
E.S.P. The Elliott Simulator Package
By J. W. J. Williams

This paper describes informally a method for programming simulations in ALGOL, using a
standard package of procedures (E.S.P.) to control the simulation.

A novel feature is the means of specifying the sequence of events, which permits multiple
occurrences of any event with independent sets of parameters. This involves the use of
sophisticated sorting routines and dynamic storage allocation by the E.S.P. procedures.

The behaviour of complicated systems, involving many
interrelated processes, is often most conveniently
studied by means of a model. The model is set up, and
exposed to random demands, and statistics are collected
which describe its response. This is the technique of
simulation. The manipulation of the model usually
involves only simple steps, but a great many steps are
required if the results are to be statistically significant.
For this reason it is usual to devise a numerical model,
and employ a digital computer to manipulate it.

A number of programming systems have been devised
to enable such models to be set up more readily. E.S.P.,
the Elliott Simulator Package, is such a system. It
possesses some novel features, among them the fact that
it comprises a set of ALGOL procedures.

One might question the need for special programming
systems for simulation studies, when powerful general-
purpose systems such as ALGOL are available. The
answer is that the central difficulty of the problem is the
control of the sequence in which the interdependent
actions forming the model occur. If one attempts to
write a simulation program using only a general-purpose
language, one rapidly becomes enmeshed in the com-
plexities of this sequencing control, which is not of great
interest but nevertheless affords- surprisingly fertile
ground for minor errors. Moreover, mistakes here are
liable to produce obscure effects, and are correspondingly
difficult to eradicate.

The major task of a simulator programming system,
then, is to deal with this sequencing problem. In
addition, the user will need to program certain parts of
his problem himself, and should be allowed to use some
problem-oriented language. In the case of E.S.P. this
language is of course ALGOL. Finally there are pro-
cedures which may be required by almost every user,
such as random-number generators, and statistical
routines, and these too should be built into the system.

Structure of the model
When writing the program for a simulation study, the

use of prefabricated units from any system necessarily
imposes certain constraints. These constraints are best
considered at the time when the model is designed,
rather than at the detail programming stage. There is,
in fact, a preferred type of model. In the case of E.S.P.
it is thought that this type is general enough to allow

any system of interest to be simulated, and that it is self-
explanatory enough to be easily written and easily
explained to others.

The system to be simulated may be regarded as a set
of "actions" which manipulate a set of "objects." The
objects might be the patients waiting in a doctor's
surgery, or the medicines with which they depart. The
actions in this case would be the arrival and departure
of patients, and the beginnings and ends of consultations.
In the model, all objects are represented by numbers—
or possibly by lists of numbers—and all actions are
represented by units of program which manipulate the
numbers.

It is necessary to recognize actions as being of one of
two possible kinds. There are actions which are pre-
ordained to occur at a certain time—alarm clocks as it
were—which are referred to as delayed actions. There
are also actions which will occur as soon as some
favourable combination of objects appears, and these
are called conditional actions. It is possible to envisage
hybrid actions which depend on several conditions, and
also on time. Fortunately, hybrid actions can always
be separated into a delayed action and a conditional
action by making one of the conditions of the conditional
action be that the delayed action has already occurred,
and has set some suitable mark of its passing.

These concepts may be illustrated by an example. We
may consider a doctor's surgery, shared by several
doctors, any of whom are prepared to examine any
patient. The objects of interest are free doctors, waiting
patients, and examined patients.

The actions are:

(1) Whenever there is a free doctor and a waiting
patient, both disappear.

(2) After some time, the doctor and an examined
patient reappear.

Action number 1 is a conditional action, which occurs
whenever the stated objects are present. Action
number 2 is a delayed action, which occurs at a pre-
ordained time. This time was, of course, pre-set by
action 1, when the consultation commenced. The
process by which a future occurrence of a delayed action
is arranged will be referred to as "calling" that action.

In the program, it is the task of the E.S.P. to enter
the various sections representing actions in the correct
sequence, and correspondingly to adjust the value of a

328

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/328/375742 by guest on 13 M
arch 2024



E.S.P.

variable representing time. Any section entered may
call any other section, or itself. Provision is made for
this to be done, and the subsequent behaviour of the
sequencing routine will be modified in response to such
calls. The details will be discussed below.

Structure of the program
The program which is to perform the simulation will

have a structure closely related to that of the model
described above. The program will consist of several
sections, each devoted to one action. It will be preceded
by declarations of identifiers and arrays, needed to
represent the objects to be manipulated, and further
variables used to accumulate the records which are the
results of the simulation. There will also be a section
•which sets up the initial state of the model. The whole
will be embedded in an outer block containing the
standard procedures of the E.S.P., so that these may be
available when required—because of this the program
requires an extra end which terminates this outer block.

The various sections concerned with actions must be
obeyed in proper sequence. The sequencing routines
must first examine a list of actions which have been
called but have not yet been employed, select the earliest
of these, and enter it. On completion of this action, it
must examine the remaining called actions, and employ
any which are called for the same time as the one just
performed. After this, the conditional actions must be
examined, and any which are possible performed, and
the cycle then repeats.

Since only the writer of the simulation can decide
what tests are needed in the conditional actions, these
tests are his responsibility. The whole set of conditional
actions is grouped together into a single section, in
which each individual action is represented by a con-
ditional statement. This grouping is possible, because
the conditional actions are always examined together,
so that there is never any need to break into the middle
of the group.

To summarize, there is one section of program for
each delayed action, and one section for the group of
conditional actions. These sections are entered in an
appropriate sequence under control of E.S.P., corre-
sponding to the calls for actions.

The starting point of each section is given a label,
and all these labels must be declared in a switch, with
the label corresponding to the conditional actions
section first, followed by the other labels in any order.
The switch itself must be given a name, and the name
act is suggested and will be used in the following
description. Thus if there are three sorts of delayed
actions, labelled first, second and third, and the con-
ditional happenings are labelled maybe, the switch
declaration will be

switch act : = maybe, first, second, third;

Calls for actions are made in the following way.
There is a procedure call (/, /) provided in E.S.P. This

procedure is associated with the switch act, in the follow-
ing way. The parameter i specifies which delayed action
is to be called, and this is the /th delayed action in the
switch list, which is to say, the section of program of
which the label is the (i + l)th in the list. Thus call
(2, /) is a call for the delayed action with the label
second and so on. The parameter t specifies the amount
of 'time' which is to elapse before the action actually
occurs.

When a section of program has been performed, it is
necessary to progress to the section representing the
appropriate next action, that is to jump to one of the
labels of the switch act. It is the task of E.S.P. to
decide which action is now required, and a procedure
next is provided for this purpose. This is an integer
procedure and is used to select one of the labels from
the switch act. Each section of the simulation program
ends with the statement

go to act [next];

This activates the procedure next, which scans a list
maintained inside E.S.P. and selects the next action
required. In this list, of course, actions are known by
the parameter i from the call procedure. Consequently
next may take the appropriate value to cause entry to
the section of program required. The procedure next
also causes entry to be made to the group of tests for
conditional actions, at appropriate times. That is, next
takes the value 1 at these times. This occurs whenever
a delayed action has just been completed, and the first
subsequent delayed action is due to occur at a later time.

Thus, to the simulation programmer, the statement
go to act [next] is effectively the statement that the
current action is complete and another section of
program is to be entered, and the statement call (/, 0
is the means of pre-arranging future actions. Also, the
conditional actions will in general be obeyed as soon as
the appropriate tests are satisfied.

Parameters
It may be that, at the time when an activity is called,

certain data is available which will be useful when the
activity is eventually performed. For example, suppose
that the doctors of our previous example are to be
distinguishable for some reason. Then when a doctor
and patient vanish, at the beginning of a consultation,
we know which doctor it is, and when the doctor
reappears later, it must be the same doctor. This might
be arranged by having a large number of activities,
effectively "doctor 1 reappears," "doctor 2 reappears,"
and so forth. This is rather clumsy. Instead we prefer
a single activity "doctor i reappears" with a parameter /.

The manipulation of such procedures is accomplished
with the aid of two integer arrays, send [0 : 15] and
get [0 : 15], which are declared as part of E.S.P. If,
just prior to a call, values are assigned to elements of
send, then, just prior to entry into the program represent-
ing the called action, these values will be assigned by

329

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/328/375742 by guest on 13 M
arch 2024



E.S.P.

E.S.P. to the corresponding elements of get. More
precisely, send [0] must be assigned a value n representing
the number of parameters to be transmitted, and send [0]
to send [n] inclusive will be so transmitted. A side-
effect of the procedure call is to restore send [0] to zero.

Note that in the example above, several consultations
may be in progress concurrently, each with an associated
call for "doctor / reappears." The various times and
parameters i will be so manipulated by E.S.P. that entry
occurs to the activity at the appropriate times, and at
each entry the correct associated parameter / will be
present. That is, the several calls do not interfere with
each other in any way.

Example
The basic ideas of E.S.P. have now been sufficiently

explained to allow an example program to be given.
In order to avoid complication the bare bones of the
simulation are considered; only trivial statistics will be
collected, and no random numbers will be used.
Facilities for such purposes are of course available in
E.S.P., but a description of them will be postponed to
a later Section.

The system to be simulated is a clinic, employing four
doctors. The doors of the clinic are initially open, and
remain open for three hours, during which period
patients arrive at a rate of one every seven minutes.
After the doors are closed, any further patients are
turned away. Any doctor may deal with any patient.
Consultations last for nine minutes. It is desired to
find the total number of patients seen by each doctor,
assuming that the doctors are numbered one to four,
and that if more than one doctor is free for consultation
then the lowest-numbered doctor accepts the next
patient to arrive.

The required program is given in full on the opposite
page.

Additional facilities
E.S.P. also offers facilities for the generation of

random numbers and the construction of histograms.
All the random number routines require an integer

variable which is used to store the latest value used by
the basic random number generator. This is usually
given the identifier w. This technique allows independent

streams of random numbers to be produced, each using
its own identifier in place of u.

Random (a, b, u) is an integer procedure, which takes a
random value x so that a < x < b and x is uniformly
distributed.

Negexp (/, u) is an integer procedure which takes a
value binomially distributed with mean /.

Normal (m, v, u) is an integer procedure which takes a
value normally distributed about mean m with variance v.

Histograms are compiled in single dimensioned
arrays. Certain elements of the array are used to contain
the number of cells, cell width, etc. This avoids the
need to re-specify these parameters when referring to the
histogram. Typical routines are:

Hstset {A, n, I, w) which prepares array A to receive
a histogram of n cells, lower bound
of first cell /, cell width w.

Hsput {A, x) which inserts the variate x into the
histogram array A.

Hstprint (a) which prints A in standard form.
Hstsamp {A, u) an integer procedure which takes a

value s, so that the probability that
s lies in any cell of the histogram is
proportioned to the count in that
cell.

In addition to the above built-in facilities, algorithms
have been devised for manipulation of queues, which
can be included if they are needed. This avoids the
wastage of storage space involved in maintaining all
possible routines of interest in the standard package.

Implementation
A version of E.S.P. has been coded and is operational

on the Elliott 503 and 803 computers. Work is currently
in progress to improve the routines.

Acknowledgements
The programs described were devised after study of

various other simulation systems, as mentioned in the
references below.

My thanks are also due to Mr. C. A. R. Hoare, of
Elliott Brothers, for valuable assistance with the
ALGOL technique employed.

This article is published by kind permission of Elliott
Brothers (London) Limited.

References
BUXTON, J. N., and LASKI, J. G. (1962). "Control and Simulation Language," The Computer Journal, Vol. 5, p. 194.
KELLEY.D. H., and BUXTON, J. N. (1962). "Montecode—an Interpretive Program for Monte-Carlo Simulations," The Computer

Journal, Vol. 5, p. 88. .
TOCHER, K. D. (1960). Handbook of the General Simulation Program. United Steel Companies Dept. of Operational Research

Report Number 77/0RC 3/Tech.

330

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/328/375742 by guest on 13 M
arch 2024



Prepare is an

comment
comment

; comment

the first patient will arrive in 2 minutes;
shut door in 180 minutes;
output results after 1,000 minutes, i.e. when all other activity has ceased;

E.S.P. Example: Clinic employing four doctors

begin boolean open; comment open is true for 180 minutes, then false;
integer patients; comment this is a count of the number of patients waiting;
boolean array docfree [1 : 4]; comment docfree [i] is true if doctor No. i is idle;
integer array seen [1 : 4]; comment seen [i] is a count of patients seen by doctor No. i;
switch act -.—'consult, arrival, finish, shut door, results;
begin integer /;

comment this is the entry point of the program, and this section sets initial conditions.
E.S.P. procedure which sets initial states inside E.S.P.;

prepare;
open : = true;
patients : = 0;
for i := 1 step 1 until 4 do

begin docfree [i] : = true;
seen [i] : = 0;

end;
call (I, 2)
call (3,180)
call (4, 1000)
go to act [next]

end this completes the initialization. The procedure next will cause the appropriate section of program to
be entered. In fact, on this occasion, this will be the section labelled arrive, in response to call (1, 2);

arrive: begin comment this section simulates the arrival of a patient. It also calls itself, so that a further patient
will arrive in due course. The process stops when open becomes false;
if open then begin patients : = patients + 1;

call (1, 7)
end;

go to act [next];
end on this first occasion next will select the conditional action, consult;

consult: begin comment this is the set of conditional actions, which starts consultation whenever a doctor and patient
are both available;
integer /;
for / : = 1 step 1 until 4 do

if docfree [i] patients ¥= 0 then
begin docfree [i] :— false;

patients : — patients — 1;
comment the doctor and patient have disappeared, and we must now engineer the doctor's

reappearance;
send[Q] : = 1;
send [1] : = /;
call (2, 9);
comment we needed to transmit the doctor's number i, to enable us to make the correct

doctor reappear;
seen [i] : = seen [i] + 1

end;
go to act [next]
end the consultation thus started will be terminated by the action labelled finish in due course;

finish: docfree [get[l]] : = true;
comment this action restores the doctor after the consultation started in consult. The number of the doctor

is get [1], corresponding to the send [1] of the action consult;
go to act [next];

shutdoor: open : = false;
comment this action prevents the entry of further patients, since open is tested by the action arrive;
go to act [next];

results: begin integer /
for / := 1 step 1 until 4 do print seen [/];
comment this is one form of output statement in Elliott ALGOL. More powerful output statements

are also available;
go to act [next]

end In fact there will not be any more called events at this stage, and the E.S.P. will output a message to
this effect, and then stop.

end of example program which must be followed by an extra
end to close the surrounding block containing the E.S.P. procedures.

D 331

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/328/375742 by guest on 13 M
arch 2024


