Assignment problems

By J. S. Clowes and E. S. Page

Assignment problems and some methods of solution are described in an expository manner.

Examples of assignment problems arise when restrictions
of the type ““one man to one job’ exist. If a number of
vacant jobs has to be filled from a list of applicants
each of whom may be qualified for more than one job,
there may be no way of assigning all the men to jobs
they can do, or there may be many ways, some of
which are more satisfactory than others. The problem
is to find the most satisfactory one. There are many
different criteria by which the assignments could be
judged; only two have received much treatment. A
*“value” or ““cost” is supposed known for every man in
every job. The two criteria are the sum of the values
in an assignment of men to jobs, or one of the extremes
(i.e. the greatest or least) of these values. Problems
using the sum criterion are classical assignment problems
while those using an extreme are bottleneck problems.
The simplest classical case is that in which all the
values are zero or one. This “‘simple” assignment
problem requires an assignment which places as many
as possible of the men in jobs that they can do. The
other classical cases will have a more general value
matrix (I';;), where I';; is the value of assigning the ith
man to the jth job. If, for example, I'; is the expected
value of orders obtained by the ith salesman if he is
assigned to the jth sales area, we could want to maximize

>: T';; where the suffices j are all different and so
i=1

contain the integers 1,2, . . ., n just once each. If the
I';; are the costs of travelling for man i to area j then
the problem could be that of minimizing the total cost,

n
Z Fij.
=1
Let us suppose. picturesquely, that the I';;, instead of
being-the costs of travel, are the times needed to get to
duty stations and that the men are secret agents who
all have to be in position before an operation can begin.
Then the aim is to minimize the greatest of the L, for
the men assigned. Here there is a bottleneck caused
by the slowest of the agents reaching his post. Problems
of this type so get their name; a corresponding one
requires the maximization of the least of the I';;.
The problems we consider are therefore as follows.
Given an n X n matrix (I';), we require to assign
one element from each row and one from each column
so that
n
(1a) X I; is maximized
i=1

O

304

@y X T, is minimized Q)
i=1

(1s) Min(I';)) is maximized 3
J

(28) Max(I';) is minimized. C))
j

In every case the suffices, j, form some re-arrangement
of the numbers 1,2, .. ., n.

So far the formulation has supposed that the numbers
of men and jobs are the same, i.e. the matrix (I';;) is
square. If this is not the case additional rows or columns
can be added and filled with suitable numbers. For
example, in problems 1A and 2A the new elements
could be set equal to any constant; in problem 1B the
constant may be any number greater than the largest
element of (I';;) and similarly for 28. We suppose that
these additions have been made where necessary.

Equivalent problems

Problems 1A and 2a can be easily recognized as special
cases of transportation problems. If we let x;; =1 if
the ith man is assigned to job j, and 0 otherwise then
the x’s must satisfy the following conditions stating the
““one man, one job” principle.

Z xij.= la j=], 2: » B (5)
i=1
Sx,=1, i=1,2...,n 6)
j=1

x;>0 Lj=1,2,...,n)

These conditions coupled with the target for optimiza-
tion (1) or (2) specify the transportation problem.
Since routines for solving transportation problems exist
for most computers, for many applications the search
for a method of solution ends here. However, the
conditions (5) and (6) are simpler than those in the
general transportation case and alternative techniques
have been devised to take advantage of them.

The bottleneck problems have been shown by one of
us (Page, 1963) to be reducible to the corresponding
classical case but, except for the smallest problems, the
size of the numbers involved prevents the practical
exploitation of the procedure. Consequently there is
some interest in developing methods for assignment
problems alone. Some methods appear to trade a

20z UoJEN € U0 158NB AQ 112G/ E/¥0E/7/9/5101ME/|UlW0D/00" dNODIWapEDE//:SA]Y WO POPEojuMOQ

Assignment problems

quantity of arithmetic for an increase in the complexity
of the logic, but the savings in operations are not always
easy to assess.

Transforming assignment problems

Let us first consider problems (1A) and (2A). Since a
maximization problem can be turned into a minimization
one by changing the signs of all the I';; we need only
consider one of them, say the minimization problem,
2A. If all the values I';; were increased by a constant
to I';, -+ ¢ the cost of any assignment would be increased
by an amount nc, but the best assignment of men to
jobs will still be the same for both value matrices.
Similar comments apply to the bottleneck problems;
here the optimum bottleneck value would be increased
by c¢ but the best assignment would be unchanged.
Accordingly we can always make the entries I';
positive, and we suppose that this has been done.
Further, we can suppose in all practical problems that
all the I';; are integers, since their multiplication by a
positive constant does not change an optimum
assignment.

As we are trying in problem 2A to minimize a sum of
positive elements it is clear that if we can include only
zero elements of (I';) in our assignment we have
succeeded in finding an optimum solution. It is unlikely
that the matrix as given will contain such an assignment,
but we can modify the matrix successively until it does.
We can add a constant to any row or column of the
(T';)) without changing the optimum nature of an
assignment, since each row and column is represented
once and once only. In a practical example where the
I';; are distances between men and jobs, the problem of
finding the optimum is clearly unchanged if one of the
jobs is placed the same distance farther away from all
the men. An attack can thus be made upon the problems
1A and 2A. Constants are subtracted from rows and
columns in order to generate some zeros in the matrix.
If an assignment can be completed from the positions
of these zeros the solution has been found; if not, some
further juggling is necessary—for example, constants
can be added to a row and subtracted from a column to
produce zeros iti different positions.

Example
Suppose that the value matrix is as shown in (i).

8 3 11 13 14 5 0 8 10 11

0 6 15 0 3 0 6 15 0 3

9 6 2 1 1 8 5 1 0 0

37 4 1 8 2 6 3 0 7

5 7 8 2 10 3 5 6 0 8
() (i)

Then we can subtract the smallest element of each row
from all the elements of that row and so reach (ii). A
similar operation on the columns of (ii) produces (iii);

305

5 0 7 10 11

0 6 14 0 3 0| 6 14 2 3

8 5 0 0 O 8 s o0 2 [o]

2 6 2 0 7 0 4 [0] o s

3 5 5 0 8 1 3 3 [0] s
(iii) (iv)

this matrix has many zeros but rows 4 and 5 have them
only in column 4, and so there can be no zero assign-
ment. We can now subtract 2 from rows 4 and 5 and
add 2 to column 4. The selection of these rows and
columns is discussed later. These operations leave the
existing zeros in the important fourth and fifth rows
unchanged and create some new ones—although others
in column 4 are lost (iv). In this example it is readily
apparent that a zero assignment exists—the boxed
positions (man 1 to job 2, 2to 1,3 t0 5,4 to 3, 5 to 4).
By referring to the original matrix the minimum value
ofthecostis3+0+ 1444 2=10.

Recognition of an assignment

Sometimes it is easy to see whether a zero assignmenpt
exists. For example we can assign, one by one, zeros
which are the only ones in rows and delete any other
zeros in the same columns; sometimes this. process
completes the assignment, or will do so when the
operations are performed on the remaining columns.
But it can happen that there are alternatives left, and
they can be very numerous and yet fail to include any
zero assignments. How to decide whether or not a
matrix possesses a zero assignment is one of the crucial
problems (the other is which transformations to perform
if the matrix does not as it stands).

To determine whether or not the matrix possesses a
zero assignment the idea of a cover is introduced. A
cover is a set of rows and columns (‘““lines” for short)
which between them contain all the zero elements of
the matrix. Thus in matrix (i), row 2 forms a cover.
A theorem of Kénig states, in effect, an n X n matrix
possesses a zero assignment only if every cover contains
at least n lines, i.e. no covers of less than »n lines.

Many methods (some arising in other applications)
have been proposed for finding a cover with less than
n lines if such exists (Kuhn, 1956). The simplest (but
most laborious) is probably that due to Porsching (1963).

Porsching’s algorithm involves the examination of

every submatrix consisting of 1,2, ..., n rows of the
value matrix I' (27 — 1 in all). If every such sub-
matrix of k rows, k= 1,..., n, contains at least k

columns with zero entries then a zero assignment exists.
But if a submatrix S of k rows contains / < k columns

20z UoJEN € U0 158NB AQ 112G/ E/¥0E/7/9/5101ME/|UlW0D/00" dNODIWapEDE//:SA]Y WO POPEojuMOQ

Assignment problems

with zero entries then these / columns together with the
other n — k rows of I" not in § form a cover of
n—k+1=n—(k —1I1)< nlnes.

In matrix (iii) the submatrix consisting of rows 4 and 5
contains zeros only in column 4 and this column together
with rows 1, 2 and 3 form a cover of four lines (v).

=5 Qs 7+ 10— 11 -
Tl [S S I
B JUSERY SN (S| J—
2 6 2 0 7
3 5 5 0 8
v

This algorithm checks to see if a zero assignment exists,
but does not give one directly; additional operations are
needed.

A superficially attractive idea for detecting a minimal
cover of n lines is to replace the zero entries by suitably
chosen, or even random, values, and all other entries by
zero. If the determinant of this array, evaluated by
standard methods, is non-zero at least one term is non-
zero, and so a cover of n lines exists. Unfortunately
practical application of this suggestion encounters snags
but further work may remove them.

Generation of new zeros

When it is necessary to create new zeros the operations
of subtracting a constant, «, from a row and adding «
to a column are performed. This leaves the element of
the matrix at the intersection unchanged but can create
zeros elsewhere.

If we have found a cover of r rows and ¢ columns
with r + ¢ <<n let m be the smallest matrix element
outside the lines of the cover. For example, in (v)
m = 2. We now subtract m from the n — r rows not
in the cover and add m to the ¢ columns in the cover.
This process when applied to (v) yields (iv), which has
two additional zeros outside the cover in row 4 (at the
places where the minimum m occurred).

In general, we get at least one zero not in the cover
and all elements remain non-negative, since the only
ones actually decreased are those not in the cover and
these were all at least as big as m. If the transformed
matrix still has no zero-assignment we can repeat the
process. However, this cannot go on indefinitely. For,
on subtracting m from the n — r rows not in the cover
we reduce the sum of the matrix elements by n(n — r)m,
while the addition of n to the ¢ columns in the cover
increases it by ncm, a net reduction of n(n — r + c)m =
n(n — (r + c))m > 1. Since we cannot go on for ever
reducing the sum of the matrix elements by an integral
quantity while still retaining non-negative elements the
process must terminate after a finite number of steps
with a matrix possessing a zero assignment.

306

Alternative methods

The technique described above, for deciding whether
or not a matrix has a cover of less than »n lines, has the
disadvantage that it does not give the zero assignment
when one exists, and also it requires a very large number
of operations. Alternative methods have been developed
by Kuhn (1955) and others (Kuhn, 1956) which get
round both of these snags.

The principle of the methods is to try to build up an
assignment and to improve what has been attained if it
fails to meet all the conditions. One first starts making
an assignment in some simple way—for example by
considering each column in turn. If this fails to allocate
just one man to each job some of the steps are retraced
and an alternative chain of assignments is explored. A
simple outline of one of these methods, the Hungarian, is
given by Vajda (1961). These methods are likely to reach
the optimum assignment in fewer steps than Porsching’s
but they pay the price by being more complicated.

Bottleneck problems

These problems (1B and 2B) are in most respects
simpler than the classical ones. We can again consider
the elements of the matrix to be positive integers in any
practical case, since the addition of a constant to all
the elements leaves an optimum assignment unchanged.
In this case we can go further and suppose that the
integers are consecutive commencing at any convenient
place such as zero or unity, since it is only the order
of the cost values which is relevant; some integers may,
of course, be repeated. The transformations which
could be carried out on rows and columns in the classical
case are no longer available. If the problem is a
maximization one (1B) then we can clearly search for
an assignment in an »n X m problem -using first the
largest elements, the next largest, and so on until at
least n elements are included. If an assignment is
detected no further steps are needed. If not, more
equal elements are introduced stage by stage until an
assignment exists.

Methods for the classical problem of building up an
assignment can be modified for the bottleneck problems
(Gross, 1959 ; Page, 1963).

Conclusion

Since computer programs for the transportation
problem exist for most machines, isolated classical
assignment problems of sizes that can be handled are
likely to be performed using the more general approach.
Typically assignments of 56 X 56 can be made on
Pegasus and 128 X 128 on Mercury, without magnetic
tapes, and larger programs will be possible on the
newer machines. For those problems too large for the
transportation approach yet still within the capacity
of the machine, the task of writing special progiams
can hardly be avoided. Naturally the regular and
frequent appearance of even medium-sized assignment
problems could make it worth while to tackle one of the

20z UoJEN € U0 158NB AQ 112G/ E/¥0E/7/9/5101ME/|UlW0D/00" dNODIWapEDE//:SA]Y WO POPEojuMOQ

Assignment problems

more complicated but efficient algorithms; but these
circumstances, have so far been rare. The bottleneck
problems present a different story; here they need one

References

GRross, O. A. (1959).
Kunn, H. W. (1955).
KuUHN, H. W. (1956).
PaGE, E. S. (1963).

PorscHING, T. A. (1963).
VAIDA, S. (1961).

of the modified algorithms for the classical case, and
if these have to be written, the little extra effort to
cover both types of assignment could be faced.

“The Bottleneck Assignment Problem,” Rand Report.P-1630.

“The Hungarian Method for the Assignment Problem,” Nav. Res. Log. Quart., Vol. 2, p. 83.

“Variants of the Hungarian Method for Assignment Problems,”” Nav. Res. Log. Quart., Vol. 3, p. 253.
“A note on Assignment Problems,” The Computer Journal, Vol. 6, p. 241.
“Matrix Assignments and an Associated Min Max Problem,” Marh. Comp., Vol. 17, p. 81.
Mathematical Programming, Addison-Wesley: Reading, Mass.

Contd. from p. 303

puter design. It is becoming increasingly important that
means should be found for reducing the dependence of the
performance of a system on that of its components. For
various reasons, components may be inaccessible for replace-
ment or repair, or the system must operate continuously,
allowing no opportunity for maintenance. The idea of using
some form of redundancy to achieve this end is by no means
new, even in the computer field. It cannot be claimed that
redundancy offers a technique where, by using enough equip-
ment, one can achieve an arbitrarily high reliability. On the
contrary, as is shown in one paper in this book, in certain by
no means unlikely circumstances, by using enough equipment
one can achieve an arbitrarily high unreliability. Neverthe-
less, there are fields of application where the various techniques
may have a beneficial effect, and one of the achievements of
this book is to begin to define these fields. One fact brought
home by a reading of this book is that all too little is known
of the statistical behaviour of large assemblies of components,
how this behaviour is influenced by the properties of the
components, and even the properties of the components
themselves. If the publication of this book has the effect of
stimulating research into these problems, it will have per-
formed a great service to the designers and users of future
generations of computers.
J. B. STRINGER.

Machine Independent Computer Programming, by MAURICE
H. HALsTEAD, 1962; 267 pages. (Washington, D.C.:
Spartan Books, $6.50.)

‘While we have increasing interest in and discussion of many
varieties of mathematical and commercial source languages
little has been published on the actual process of translation
of a language to machine code, particularly in a manner that
the student or non-specialist programmer can readily under-
stand. Dr. Halstead has provided us with a primer of
compiling technique, and we must be glad that he has been
able to strip away the cabalistic overtones of the process so
neatly.

The subject of this book is the Nelliac language and the
minimum compiler required to compile itself in that language.
Appendices illustrate actual compilers, expressed in the
source language, to run on three different machines, and a
Nelliac program for one of these that will accept absolute
octal machine code as input and will therefrom produce
Nelliac statements—a decompiler.

Nelliac is claimed to be a dialect of ALGOL 58; the latter
was doubtless the inspiration of the Nelliac effort but the
notation and format of the language differ so much that it is
perhaps better considered a separate language. Remember-

307

Book Reviews

ing that the first rudimentary Nelliac compiler began running
in February 1959 this difference is hardly a fault. Most of
the notational flexibility of ALGOL in such matters as
recursion, block structure, variable arrays, compound
conditionals, formal parameters and functions has dis-
appeared in Nelliac, deliberately, to leave a language suitable
for single-pass compilation to absolute machine code.
Unfortunately the resulting notation is unnecessarily diffi-
cult to read, and probably to write, accurately, particularly in
the case of subroutines and conditional expressions. The
required niceties of punctuation lack the redundancy required
for easy comprehension.

The Nelliac language is more slanted towards data pro-
cessing than either ALGOL or FORTRAN, and the user is
more aware that he is using a computing machine. An
example of the latter is the very useful implicit definition of
the machine working store as an array in the language. This
feature would seem necessary in a self-compiling compiler.
The reader should note that the terms “function” and
“procedure” have very different meanings in Nelliac from
those more widely accepted through the influence of ALGOL.

The whole family of Nelliac compilers uses the technique
of “generators”, where the occurrence of given successions of
symbols in the source text triggers the inclusion of predefined
blocks of machine code. The book describes the exact
coding for one computer; from the acquisition of individual
characters of the source text from the input unit to the
siting of the compiled object program in the working store
of the computer, ready to run. Because of this ultimate
transformation to absolute code the book also serves as a
valuable handbook on single-pass assembly schemes.

The decompilation program included in the appendices
completes the circle of source text to machine code to source
text. Moreover, it is shown that programs originally written
in machine code can be decompiled successfully, and it is
claimed that this process can be a powerful aid in ““debugging’’
machine code programs. The fact that any meaningful
sequence of machine instructions can be converted mechani-
cally to a meaningful sequence of Nelliac text on at least one
machine would seem to call for some studies of the properties
of those machineflanguage pairs for which this relationship
holds.

It is unfortunate that whole-hearted recommendation of
the content of this book must be tempered by concern at the
low quality of the typesetting. Not only are there misprints,
and footnotes that have wandered from their proper page,
but here and there whole lines would appear to have been
omitted by the printer.

H. D. BAECKER.

20z UoJEN € U0 158NB AQ 112G/ E/¥0E/7/9/5101ME/|UlW0D/00" dNODIWapEDE//:SA]Y WO POPEojuMOQ

