. (A.20)

We should like to acknowledge helpful discussions
with Professor J. M. Blatt and Dr. L. M. Delves.

Book Reviews (continued from p. 263)
state of progress in U.K. as compared with U.S.A., and it is
perhaps sad that, since in the preface to Vol. 2 the editor
wrote that Vol. 1 reflects the backward state of automatic
programming methods in U.K., we do not seem to have
progressed very much further forward.

The paper on RAPIDWRITE describes a worthwhile
effort, although it does not present any new information,
and most of those who are interested may wish to seek
elsewhere for their description The language SEAL comes
back for a follow-up from Vol. 2 but one still feels that it is
somewhat out in the cold. The problem which yet remains to
be solved is to what extent commercial users dare depart
from COBOL, and also to what extent a language unique to
cne machine can be allowed to propagate a growth of pro-
grams which are not interchangeable.

This volume has maintained the standard of its predecessor,
also with an increase in price, but the timing of the next
volume and the selection of papers still merit all the editor's
skill if the publication is to remain fresh. B. RICHARDS

Proceedings of a Harvard Symposium on Digital Computers
and Their Applications. Edited by A. G. OETTINGER,
1962; 332 pages. (London: Oxford University Press,
120s. Cambridge, Mass. Harvard University Press)

The Proceedings of the first two Harvard Symposia on
digital computers occupy respected places in the libraries of
computing laboratories, and this volume, the Proceedings of
a Symposium held in April, 196t, may be expected to gain
similar acceptance. This Symposium was, however, quite
different from the others. Previously the design and hard-
ware aspects of computers had occupied substantial time and
so, too, had reports of problems in Numerical Analysis and
applications to the physical sciences. This time much
greater emphasis has been placed upon the application of
computers to the social sciences, and much less upon original
contributions in the areas of interest of the first workers on
automatic computers. The second difference was in the
composition of the Symposium: the others were attended by
hundreds of participants from all over the world; 47 people
met informally on this occasion and all but a handful of
these were Faculty members of Harvard itself. Accordingly,
this must have been a l.iuch more domestic affair than the
earlier ones, and inevitably has sacrificed something of the
authority of the earlier Symposia. The variety of topics is so
great that it is unlikely that many of such a small gathering
fully understood all the papers, or even that many would do
so for any particular paper; the reviewer is certainly in no

better position than those attending and he, therefore,
cannot comment on all the papers.

Several of the contributions were surveys of possible and
actual computer applications in special fields. These papers
will be full of interest to someone outside such fields, and yet
give valuable guidance and will be a source of useful references
for those workers thinking of applying computers to similar
problems. The papers on computers in Educational Research,
Public Health, X-Ray Crystallography, Medicine, Statistics,
Economics, Psychological Research and Business Admini-
stration were of this type. Some of the problems mentioned
required the application of known techniques—for example,
statistical ones—but have awaited the simultaneous occurrence
of the right equipment and the right investigator. Other
problems posed are those of what E. B. Newman calls
paracomputation—non-computational uses of computers.
If a criticism is to be levelled here it is that much of what is
written is too imprecise to tell a reader how he should proceed
on his own machine. Simulation is featured in several papers;
one on Queueing Theory and Reservoir Design gives numeri-
cal examples of the calculations performed.

There are several papers which show the sorts of differential
equations which arise in physical problems, and the numerical
methods available for their solution. Examples are given
from hydrodynamics, plasma dynamics, kinetics and
molecular-beam theory.

Two of the longest papers in the volume deal with docu-
ment content, one in the context of information retrieval,
and the other, by Mosteller and Wallace, about the problem
of disputed authorship. The latter work received considera-
ble publicity in the American press because of the great
public interest in all matters pertaining to the Constitution.
The problem was to determine which of Alexander Hamilton
and James Madison wrote certain papers urging the ratifica-
tion of the Constitution. Even to an Englishman this paper
contains a fascinating account of the work by two eminent
statisticians to clarify the obscurity of history. They describe
the early work, how one of them thought it easy but long,
how wives and others counted, how checks were necessary,
how first ideas failed to give any indications to the answer,
and how finally computer counts yielded data to which their
statistical methods might be applied and so point to a con-
clusive answer.

The editor, who has himself contributed a paper with the
intriguing title: "The Geometry of Symbols", is to be con-
gratulated on disciplining his colleagues to such an extent
that their accounts only rarely seem to become incompre-
hensible—a considerable achievement when dealing with
material of such interesting diversity. E. S. PAGE
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