A mechanization of algebraic differentiation and the
automatic generation of formulae for molecular integrals

of Gaussian orbitals

By R. Fletcher and C. M. Reeves

A simple representation of complicated functions of many variables is described. Methods are
given for forming automatically partial derivatives of any order, and it is shown how symmetry
may be exploited to achieve compactness of representation. These methods have been used
extensively in the generation of formulae for molecular integrals of Gaussian orbitals in a form
suitable for subsequent evaluation in calculations of molecular structure.

1. Introduction

The present investigation arose from the need to evaluate
as accurately as possible large numbers of partial
derivatives, of various orders, of functions which were
themselves quite complicated expressions in up to
sixteen arguments. A numerical approach using finite
differences was rejected on grounds of accuracy, speed
and storage limitations. As for analytical differentiation
by hand, the magnitude of the task and the difficulty
of checking the results proved a sufficient deterrent.
Automatic differentiation by electronic computer was
the only feasible method.

Other work on automatic differentiation that has been
reported mostly uses symbolic or list-processing lan-
guages. McCarthy (1960) gives a simple example of a
differentiation program in LISP, and a more complete
treatment is given by Cooper (1961) using ALP. A
comprehensive treatment is given by Hanson, Caviness
and Joseph (1962). The work now described was
begun on an Elliott 402 computer by kind permission
of 1.C.I1. Ltd., and was continued subsequently on the
Ferranti Pegasus at Leeds University. In both cases it
was necessary to use machine-language coding; such
autocodes as were available were not suited to problems
in symbol manipulation. A dominant feature is the
emphasis on the subsequent applications of the results
that are obtained. A new approach is given to the way
in which the functions to be differentiated are repre-
sented. The conventional algebraic symbolism is
reduced to the form of a numerical array which permits
of convenient and efficicnt manipulation both for
differentiation and evaluation.

In Section 2 we review the context in which the
investigation was begun. A full account of the mathe-
matical stages in a quantum-mechanical calculation of
molecular structure has been given by Boys and Cook
(1960). The exact solution is approximated by a finite
expansion in functions selected from a complete system.
The functions used in the investigation were of Gaussian
form characterized by an exponential radial factor
exp (— ar?) where o is a positive parameter and ry4
denotes distance from an atomic nucleus at a point A4.
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It was shown by Boys (1950) that in such-a basis all the
integrals can be evaluated from closed formulae. The
present paper is concerned with the automatic generation
of these formulae.

In Section 3 we describe the representation of a func-
tion by a multinomial expansion having as arguments a
set of auxiliary functions. By careful choice of the
auxiliary functions, the set of multinomials is closed
under differentiation. Derivatives of any order may
thus be obtained by simple iteration. Section 4 reviews
the elementary processes for the analytical differentiation
of an algebraic expression. A key problem in automatic
differentiation is the simplification of the expressions
that result from applying these processes.

The representation of functions by multinomials
permits a great deal of simplification of the derivatives
to be obtained quite naturally and conveniently. In
Section 5 it is shown how in certain cases simultaneous
rather than sequential application of a pair of differential
operators can lead to a still more compact representation
of a second-order derivative. A brief discussion of the
evaluation of the multinomials and of the estimation
of the associated rounding errors is given in Section 6.

2. Molecular integrals of Gaussian orbitals

An orbital is the name given to a function of the
positional co-ordinates of an electron in physical space.
Those that we shall consider are of Gaussian form,

74, a, @, r) = x3ygzir exp (—ar))

where r = (x, y, z) is the position vector of the electron
in rectangular Cartesian co-ordinates, 4 = (4,, 4,, 4,)
is the position vector of an atomic nucleus, a =
(ay, a,, a3, a,) are positive or zero integer parameters,
and « is a positive constant. We have written x, for
for (x — A,), etc., and r% = x% + y% + 3.

The integrals that are needed in a molecular wave-
function calculation are the single-electron integrals

1= (4,4, &, NKx(B, b, B, AV
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and the two-electron electrostatic integrals

1
I = J—J. 7)(A’ a a, "1)")(Bs b9 B, rl);l-;
"7(C, c, Ys r2)77(D, d9 8, ’Z)dVldVZ

where the volume elements are at the positions of the

electrons, and the integrations are over all space. There

are various classes of single-electron integral corre-

sponding to different operators K; overlap integrals

have K = 1, kinetic energy integrals have K = — }V2,
, o 2 7 )

where y? = 32 + 5;2 -+ 57218 the Laplacian operator,

and the nuclear potential integrals have K = 1rr,
where F is the position vector of an atomic nucleus.

Formulae for these integrals may all be obtained
systematically. It is easily shown that

9
P(a4|a4 + l)‘Y](A, a, @, I') = - b_;"](A’ a, «, I')
and that if @, = 0,
P(as|a; + 1)y(4, a, , )

1 2
= Z—a{-ﬂ: -+ GIP(a],al — 1)}7)(/4’ a, a, ’)s etc.

In these expressions P(u|v) denotes a substitution
operator which replaces u by v in the expression which
follows it. Thus for any function ¢(u),

P(u|v)$(w) = ¢(v).

For any of the integrals, 7, it follows that, for a, = 0,

1 D a,
I(a; + 1) = P ﬁ;l(a,) + 5. 1(a; — 1), etc.
and for general a,,
d
I(a; + 1) = — ‘5—0‘1(04)-

Similar results are valid for the centres B, C and D, and
the respective parameters (b, B), (¢, y) and (d, 8).

The formula for any combination of indices a, b, ¢, d
can thus be generated from that corresponding to all
zero indices by applying first sufficient relations of the
first type and then sufficient of the second type. The
relevant basic formulae are given by Boys (1950).

_[ e~wi—bidy = (O%B)m exp (— ;%B—BABz)
[ e=ori(~199e-p2av = {3 (a"f ﬁ) — 2(¢ ‘f B)ZABZ}

N «
x (2 /3) exp (— ;IﬁEABZ)

f e~y ~brt ay
re
____gl_ex ~—-a—B~ABZ)9-[(a —f—ﬁ)EFz]
“a+B*P + B

-4
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J’J‘ e_wa_BrfB_l_e—Y’ga_s’gndVl dV2
Iz
_ 2/ ( LBy
N N R T D L Ay

yd (« + B)(y + 8
R L [(a FB+y+ 8)”2]
where

£ = (a4 + BB)/(« + B), F = (yC + 8D)/(y + &)

1
F ) = [ e,

(]
The use of the vector F in two different contexts is
deliberate in order to unify nomenclature for the analysis
of the various classes of integral. In practice no con-
fusion can arise.

The formula for general indices a, b, ¢, & is thus
ultimately expressible in terms of the corresponding
basic formula above and various of its partial derivatives
of various orders with respect to the parameters
A,0,B,8,C,v,D,8.

and

3. A multinomial representation

The representation chosen for each formula in the
computer was a multinomial expansion in terms of a
pre-assigned set of auxiliary functions. Thus we write
the function f(z) as

fO=x¢ I}X}‘”

where x{z) are a finite set of auxiliary functions of 1.
This may be stored in the machine as an array of indices
uy and an array of coefficients C;.

The derivatives of f with respect to ¢ may be written

as
S0 = IZ C % i P |y — l)r} x5,

Now by careful choice of the auxiliary functions it is
possible in our application—and presumably in general
~—to arrange that the derivatives x, are each expressible
as multinomials of the same set of auxiliary functions

Xy = ? Dk,E'I x50E,

The first derivative of f'can thus similarly be expressed
as a multinomial expansion in the same set of auxiliary
functions by substitution of the non-trivial x; in the
above expression for f*(f). Carrying out this substitution
is the basis of the computer program for differentiation.
The only simplification of the resulting expansion which
needs to be made is to compare the various products
C;Ilxjv against each other after production, so that

J

any two which have the same Ilx} can be condensed
J

by adding their coefficients C;. Derivatives of any
higher order may be obtained by iteration. The auxiliary
functions are chosen to be of the simplest possible form
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Table 1
The auxiliary functions
j xj J Xj
0 Ax - Bx 18 E: - Fz
1 A,— B, 19 EF?
2 A, — B, 20 (4 — B).(E—F)
3 AB? 21 (C — D).(E —F)
4 2a 2 (4 — B).(C— D)
5 28 23 (2 + B+ y + O
[ (e +B)(y +9) . ,]
1/2 Z 2
6 2= + P # «FB+y T
_*B g JE+BAo+8 ]
7 kexp (—— BAB) 25 et By T 55
[+ By +9) ..,
s F 2
8 Cx— Dx 26 CEY T
| @+ By +8) .,
9 C,—D, 27 F _(a+ﬂ+y+8)EF2
[+ By +9) .7
_ fuu 2
10 ¢ =D 2 GFB+ry+0 ]
11 CD? 29 F(« + BEF?]
12 2y 30 F'[(« + B)EF?]
13 28 31 F"[(« + B)EF?]
14 R2(y + 9)'2 32 2(x — B)
»8
15 exp (- —jr—scm) 33 Ay — 8)
16 E.—F, 34 4(a? + B?)
17 E,—F, 35 4y + 8%

so that the x; may be formed by hand on inspection,
and fed into the machine in coded form. The scheme
is readily extended to the generation of partial deriva-
tives of functions of several arguments. In this case it
is necessary to furnish a list x; for differentiation with
respect to each argument.

In order that the formulae obtained should be repre-
sented exactly in the machine, all the indices and
coefficients are restricted to be of type integer. To this
end it is often necessary to absorb a constant factor
into some of the auxiliary functions. For greater
administrative convenience the auxiliary functions appro-
priate to each class of integral are gathered together into
one common set. This is shown in Table 1. The
members of the set are not independent, and simplifi-
cation of the formulae is thereby made more difficult.
This problem is considered further in the next section.

Clearly the set is not unique. The set listed is in fact
restrictive in its treatment of the function & and its
derivatives. In the evaluation of the formulae a pro-

G
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cedure was used which computed £ (x) and appropriate
derivatives effectively in a single operation. The range
of formulae currently in use is that derived from the
restricted set of orbitals

—ay2 R -
e~%i, X e~Wi, ye~wi, z e—ard, rie—arh,

The auxiliary functions of Table 1 are thus adequate in
that there is no occasion to make use of the derivatives
of x,3 or x;;. It will be necessary to reconsider this
choice when calculations are extended to other orbitals
on a more powerful machine.

The basic formulae are now readily expressed in terms
of the auxiliary functions. As example, that for the
two-electron electrostatic integral is

+Ixg 2x Ixa g ey
where the constant k absorbed into x; is 2(27)5/2,
A further illustration is provided by the expressions

1
for 723 A <X in Table 2. Only the non-zero entries are
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given explicitly. Hence, for example, we may operate
with this operator on the basic formula above to produce
the higher formula for

1

J‘J xlAe_‘"?‘_B'?B —_— e_Y’ZO_sr;D dVldV2
ri2

viz.: —lIxg 1xF Ixg 4xd Wxaixisixmlxdy!

—2 i b1yt 1ye=3yt
+1x5 2x7 Ixfstxis xz3dx3st.

4. The elementary rules for differentiation

Simple rules for differentiation are of the following.

types,
F+ey=r+¢
B =rg+Sf
") = nfr-\f

(Re)y = ,;igf(g)}g'.

The differentiation of an actual expression involves
repeated application of such rules. A number of purely
algebraic rules must also be applied in order to simplify
the resulting expressions. Typical of these are,

f+0=f
Fx0="0
Sfx1l=f
fl r=1
f—f=0
f+f=2f

Other sources of simplification are more difficult to
detect and apply. Thus, for example,

cos2 @ +sin20 =1
log, (expf) =f
2coshf=ef + e~
r: = x% 4y + z%

It is of prime importance that the expression resulting
from a computer program be as simple as possible. The
expression is only generated once but may be used many
times for evaluation. An economic representation
should take care of the application of as many of the
above rules as possible. The representation as a list of
algebraic symbols is highly uneconomic as every type of
redundancy mentioned above can occur, and further
routines must be introduced to search for and remove
them. A glance at the output from McCarthy’s (1960)
program will confirm this. Furthermore, it is important
that all the simple rules for differentiation are included.
Thus Cooper (1961) makes no provision for exponentia-
tion. The function x3? is represented as x X x X x,
and its derivative with respect to x as (x X x) + (xX x)
+ (x x x). Functions with fractional powers become
even more tortuous to operate upon. It is difficult to
remove any but the simplest kinds of redundancy from
expressions represented in this way.

The representation described in Section 3, however,
accounts naturally for most of the simple kinds of
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Table 2
Multinomial expressions for 2—1a -b%—;x X
k= 0 +1x;!
3 +2xg 1x!
7 —LxgIx xg2xht
16 +1x52
19 +2x5 2x!
20 +1xz 'xfs! +1xg 1xg2
21 | +lxg2xt
22 +1xg xf?
24 +1xt2xislxz2xds!
25 +1x2xislxz2agi!
26 +1x{2xfstxnixit
27 +1xf2xisixnxd;!
29 +1xislxdh!
30 4+ 1xfsix!

redundancy through its implementation as a set of
numerical arrays. Only the last two forms of simple
redundancy can occur, and these can be detected by
comparing the terms in an expansion one against the
other.

A further consideration is the effect of rounding errors
on the results of evaluating the formulae. If the expres-
sions are highly redundant, such that two large equal and
opposite terms are present, then the effect on the accuracy
of the final result might be disastrous. A check was
kept on the accuracy of all integrals evaluated from the
formulae produced by this method, and a high degree of
aecuracy was always in evidence.

5. Symmetric differentiation

The representation of functions by multinomials
permits a considerable simplification of derived expres-
sions to be made almost trivially. Recognition of like
terms in a lengthy expression is time consuming but
presents no essential difficulty. Any term whose net
coefficient is found to be zero is removed from the
expansion.

The scheme as described was satisfactory except that
certain of the derived formulae were rather long and
clumsy. This stems from the failure to recognize the
existence of functional relationships amongst the
auxiliary functions. Thus, for example, in terms of
auxiliary functions «, 8 and (« + B) one might have

f=apfle+ B,
so that

oS =Bt B — afla + )
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and

5F 52/ = o+ B — B+ B
— ol + B + 20p(a + )

No simplification is possible with the basic scheme, but
if there were some means of combining the middle two
terms into — (o + B)~!, this would be cancelled with the
first term leaving

2

It was found uneconomic to inspect for common
factors of groups of terms in this way, but a similar
simplification was achieved by a technique of simul-
taneous symmetric differentiation. The basis of the
method is to arrange that if a function has a certain sym-
metry, it is represented solely in terms of auxiliary
functions having the same symmetry.

If G and H are two differential operators, then the
result of sequential operation on the general term I x%
is J
GH I1 ﬁ;" = G{z (ka)ukP(uk|uk —_ 1) II x‘j”}

i k J
= 2 (GHx, )u Pl |w, — 1) TI x¥
k i
+ kZ’ (Gx)(HxJuP(u|u — 1)
{ukP(ukIuk — N1l x‘;f}

Now in the double summation the factors of (Hx,)(Gx;)
and (Hx;)(Gx,) are the same. We can therefore derive a
symmetric form suitable for programming:

GH II x’;’ = ZSkukP(ukluk - 1) II x’;’
J k J
+ X Ty P(uy|uy — 1){ukP(uk|uk - DII x‘j’}
k=1 J

where S, = GHx,

(Gx )(Hxp) + (Gx)(Hxy) ifks=1
(Gx )(Hxy) ifk=1

Suppose that the auxiliary functions x; present in the
term I'Ix"J above are each invariant under some per-

and T, = {

mutatnon of arguments which interchanges G and H.
Now G and H are differential operators and therefore
commute. It follows that each of S, and T, are
invariant under this permutation, and we shall suppose
that each is expressed as a multinomial in terms of
auxiliary functions which are similarly invariant. Finally,
we see that GHIIx% has this same symmetry and is

J
expressed, after substitution for the S and T elements,
as a multinomial in terms of auxiliary functions which
also have this symmetry.
To summarize, the non-symmetric sequential opera-
tions “H then G” are replaced by the symmetric simul-
taneous operations § and 7. From symmetry con-
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siderations, therefore, a more compact formula is
produced.
Continuing the example above, we write Xo = af,
2
x; = a + B and take G = 52 , H= =5 bY: noting that x,
and x; are symmetric in « and B. We then have
So =1 Too = xp
Sy=0 Tio=x, I,=1,
so that
22
Waﬂ(a + /= GHxgx;!
= Sox;! + Ty 0
+ 2Ty xox;% + Tho — x;72)
=x7! 4 2xpx7? — xj!
= 2xox;°
= 2af(x + B)-3.

In order to apply this technique to the molecular
integrals, we note that each of the basic formulae quoted
in Section 2 is invariant under interchange of the sets
A4, « with B, B, and similarly -with respect to the sets
C, y and D, 5. We therefore arrange to represent them
in terms of auxiliary functions with the same property—
see, for example, the representation quoted in Section 4
for the two-electron electrostatic integral. Symmetric
differentiation may thus be used for applying the
operators

2 2 2 2
04, 0B, 94,3B,” 34,98, 0B

and a similar set derived from C, and D. The technique
was extremely successful; the longest formula produced,
that for

. 1
J.J’ rfAr,zBe—“’.’A—‘5’1‘3’_——r%cr%De—"’fa—s’%odV,de
12

being reduced from some eight hundred terms to about
three hundred.

To apply this method to best advantage it is necessary
to produce the expressions for S, and T, in the simplest
form. This can usually be done, again by hand, on
inspection. Although extra work is needed to prepare
the derivatives this again has to be done only once,
whereas the economy in the formula is exploited every
time that it is used for evaluation.

6. The evaluation of the formulae

This account would not be complete without some
reference to the evaluation of the formulae. A typical
molecular wavefunction calculation may require the
evaluation of several thousand integrals employing over
a hundred different formulae. It is thus important that
evaluation should be efficient, though fortunately, the
majority of the integrals are evaluated from the shorter
formulae.
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The data for an evaluation are the numerical values
of the orbital parameters A, «, etc. The first stage of
the calculation is the evaluation of all the auxiliary
functions, it not being thought worthwhile to program
the selection only of those required for the particular
integral. Similarly no attempt was made to carry over
the values of any of the auxiliary functions from one
integral to another.

The successive terms of the multinomial were then
evaluated and their sum accumulated. At this stage a
check on the accuracy of the evaluation was carried out.
All arithmetic was in the floating-point mode with a
binary exponent and a nominal precision of 38 significant
binary digits. The maximum exponent over all terms
and over all partial sums was recorded. The excess of
this over the exponent of the final result is a measure of
the differencing error incurred. Numerous evaluations
have suggested that this error does not amount to more
than two or three binary digits.

In the evaluation of each term CIIx the array u was

scanned and zero entries ignored. The remaining factors
were formed by using the digits of the binary repre-
sentation of mod(y;) to select contributions from the
sequence obtained by repeatedly squaring x; or 1/x;.
Each term was evaluated independently of the rest.
Were it not for the limited rapid-access storage available
on the machines used, it might have been worthwhile
preserving some information from one term to the next.
Thus the sequence X;, xJ, Xj,...might have been
preserved. For u;, > 0, xi would have been calculated
as a product of selectlons from this sequence as before;
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