
An application of the Monte Carlo method to the evaluation
of some molecular integrals

By D. R. Cowdrey and C. M. Reeves

The Monte Carlo method is reviewed and applied to the evaluation of a class of molecular integrals
for which no closed method is available. Three algorithms are developed in attempts to reduce
the sample variances. Extensions on more powerful computing machinery could provide viable
means of evaluation of the large numbers of integrals that arise in quantum-mechanical studies
of molecular structure.

1. Introduction

The Monte Carlo method has been described as a method
of last resort in that it is often necessary to employ very
large sample sizes in order to obtain the desired accuracy.
Calculations can thus be time consuming and the results
correspondingly expensive. Where applicable, the
standard methods of numerical analysis are usually
preferred.

The values of very large numbers of integrals are
needed in any attempt to make quantum-mechanical
predictions of molecular structure. The absence of;
reliable methods of evaluation has been an obstacle for
thirty years since the foundations of the quantum theory.
No closed formulae have been found for large classes of
these integrals, and although the introduction of auto-
matic computers has greatly facilitated the development
of methods of approximation, there is still a need for
further work in this field. It is therefore appropriate to
investigate the use of the Monte Carlo method in the
evaluation of these so-called molecular integrals.

In Section 2 we define the integrals of interest.
Section 3 reviews the principles of the Monte Carlo
method in the context of evaluation of definite integrals.
The following three sections describe algorithms for the
evaluation of the simplest class of three-centre potential
integrals. These are arranged in order of increasing
complexity and arise from attempts to reduce the
variance of the estimated integral values. The methods
are compared in Section 7 in the light of the results
obtained for a variety of typical integrals. The exten-
sions necessary to cater for other classes of integral are
indicated in Section 8, and a parallel organization of the
computation is proposed whereby the calculation of a
group of related integrals could be performed with little
more working than would be required for one. Develop-
ment of these ideas on more powerful computing
equipment than the Ferranti Pegasus which was available
to us could thus compensate for the inherent slowness
of the Monte Carlo method in the evaluation of the full
set of integials required for a molecular structure
investigation.

2. Molecular integrals
In this section we define the various classes of integral

which arise in the course of calculating an electronic
wavefunction of a molecule or radical. All properties

of a physical system can in principle be predicted from
a knowledge of its wavefunction. For some properties,
such as the electric dipole moment, it is necessary to
evaluate additional classes of integral. A concise
description of the different aspects of a molecular
structure calculation has been given by Boys and Cook
(1960). Our purpose in this section is merely to indicate
the extent and nature of the integral problem.

The region of integration is in each case the whole of
physical space. The variables of integration are the
positional co-ordinates of volume elements dV in this
space. The integrands are compounded of two types of
quantity; orbitals and operators. An orbital is a
differentiable function of position, say rj(r), where r is
the position vector of the volume element dV. The
orbitals ij,-(r), 1 < i < N, for a calculation in a basis of
N orbitals are drawn from a complete system of func-
tions, thus ensuring that as ^increases, predictions of
properties converge to their correct values. Operators
are of several types, those necessary in the calculation
of a wavefunction being as follows.

1

1

r.

(a) Single-particle operators:
(i) the identity
(ii) kinetic energy

(iii) Coulomb potential

(b) Two-particle operator:

(iv) electrostatic interaction —

d 2 7>2 t)2

where V2 = — + —- + __ is the Laplacian operator,
ox2 oy2 oz2

rc=\r — C\ denotes the distance of the volume element
dV at position r from an atomic nucleus at position C,
and rl2 = |rt — r2\ denotes the distance between the
volume elements dVx and dV2 at positions rt and r2.

The relevant molecular integrals may now be defined
as follows.

= \
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Molecular integrals

and

= \ v

= \\ vKr,)r]j{r2)—-nk{rl)r)l{r2)dVldV2,
r12

where T;* denotes the complex conjugate of 77.
Physical significance can be attached to the various

individual integrals only in certain special cases. The
orbital functions -q, then have the interpretation that
r)*(r)ri,(r)dV is proportional to the probability that an
electron is within the volume element dV at r. We
speak of an electron being in an orbital just as, classically,
we might say that it is in a particular orbit in the
attracting field of the nuclei. An integral such as
(ij,|r|i7;) then corresponds to the mean kinetic energy
of an electron in the orbital 77,-. It must be emphasized
that this is an over-simplified picture. There is, for
example, no classical counterpart of the interactions
such as (j)i\T\i}j), when / # / In the sequel, this
probabilistic description should not be confused with
the probabilistic element in the use of the Monte Carlo
method for evaluation of the integrals.

Clearly, in the evaluation of the integrals, everything
depends upon the form of the orbitals. This should
ideally be both physically realistic to ensure rapid con-
vergence, and tractable to mathematical analysis.
Unhappily, these requirements seem to be largely
incompatible. The compromise with which we shall be
concerned is the set of so-called Slater orbitals (Slater,
1933). These are of the general form

V(') = Slm(9, $)fAe-«'\

where (rA, 0, <f>) are spherical polar co-ordinates relative
to an atomic nucleus at position A as origin, Slm,(8, <j>)
is a spherical harmonic, n a non-negative integer, and a
a positive so-called screening parameter. This form is
based upon the analytical solutions for the wavefunctions
of the Hydrogen atom, and is quite realistic physically
for general systems. Some of the the integrals can be
evaluated from simple formulae, but for others no closed
formulae have been reported. In particular, the evalua-
tion of the three- and four-centre integrals has only been
possible by approximate methods.

The present investigation has been confined to the
simplest class of three-centre integrals, namely

J'
where A, B and C are three general positions. We shall
return in the final section to comment upon the possible
extention of the Monte Carlo method to the remaining
integrals.

3. The Monte Carlo method
The concept of a probability density is basic to the

Monte Carlo method. Thus let x be a random variable
such that P(a, b) is the probability that a random value

of x lies in the range a < x < b. Then, on the assump-
tion that x is continuous, the probability density p(x) of
its distribution may be defined as

/>(*) = Lim ±P(x,x + 8x).
&c>0 OX

Thus, for small 8x, p(x)8x is the probability that a
random value of x lies in the range 8x at x.

The application of the Monte Carlo method to the
evaluation of definite integrals rests upon two theorems
in statistics (Kahn, 1960). The first establishes the
method to be used for estimating the value of the
integral.

Theorem 1. The Strong Law of Large Numbers
Let xh 1 < i < n, be independent random numbers

drawn from a distribution with probability density p{x).
Suppose that

r°°z = z{x)p(x)dx
J—CO

exists and define

= ;•£

Then as n -*• 00, "zn -> z with probability 1.

In order, therefore, to evaluate an integral such as

\bAx)dx,

we first express the integrand as the product of a function
z{x) and a density p(x), satisfying

p(x) = 0
p(x) > 0

for x < a or x > b
for a < x < b

and \P(x)dx == 1.

We then generate random numbers xt from the distri-
bution with probability density p(x) and accept

1 "
- S

as an estimate of the integral for some suitable n.
The second theorem establishes the likely error in

this procedure. We first define, in the notation of
Theorem 1, the variance of z(x), denoted by a2. Thus

a* = f[z(x) - zYp{x)dx
J _ o o

whence it is easily shown that

a2 = [z{x) - zf = (z*) - (z)\

The positive square root a of the variance is termed the
standard deviation of z{x). ~ is termed the mean or the
expected value of z{x).
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Theorem 2. The Central Limit Theorem
Let xh 1 < i < n, be random values drawn respec-

tively from distributions with means mt and variances
of. Then the distribution of the sum

X =

is asymptotically normal with mean

m = S »»,

z(x). Since, however, it is strictly speaking the cost of
the calculation that is to be minimized rather than the
sample size, it may on occasions be economic to accept
a resolution which gives a rather larger standard devia-
tion if thereby the task of generating a random value
from the density p(x) and subsequent evaluation of z(x)
is eased significantly. We are thus led to consider
briefly, in the remainder of this section, techniques for
the generation of random samples from different proba-
bility distributions, and for the reduction of sample
variances.

and variance a2 = S of.

CoroZ/ary

In the special case that all the x, come from a common
distribution with mean m and standard deviation a,
their average value

* = - £ * !
is asymptotically distributed normally with the same
mean m and standard deviation a/-\/n.

The normal distribution is well known and has
probability density

p(x) = exp ( - , - oo oo

where m and a are the mean and standard deviation of x.
The required error estimate follows. For sufficiently

large n we have

Prob [\zn - 1\ exp
_

Writing e = A(CT/\/«), we have more conveniently

Prob [|in -z\> A(a/V«)] = ( ? ) J e-^dt.

In particular, for A = 3,

Prob [\za -z\> 3a/V«] = 0-0027,

so that for all practical purposes we may write

\zn — z\

as'our estimate of the error in acceptine zn as an estimate
ofz.

This dependence of the error bound upon the sample
size n is both the strength and weakness of the Monte
Carlo method. On the one hand convergence of the
result to the correct value is assured as n increases, and
yet on the other hand the accuracy only increases as the
square root of the sample size. In practice it is there-
fore important that the resolution of the integrand J\x)
into the product z(x)p(x) should lead to as small a value
as possible for the standard deviation a of the factor

3.1 The generation of random numbers

This topic has been well covered by a number of
authors. Economic considerations dictate the use on
an electronic digital computer of pseudo-random numbers
generated internally as required by means of determinate
recurrence relations. It is worth-while repeating Taussky
and Todd's quotation (Meyer, 1956) of D. H. Lehmer's
definition of a pseudo-random sequence as "a vague
notion embodying the idea of a sequence in which each
term is unpredictable to the uninitiated and whose digits
pass a certain number of tests, traditional with statis-
ticians, and depending somewhat upon the uses to which
the sequence is to be put".

Commonly, pseudo-random numbers are generated
from the so-called standard uniform distribution having
density p(x) = 1, 0 < x < 1. The multiplicative con-
gruential method seems the most satisfactory, having a
precisely determined cycle structure with a long period.
(Edmonds, 1960; Barnett, 1962). In the remainder of
this paper we shall denote by a a pseudo-random
number drawn from the standard uniform distribution.

By suitably manipulating samples from the standard
uniform distribution it is possible to generate random
numbers drawn from any other desired distribution.
Reviews of methods are given by Butler (Meyer, 1956)
and by Votaw and Rafferty (1951). Particularly powerful
are the various rejection techniques in which the applica-
tion of logical criteria to a set {«,} largely replaces arith-
metical manipulation in forming the required random
variables. By this means a high operating speed is
attained, since in computers logical operations are
generally very fast in comparison with arithmetic
operations. As an example we give the following
ALGOL procedure declaration.

real procedure sample root;
begin comment At each activation "sample root" is

assigned a random value drawn from the distribution
with density fV*> 0 < x < 1. It is assumed that
a function designator "sud" is available which is
assigned similarly a random value drawn from the
standard uniform distribution. Two values are
generated by means of "sud". If the first is greater
than the square of the second, the first is accepted
as the value for "sample root" otherwise the pair
are rejected and afresh start made;
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real u;
reject: u : = sud;

if u < $M</2 then go to re/ecf;
accept: sample root : = u

end sample root;

We give below a further procedure declaration which
is required in subsequent sections in connection with the
algorithms for the molecular integrals.

real procedure sample exp;
begin comment This function designator assumes a

random value drawn from the distribution with
density e~x, 0 < x < oo. A random sequence ut
is formed such that n is the least value for which
w, + u7 + . . . + un > u0. The whole sequence is
rejected and a fresh start made if n is even, other-
wise t + u0 is accepted as the required random
number where t is the number of rejected sequences.
A proof of the method is given in the papers by
Butler, and by Votaw and Rqfferty quoted above;

real S, u; integer t; Boolean even;
for t : = 0, t + 1 while even do

begin even : = false;
S : = u : = sud;
u :—u + t;
for S : = 5 — sud while S > 0 do

even : = not even

end

end;
sample exp : = u
sample exp;

3.2 Variance reduction
We have seen that the choice of sampling technique

must be such that the variance is as low as possible in
order to obtain an efficient procedure. Kahn (1956,
1960) gives a full discussion of this problem. Two con-
clusions that are particularly relevant in the procedures
that we have employed are first that one should pursue
analytical methods as far as is feasible. Thus, where it
is possible to integrate out certain variables, this should
be done. Any symmetry present in the problem should
be exploited to reduce the region of integration.
Secondly, it is shown that in the factorization
f{x) = z(x)p(x), the choice of density p(x) should leave
the factor z{x) as uniform as possible. It has been
shown that the variance is minimized by the choice

I/I
~~ rb

[\f\dx
/r*When/(;c) is non-negative this gives p{x) =f(x)\f(x)dx

and the estimate has in fact zero variance. This is not
surprising since the determination of the optimum
density presupposes a knowledge of the value of the
integral.

In practice, therefore, one seeks to make the sampling
density reflect the main characteristics of the integrand.
In particular, any singularities of the integrand must be
absorbed into the density rather than left in the quantity
z(x) which is to be averaged.

4. A single centre density function
This first algorithm is relatively crude. Our primary

aim was to cater adequately for the singularity of the
Coulomb potential in the integral

/ = f
Let (rc, 0, <j>) denote spherical polar co-ordinates

centred on C. The volume element is then

dV=r* sin 9drcd6d<f>.

The original integrand is symmetric about the plane of
A, B, C and so by choosing the axis 0 = 0 normal to
this plane the integral may be written

J
.to prc/2 f2n

drc | d9 d<f>e-^-&rsrc sin 6.
0 J0 J0

We chose a sampling scheme in which values of rc, 9
and <f> were drawn independently from the following
distributions.

For rc, density p(rc) = 0 < rc < oo.

For 9 , density p(0) = - , 0 < 6 < \

For $, density p(<f>) = ^ , 0 < ^ < 2TT.

Here A is a free parameter, A > 0, whose value was to
be determined by trial and error.

Writing

z = -yrc sin 6 exp (Arc — arA — j3rfl),

we thus obtain

as an estimate of the integral. For the error analysis,
we have no accurate theoretical value for the variance,
but accept as an order-of-magnitude estimate, the value

Thus the sampling procedure is used to accumulate
simultaneously Monte Carlo estimates of both the
integral and the variance.

The program is conveniently described in ALGOL,
making use of a self-evident notation for input and
output procedures, and incorporating the procedures
"sud" and "sample exp" previously introduced.
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begin comment This block estimates the integral I and
standard deviation a from a sample of a size n
which is preset. From this the sample size necessary
for a required accuracy can be determined. For
our exploratory calculations this is a more appro-
priate organization than permitting the calculation
to continue until it estimates that it has achieved a
desired accuracy;
real A, Ax, Ay, Bx, By, <x, fi, S, SS, rA, rB, rC, 6, <f>,

X, Y, Z, term, I, a;
integer n, i;
set(X,n);
read (Ax, Ay, Bx, By, a, £); comment The

co-ordinates are given relative to a pair of
rectangular axes in the plane ABC with C as
origin;

for i : = 1 step 1 until n do
begin rC : = sample expjX;

6 : = (TT/2)* sud; comment We use * to
denote multiplication and assume
IT to be a non-local variable with
value 3 - 1 4 1 5 9 . . . ;

<i> : = (2*-rr)*sud;
= rC* sin (6)* cos ($);

rA

rB

term

= rC*cos(6);
= sqrt ( (X - Ax)2 + (Y - Ay)2 +

)>
= sqrt ( (X - Bx)2 + (Y - By)2 +

Z2)
= rC* sin (0) * exp

Z2);

=S + term;
= SS + term2

) p
(X*rC - <x.*rA - p*rB);

SS

end;
/:=(2*772/A)*S/«;
<J : = (2*7T2/X)*sqrt(SSIn - (S\n)2);
print (/, CT)

end;
We defer all discussion of the results obtained from

the three algorithms until each has been described.

5. A two-centre density function
In this second algorithm we tried both to represent

the Coulomb singularity in the sampling distribution
and to give a more realistic coverage of the behaviour
of the orbitals when C was well removed from A and B.
We were attracted to two-centre and elliptic co-ordinates
because the relevant analysis leading to the form of the
volume element is well known.

We denote by E the point with position vector

E =

Thus E divides AB in the ratio a : /3. We assume that
E and C do not coincide and take E and C as the foci

of an elliptic co-ordinate system. Thus a general point
P has co-ordinates ($, 17, <f>) where £ + rE -\- rc,
r) = rE ~ rc and <f> is the angle between the plane ECP
and some fixed plane through EC, say ABC. The
volume element is then

SEC

where EC < £ < oo, — EC <
and the integral is written

< £Cand 0 < <f> < 2-n,

1 r°° rE<" r2n

= I d£ \drj | d(f>(£
4EC Jpc J-EC Jo

At large distances e - ^ - ^ a n d e-<*+rj"-* are roughly
comparable, and are indeed equal on the exterior seg-
ments of the line AB produced. It is therefore indicated
that we should incorporate e~^E into the sampling
density where /x = a + /3 is a likely choice.

For our sampling scheme then, we drew values of
g, 7], <f> independently from distributions with densities
as follows.

EC 0 0

= IJA cosech (LiEC\e- ^ , — EC < TJ < EC

p(4>) = =!-, 0 < $

As before, after n cycles,

1,

and

where now

z=lUl- +

In order to implement this scheme, it is necessary to
convert from the elliptic co-ordinate system (£, -q, <f>)
back into the rectangular Cartesians which were used
initially to specify A, B and C. For this it is convenient
to define an auxiliary set of right-handed orthogonal unit
vectors eu e2, e3. Thus, let N be the foot of the perpen-
dicular from P on to EC, so that

EN = ( r | + EC2 - r c) /2£C

and PN=(r%- EN2)1'2.

We now assume that A, B and C are linearly independent
and define

and

«, = (C - E)IEC
e2 = (K2)- ' / 2K where V = e3 X (A - B)
<?, = e2 x ey
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It now follows readily that

P = E + PN cos <f> et + PN sin <f> e2 + EN e3.

The ALGOL description of the program follows.

begin comment This second algorithm has the same
general specification as the first;

procedure sample trig {sine, cosine);
real sine, cosine;
begin comment It has been stated that the angular

co-ordinates <f> are drawn from the density

—, 0 < <f> < 2TT and it will be noted that
2TT

these values appear in the algorithm only as
arguments of sin and cos in the expression
for P. This present procedure achieves this
effect without explicit calculation of trigono-
metric functions. Thus if t = tan \<f>, where
0 < <f> < 77/2 then t has probability density

cos <j> =
(I

. The remaining three quad-
~.

rants for <f> are catered for by attaching
random independent signs to sine and cosine;
real t, D;

reject : t : = sud; D := I + t2;
if sud > l/£> then go to reject;

accept: sine : = (if sud> 0 -5 then 1 else — 1)
*2*t/D; cosine : = (if sud> 0 -5 then 1
else - 1) * (1 - t2)/D

end sample trig;

procedure vector product (U, V, P);
array U, V, P;
begin comment The vector product U X V

is assigned to P;
Pl :=U2*V3-U3*V2;
P2 : = U3 3 ,

P3:=Ul*V2-U2*Vl

end vector product;

real ft, at, /?, EC, k, S, SS, £, rj, sin <j>, cos <f>,
rE, rC, EN, PN, rA, rB, term, I, a;

integer n, p, i;
real array A, B, C, E, el, e2, e3, Wl, W2,

P [1 : 3]; set (fi, n);
read vectors (A, B, C); read (a, ]8);

for p := 1, 2, 3 do
Ep:= (a* Ap+P*Bp)/(oc +£) ;

EC := sqrt ( (C, - £,)2 + (C2 - E2)
2 +

(C3 - E3)
2);

ftrp := 1,2, 3 do
begin e3p := (CP—EP)/EC;

Wlp := Ap - Bp

end;

vector product (e3, W\, W2);
k : = sqrt (W2X

Z + W22
2 + W23

2);
for/? : = 1,2, 3dop2 p : = W2p\k;
vector product (e2, e3, el);

for / : = 1 step 1 until n do
begin $ := sample exp * 2/fi + EC;

reject: 17 := sample exp * 2//x — EC;
if 17 > EC then go to reject;
sample trig (sin <f>, cos </>); comment

sin <j> and cos <f> are identifiers
not procedure calls with argu-
ment <f>;

rE
rC

EN
PN

= (rE2 + EC2 - rC2)l(2 * EC);
= sqrt (rE2- EN2);

for/? := 1,2, 3 do

rA := sqrt

rB := sqrt

term := (£ +

p + / elp +
PN * sin <f>*e2p+EN* e3p;

Ax)
2 ( )

end;

p

(P2 - A2)
2

+ (P3 - A,)2);
- Bx)

2 + (P2 - B2)
2

+ (P3 - B3)
2);

) * exp (fi*rE — a.*rA —
p*rB);

S := S + term;
SS :=SS + term2

end;
k := (2*7rl(li

2*EC))*(\. - exp(-
I := k*S/n;
a := k*sqrt(SS/n - (S/n)2);
print (I, a)

6. A three-centre density function
This third algorithm is a logical extension of the ideas

contained in the other two. We suppose that A, B and
C are distinct and not collinear, and we formulate the
integral in terms of the three distances rA, rB, rc as a
co-ordinate system. We first establish the appropriate
ranges for the co-ordinate values, then derive an
expression for the element of volume, and finally develop
the algorithm.

6.1 The range of co-ordinate values

Every position P determines a unique set (rA, rB, rc).
The converse situation is more complex. Some sets of
values do not determine a position at all, and each valid
set determines a pair of points P which are mirror images
in the plane ABC. From consideration of the triangle
PAB we may take

0 < rA < 00

\rA - AB\< rB< rA AB

and it remains to consider the consequent permitted
range of rC- The set of points having a given rA and rB
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lie on a circle with centre 0 on AB and in a plane
normal to AB. The positions of maximum and minimum
rc are the intersections U and L respectively of this
circle with the plane ABC.

Let N be the foot of the perpendicular from C on to
AB. We use

AN = (AB2 + CA2 - BC2)/2AB
CN = (CA2 - AN2)1'2

A0 = (AB2 + 1*,- r\)\2AB
and UO = LO = (T2A- AO2)1'2

to obtain UC = [(AN - AO)2 + (CN + C/O)2]1'2

and LC = [(AN - AO)2 + (CN - LO)2]1'2,
where LC < rc < UC.

6.2 The element of volume

Let (x, j>, z) be the rectangular Cartesian co-ordinates
of the general point P in some frame. Denote the
position vectors of A, B, C and P relative to the origin
of this frame by A, B, C and r. We require the Jacobian

l(x,y,z)

for then

dV =

Now

and

so that

HrAi r
B> rc)

~h(x , y , z )

• dy dz =

, rB , rc1

.x,y,z.
HrA,rB,rc)

7>(x,y,z) (1(rA,rB,rc)

drA drB drc.

. ra, rc)\
,y,z)J^rA,rB,rc)

VrA = (r - A)/rA, etc.

1 x — Ax x — Bx x — Cx

y - Ay y-By y - Cy

z — Az z — B2 z — C2

= D/rArBrc, say.

Now, by multiplying the matrix of which D is the
determinant on the left by its transpose, and by taking
the determinant of the product, we obtain

D2 =
(r-A)2 (r-B).(r-A) (r-C).(r-A)

(r-A).(r-B) (r-C).(r-B)
(r-C)2(r-A).(r-C) (r-l

We now use (r — A)2 = r2^

and (r - A).(r - B) = i(r2
A + r\ - AB2), etc.,

and, after writing

and

. d, r\ = A, n, v

BC1, CA2, AB2 = 1, m, n, respectively,
we obtain after some algebraic manipulation of an
elementary though tedious kind

dV = 2r Ar BrcK dr

where
K = {(XI + /iv)(- l + m +n)+ (/iffi + vX)(l - m + ri)
+ {yn + A^)(/ + m - ri) - M2 - my2 - nv2 - Imn}1'2.

6.3 The algorithm
In order to work with co-ordinates which were less

interdependent than rA and rB, we transformed to £ and
7), where $ = rA + rB and 17 = rA — rB. We then have

AB < £ < oo and — AB < TJ < AB.

The differential elements are related by

drAdrB =

Considering the integral

/=J« rc

we obtain / = — exp (

whence, making use of the symmetry about the plane
ABC,

poo rAB rUC

7 = 2 e-'-rW e-^i-Vr, drcrArBK.
JAB J-AB JLC

We chose to sample £, 17 and rc from distributions
with probability densities as follows:

for I, density

for r), density p(y)

= $(a _ $ Cosech

AB < £ < 00,

. e - ^ if a ¥= |8

then for rc, density

After N cycles, we have again

IN = Tv 2 z

and

where z =

1

— ^ r
a + p

- LC)rArBK,

where F = ^ sinh "—^-AB if a ^ /3
a — p 2.
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An ALGOL description of the calculation is given
below.

begin comment The same general specification applies
here as previously with N replacing n as the number
of points;
real BC, CA, AB, «., 0, w, I, m, n, AN, CN, S, SS,

g, T), rA, rB, AO, UO, UC, LC, rC, X, p, v,
K, term, k, I, a;

integer N, i;
set (AT);
read {BC, CA, AB, a, 0);
if a < B then begin w := a; a := B; B := w;

w:=CA;CA := AB;AB := w
end this relabels the data if neces-

sary to ensure a > fi for future
convenience;

I := BC2; m := CA2; n := AB2;
AN :=(-l + m + n)/(2*AB);
CN := sqrt (CA2 - AN2);
S := SS := 0;
for i : = 1 step 1 until N do

begin f := sample exp *2/(a + B) + AB;
if a > )3 then begin reject : 77 := sample

exp *2/(a - 8) - AB;
if T) > AB then go to reject
end

else 7] := AB*(2*sud - 1);
rA := (£ + V)/2; rB := (£ - v)/2;

AO : = (AB2 + rA2 — rB2)/(2*AB);
UO := sqrt (rA2 - AO2);
UC := sqrt ((AN - AO)2 +

(CN+UO)2);
LC

rC
A

K

term
S

SS

= sqrt ((AN - AO)2

(CN-UO)2);
= LC + (UC - LC)*sud;
= rA2; fx := rB2; v := rC2;
= l/sqrt ((A*/ + n*v)

*(— l + m +n)+ (fj.*m + v*X)
*(/ — m + n) + (v*n + A*/x)
*(/ + m - n) - l*X2 - m V
— n*v2 — l*m*n);

= (UC - LC)*rA*rB*K;
= S + term;
= SS + term2

end;
* := (4/(a + 0)) * exp (- (a + P)*AB/2)

•(if a = £ then 2*AB else (4/(a - 0))
•(«/» ((a - fi*AB/2) - exp(-(*-p)
*AB/2))/2);

I := k*S/N;
a := /fc*.y?/7 (SS/N - (S/N)2);
print (I, a)

end;

7. A comparison of methods

In this section we discuss the results obtained for a
number of specific integrals. The number of such appli-
cations of the three algorithms is not as great as would

perhaps be desirable but is sufficient to establish a
qualitative assessment of the three methods, and to
encourage a more thorough investigation when improved
facilities become available.

7.1 A single-centre integral
The effect of varying the sampling parameter A in the

first algorithm (Section 4) was examined in the special
case

/= [e-'-dV.
J r

With the stated sampling scheme it may be shown by
analytical integration that the choice which minimizes
the standard deviation is A = +. In fact

< x / / = ( ^ -

1'2

=0-680

=1-211 f o r A = l .

Thus for the apparently more natural choice A = 1,
the Central Limit Theorem shows that to achieve a given
accuracy, a sample size some three times greater will be
needed than in the optimum case A = \.

These conclusions were verified numerically on the
computer. Thus 600 points gave CT// =0-67 with A = i
and 1 • 36 with A = 1. Similarly 8,600 points with A = i
gave a/I= 0-68. We infer that for the general three-
centre integral the choice A = i(<x + /?) may well be
preferred to A = a + 0. Clearly there are implications
here affecting the choice of the parameter fx. in the
second algorithm (Section 5). In fact all trials reported
below were made with A = /x = a. + 0. In explanation
and excuse we would say that the time available was
limited, and as attention became concentrated upon the
third algorithm (Section 6), so the significance of the
choice of A and fj. in the other methods was not fully
appreciated at the time.

7.2 Numerical results
The algorithms were applied to four integrals, including

both two- and three-centre dependence. The values of
the two-centre integrals were available from explicit
formulae, and approximations to the three-centre
integrals from an independent method. All four were
taken from a calculation on the water molecule by Boys
and Reeves (to be published). The values quoted all
refer to so-called normalized orbitals. That is to say,
a numerical constant is absorbed into each orbital 17, as
a factor in order to give (77,-1 G\ 17,) = 1. The value of the
constant is of course (17,! G\ 77,) ~' /2 which can be evaluated
explicitly. The integrals are as follows.

(i) ^B = ^ C = 4 0 , angle BA C= 120°, a = 3 0 , 0=0-5
independent approximation = 0 0179

(ii) AC=BC = 4-00,anglefiC4 = 120°, a = fi = 0-5
independent approximation = 0 • 0763
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Table 1

Tabulation of results for four integrals

Integral

Integral

Integral

Integral

(0

(ii)

(iii)

(iv)

I
a/I

1
oft

J
a/I

I
a/I

0-

0

METHOD 1

0270 ± 0-0102
14-6

•0773 ± 0-0036
1-8

METHOD

0-0204 ± 0
7-2

0-2655 ± 0
3-3

0-2461 ± 0
2-2

2
•0038

•0226

•0140

METHOD 3

00172 ± 0-0007
1-5

0 0806 ± 0 0050
2-4

0-2431 ± 00100
1-6

(iii) A and B coincident, AC = BC = 4 0 , a = j3 = 3-0
exact value = 0-2500

(iv) A and B coincident, AC = BC = 4 0, a = $ = 0-5
exact value = 0-2363.

In order to apply method three to the two-centre inte-
grals, it was necessary to invent a fictitious third centre.
Thus for integral (iii) we took BC = CA = AB = 4 0,
a = 6-0, fi = 0. This device is not possible if C coin-
cides with A or B, and such two-centre integrals could
not be treated by method three. In practice this is irrele-
vant since all two-centre integrals can be evaluated from
explicit formulae, integrals (iii) and (iv) being included
here only for demonstration purposes.

The results obtained are set out in Table 1. The
entries against / a re in the form "estimate ± standard
deviation" and relate to a sample of 1,500 points. It is
seen that the difference between the estimate and the
independently obtained values lies in each case well
within three standard deviations; in fact none are more
than one standard deviation in error.

The general superiority of method three is evident,
though we may note the effectiveness of method one
where, as in integral (ii), the integrand is dominated by
the Coulomb potential. It is interesting to observe the
comparative invariance in method three of the^ relative
accuracy as shown by the small variation of aft.

8. Discussion
Method three was programmed in Pegasus basic code

in fixed-point form with some double-length working. A
running speed of about 100 points per minute was
achieved. It will be noted that the only function evalua-
tions required in the main cycle are square roots, so that
not too many drum transfers were required.

With the ranges of parameter values likely to arise in

a practical molecular configuration, the three-centre
integrals are small. The integrals are all required to the
same absolute accuracy, and so the three-centre integrals
require the least relative accuracy. Nevertheless, none
of the three methods in their present form seems suffi-
ciently powerful for the evaluation of individual integrals
as fast and accurately as required.

A feature of a molecular structure calculation, how-
ever, is the large number of integrals required. We
noted in Section 2 that Slater orbitals have the general
form -r\ = S/, m(0, <f>)rn

Ae~ar. The orbitals for a calcula-
tion can be .grouped into classes according to their centre
A and parameter a. These classes frequently have four
or more members. For example the 2s and 2p orbitals
on any nucleus may have a common parameter a and
we obtain the class (r e~", x e~ar, y e"0", z e'1").
Suppose there are two such classes, one on centre A
and the other on centre B. These give rise to sixteen
distinct integrals of the form {t]A \ Vc\ rjB), and, with
method three, use the same sampling scheme. The only
difference lies in the factors rAxB, yAxB, etc., which
appear in the quantity to be averaged. It is thus possible
to estimate all the integrals simultaneously in parallel
at a cost negligibly more than that for a single integral.

The three- and four-centre electrostatic repulsion
integrals present a much more serious problem. The
economies to be gained from simultaneous estimations
are correspondingly greater. Thus the 2s and 2/> orbitals
on each of four centres give rise to 256 distinct integrals
which could be treated in parallel. It was, however,
judged not feasible to attempt the development of
suitable algorithms for these integrals on Pegasus,
bearing in mind the advent of the much faster so-called
second-generation computers with their powerful pro-
gramming languages.

One of us (D.R.C.) is indebted to D.S.I.R. for the
award of an Advanced Course Studentship under whose,
tenure the work described was carried out.
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Book Review (continued from p. 276)

some problems in mathematical physics", formulates the
Schrodinger equations for a system of particles in a potential
field, in such a manner that if we make Planck's constant tend
to zero in the equations, then these equations tend to those
for classical mechanics. K. A. Bezhanov writes on "The
interaction between a shock wave and the free surface of a
liquid", and I. I. Nochevkina writes on "Supersonic flow
around conical bodies in an ideal liquid at different angles of
attack". V. V. Martynyuk's paper on "The division of an
algorithm scheme into networks" is concerned with the
transformation of computing algorithms into forms which
are suitable for automatic programming. I. L. Sobel'man,
in "The relation between computing time, stage length and
frequency of random machine errors", examines the problem
of optimizing the length of the stages into which a program
should be divided in order to guard against machine faults.

Next there are three short communications on "A method
for partitioning a high order matrix into blocks in order to find

its eigenvalues" by V. A. Shishov, "On some infinite systems
of equations" by E. G. Delch. and "An approximate method
of solution of Schrodinger''s equation" by V. B. Uvarov and
A. F. Nikiforov. Finally, this issue lists the papers published
in the remaining five parts of Volume 1 (1961), which include
the Report on ALGOL 60 by Naur et al. Other papers are
devoted to numerical solution of polynomials, theory of
automata, error analysis in linear algebra, reactor kinetics,
automatic programming, aerodynamics, queueing theory,
finite-difference techniques for solving differential equations,
and many other branches of numerical analysis and mathe-
matical physics.

This translated journal should be a most useful addition
to any mathematical library. But if any prospective reader
hesitates to pay £50 per year, he is advised to acquire a
smattering of the Russian language, buy a good Russian-
English mathematical dictionary, and subscribe to the
Russian journal at £4. 6s. Od. per year. G. J. TEE

Correspondence
The Editor,
The Computer Journal.

Sir,

A Hardware Representation for ALGOL 60 using Creed
Teleprinter Equipment

Regarding the paper by Gerard and Sambles (this Journal,
Vol. 5, p. 338, 1963) and subsequent correspondence, I am
surprised that no one has suggested designing a 5-hole tape
code quite specifically for the representation of ALGOL.
By using two non-feed characters, and | , it is possible to
have a code that gives printed texts that look like ALGOL,
the main restriction being that only one size of letter is
available. Such a code has, in fact, been implemented on

conventional teleprinter equipment for R.R.E., Malvern,
but as far as I know has not been publicized.

I have yet to be convinced that the advantages of 7- and
8-hole tape are so overwhelming that they justify the con-
siderable price difference between the editing equipment
required and that available for 5-hole tape. I suggest that it
is worth our while to consider and agree on such a 5-hole
code as this gives us the advantage of compatibility of our
ALGOL representations and also allows the use of cheaper
equipment. I would welcome the views of your readers.

Computation Laboratory,
The University, Southampton.
17 June 1963.

Yours faithfully,
PAUL A. SAMET.
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