
Some experiences in price mapping
By Lucy Joan Slater

This paper outlines the details of an efficient computer program for price mapping, i.e. the
production not only of the optimum solution, but also the surrounding "next best" solutions
to a given linear-programming problem.

Price mapping is one of the first generalizations to arise
from pure linear programming. A resource map is a
dual version of the same type of calculation. The
process of calculating a price map has two stages. The
first stage is the determination of the normal optimum
solution of a linear program by the usual simplex process
for linear programming. The complete matrix forming
this solution is called the optimum plan. Every one of
the constraints in a linear program holds over a given
range of values of any one selected variable, and the end
points of such a range of values can be calculated
quickly. In two dimensions, when two of the constrain-
ing variables are allowed to vary, the optimum plan is
seen to hold over a given region in a plane, and this
region is bounded by linear segments. It is the object
of the first stage of a price mapping program to calculate,
not only the optimum plan, but also the coefficients
which determine these boundary lines of the optimum
region, for two selected variables, together with the
co-ordinates of their points of intersection.

The second stage of a price mapping program consists
of a seeking process to determine the boundaries of the
regions in which all the "next best" plans hold. These
regions surround the optimum region. Later repetitions
of this second stage of the program substitute every one
of these "next best" plans in turn for the optimum plan,
and use these new plans to seek further solutions, which,
in their turn, are valid over regions neighbouring those
regions already found. In this way a complete price
map is built up, showing every possible plan and the
region over which it is valid. It can be proved rigorously
that this seeking process is a finite one and that it must
come to an end sometime.

The normal simplex process can be thought of, in
economic terms, as that of calculating the maximum
profit on a given investment of money and other resources,
such as labour, land and materials. The solution con-
sists of a matrix, the optimum plan; the elements of the
first column vector in this matrix are the amounts of
the various resources required to produce this best pos-
sible plan.

Such models are very crude, even when the resulting
matrix exceeds 100 by 100 in size. As well as the
practical difficulties of performing the calculations on
such large matrices, there are also difficulties in the
actual measurement of the observed coefficients, namely
the resources. These models can, at best, provide only
a coarse outline picture of this best possible plan. The
picture could be made much more detailed if we could
measure subjective elements, such as managerial pre-
ferences and workers' prejudices in money terms. But

this would introduce still more elements into our matrix.
Instead, it is often more acceptable to the person who
wants the answers, to be given a price map showing the
region in which the best possible plan holds, and also
all those other regions in which the "next best" plans
hold, plans resulting from the relaxation of every one
of the boundary restrictions in turn.

The outlines of the simplex technique are well known,
but little has been written about the computational
details of a really efficient price mapping program for
a fast electronic computer. It is the object of this paper
to fill this gap.

Two difficulties were encountered in practice. First
it is necessary to design the process of price mapping in
such a way that the calculation comes to an end sooner
rather than later. Most early programs (see Cran, 1961)
were aimed primarily at satisfying this requirement,
particularly those designed for small or slow computers.
However, it was soon found that most of the methods
(see Heady and Candler, 1960) proposed in the standard
text books omitted a few of the possible "next best"
solutions altogether.

Mr. E. Evans, now at Aberystwyth, worked out part
of one of these price maps by using a desk calculator, so
that the fault in the seeking process, which was then in
use, could be traced and corrected. The final outcome
was the present program, developed for use on the
Cambridge University electronic computer, EDSAC 2.
We shall assume in this paper that the first part of the
problem, that of collecting the data and of setting it up
in a form suitable for the application of a price mapping
program, has already been carried out by the economists,
and that only the calculations remain to be worked out.

Calculating procedure
The data consists of a column of arbitrary indices,

the / column, which can be used to identify the rows of
the data, a row of indices, the / row, which identifies
the columns of the data, the initial cost row Co, two
variable cost rows Cu and C2, and the main data, with
the activity level k-, (or supply) standing first in every
row.

The program has three sections and each section is
organized into a number of subroutines.

Section I
This first section of the program reads and checks

the data. It can be entered at a number of points. The
primary entry reads and stores the / column, the J row,
and the main data, which can occur either in rows or

348

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/348/375771 by guest on 19 April 2024



Price mapping

in columns. This original data is stored on magnetic
tape, so that once read in, it can be varied slightly by
the input of short correction tapes, and a number of
price maps formed from several similar sets of data.
The program then checks that all the items in the first,
the K column, of the data, are in fact > 0, and then
goes on to the second stage of the calculation.

The data is now set up in the main store of the machine
thus:

K C,

c,
c2

h

0
0
0

* 1

0
1
0
0
0

0
0
1
0
0

Jx J2 . . .
0 0 c0 3 c0

- 1 O O O
0 — 1 0 0

. .0

. .0
fln an

0 0 'ml 'ml

al4
a2A

a.mA,

"in

The two dummy rows, C, and C2, introduced here,
will contain, later, the elements of the two restricting
vectors which we are going to relax. If our price map
had more than two dimensions, we would, of course,
have to introduce more than two variable cost rows
here, one for each added dimension. Such multi-
dimensional mapping problems are still outside the range
of all but the fastest electronic computers. The Ci and
C2 columns are used by the program for internal checking
purposes.

Section
This

II
section maximizes

coo =
n

i
 COJZJ>

subject to the constraints

k,

for i = 1, 2, 3, . . ., m.
The program enters a subroutine 10, which seeks the

most negative element cs along the first row of the main
data, excluding the first element c00. If such a negative
c, is found, the program enters another subroutine 13.
This seeks down the K column and the Jth column. If
kj = 0 or if ais = 0, it ignores this value of/; otherwise
it forms the ratios

6, = k,/ais, for kt ^ 0, and als =?* 0.

It seeks the smallest positive of these ratios 9r and
selects ars as the pivot element. If no such 6r can be
found, the program reports that the maximum is infinite
and the rest of the calculation is impossible, but if such
a 0r is found then the program goes on to enter sub-
routine 11. This subroutine divides the elements arJ
along the pivot row r, by ars, the pivot, so that

arJ-+arj/ars, for j=ts.

It then replaces the pivot ars by its inverse l/ars, and it
transforms the rest of the elements in the pivot column
so that

ais -» ~ ait/art.

It transforms all the remaining elements a,, of the
entire data matrix so that

au - rs for / = s,au -* au
and it interchanges the coefficients in the / column and J
row, so that

/, -> Jr and Jr -» Is.

The program seeks along the Co row for any element cOj
such that

\coj\ < S {KIMio- 5 .

It replaces any such arbitrarily small elements by zeros.
This is a very necessary precaution as these small ele-
ments might give rise to infinite cycling later on in the
calculation.

This is the standard simplex process. The program
prints /, and Jr at every cycle, and repeats the cycle
from the entry to subroutine 10 onwards, until no
negative element c, can be found by subroutine 10.
The simplex process is then finished, and the first plan
Po, consisting of the entire matrix, with its attendent /
column and / row, is now in the main store. The
program stores, in a separate sequence, the vector
{/o> mo> no) which consists of the first three elements of
the first column of plan Po. This vector Co identifies
the given plan Po completely and uniquely, since no two
regions of any price map can overlap. It is called, by
economists, the return to plan vector, and by mathe-
maticians, the identifying vector of the plan. The
program stores the entire plan Po on magnetic tape, and
enters the next subroutine, 21, to print the values of i, j
and the corner point

of this plan. In this first case, / = C,, j = C2 and the
point printed is the origin (0, 0), the first corner of the
price map. The program then prints the elements of
the /column and the first or K column in pairs

/,, k-, for / = 0, 1, 2, . . ., m + 2,

and it then sets up various counts ready to enter the
third section of the program. If an optional stop is
introduced into the program at this point, the same
program can be used to solve standard linear pro-
gramming problems, as the solution Po which has now
been printed, is in fact, the standard simplex solution.

Section III
This section deals in a comprehensive way with the

difficult problem of relaxing every possible restriction
on every known plan in turn, to find every possible new
plan. Again, the program is organized, as in the previous

349

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/348/375771 by guest on 19 April 2024



Price mapping

sections, as a short main program which controls entry
to a number of subroutines.

At the first entry to Section III, one plan Po is in the
main store, together with one "return to plan" vector,
or C vector, {c00, ci0, c20}, and the count over all known
plans stands at one, since only plan Po is as yet known.
In the first place, we test the C{ and C2 rows of the
current plan P, to find all possible restrictive vectors
which limit the plan P,. Thus, if the elements of the
row Ct are c n , c12, cl3,. . ., cUn+2, and the elements of
the row C2 are c2U c22, c23, . . ., c 2 n + 2 , we have to form
every possible determinant

'J C2l C2j

For a vector {cOi, cu, c2t) to be a restrictive vector
limiting the plan P,, it is necessary that A,) ^ 0, for the
selected i and for some value of j , and also it is necessary
that the determinant

Bijk =

C0j
cu

C0k

c2i

should be > 0 for all possible values of k — 1,2,.. .,n+2.
So we have to form and test A^, counting over
/ = 1, 2, 3, . . ., n + 2, and./ = /, / + 1, i + 2, .. ., «+2,
until we find the first pair of values for i and j such that
A,j =#= 0. Then, with this pair of values for / and j ,
we have to form every possible BIJk and test that BiJk > 0,
for every value of k.

When such a pair of values for i and j has been found,
we print the pair of restrictive vectors

{cot, clit c2l} and {c0J, cu, c2j)

and store them in the sequence R, of restrictive vectors
on the plan Pt. Then we continue our counting, seeking
and testing over all the remaining values of / and j
until both the / and 7 counts are exhausted. The sequence
R now contains, in r pairs, a record of all the restrictive
vectors on the plan P,.

We are now in a position to go on to generate further
pairs of plans, P,, P,+ l, . . ., by relaxing each of the r
pairs of restrictions in turn. Each plan P, is completely
identified by the first three elements in its first column,
that is, its C vector {c0/, cu, c2t). This vector is checked
against the sequence of stored vectors which defines the
plans already found. If P, has already been found it is
ignored, but if P, is a new plan it is stored in its entirety,
on the end of the sequence of known plans already on
the magnetic tape, and its C vector is stored on the end
of the sequence of identifying vectors.

In this way, we can relax every one of the 2r restric-
tions on plan P, in turn, and when all possible new plans
have been found and tested, and the r count is exhausted,
we can advance the / count to t + 1, and return to the
start of Section III to continue our search for new plans
from a new starting plan P,+,.

Finally, the / count too will become exhausted as the
number of known plans increases, and the likelihood of
finding a completely new plan decreases. However, if
this point is likely to take a long time to reach, the region
of the search can be limited by the introduction of four
boundary conditions into the initial data. These consist
of four columns which have all their items zero except
the first three. These three items take the values

(0, 1, 0) (0, 0, 1) (A, 1, 0) (5, 0, 1) where

(0, 0) (0, A) (fl, A) (B, 0) are the corner points of the
rectangular region in which we are interested.

The present main store of EDSAC 2 gives a capacity
of m, n < 100, and a complete price map of this size
takes about 6 minutes to complete the linear pro-
gramming stage, and then about 30 seconds to generate
every new plan. The seeking process, outlined here,
tests every possible combination of plans, and although
sometimes it will print a known plan a second time, in a
heavily disguised form, it cannot omit any possible plan.

An example
The following gives in full the example worked out by

Mr. Evans.

Initial

x2

Xj
x4
x5

x7

xs

x9

* 1 0

* l l
JCI2

c,
c2Cn

data, 70

K
2 1 0
1-80
1-55
1-95
2-45
2 0 5
0-50
0-50
1-50
2-25
0-50
3 0 0
0
0
0

A\
1
5
1
0
3
0
1
0
0
0
0
1

- 1
0
0

A
2
0
0
0
2
3
0
1
0
0
0
1
0

- 1
0

•25
•25

•5
•5

A3

0-25
0
0
0-5
0-5
0
0
0

©
0
1
0
0

-0-32

A
0-
0
0
0-
0-
0
0
0
0
1
0
1
0
0

- 0 -

4
5

5
25

26

0
0
1
0
0
0
0
0
0
0
1
1
0
0

- 0

As
•25.

•5

•15

A6
0-25
0
1
0
0
0
0
0
0
0
1
1
0
0

- 0 1 0

A-,
0
0
0
0-5
0-5
0
0
0
0
0
0
1
0
0

- 0 1 8

As

0-5
0
0-5
1-25
0-25
0
0
0
0
0
0
1
0
0

- 0 1 0

350

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/348/375771 by guest on 19 April 2024



Price mapping

Here the numerically greatest negative item in the Co
TOW is in column A3, —0-32, and the smallest positive
ratio K/A # 0 is x9/A3 = 1-5. Hence the pivot is at
the junction of the x9 row and the A2 column, a9i = 1.

The first iteration leads to A3 <—> x9. The second
iteration leads to A* <-> xl0- The third iteration gives

This plan is valid under the restrictions
0-05 x - y + 0-171 > 0, and 0-2 x - 0036 > 0.

It is identified by the vector {0-745, 0-36, 0}. Further
plans found by Evans are

p0l2 ={0-724, 0-354,0-127}
P02 ={0-720,0, 0-5}

Xl

x6

A<

C2

Co

1-35
1-8
1-55
0-45

•1375
•05
•5
•5
•5

0-75
0-5
0-75
0
0
0-81

1
5
1

-0-5
2-5
0
1
0
0
0
0
1

- 1
0
0 1 8

2
0-25
0-25

-0-5
2
3-5
0
1
0
0
0
1
0

-1
018

0-25
0
0
0

-0-25
0
0
0
1

-1
0
0
0
0
006

-0 -5
0
0
0

-0-25
0
0
0
0
1
0

- 1
0
0
008

0-25
0
1
0

-0-5
0
0
0
0
0
1
1
0
0
003

0-25
0
1

-0-5
-0-5
0
0
0
0
0
1
1
0
0
008

0
0
0

- 0 - 5
- 0 - 5

0
0
0
0
0
0
1
0
0
0 18

0-5
0
0-5
0-75

-0-25
0
0
0
0
0
0
1
0
0
0-08

There is now no negative item in the cost row, Co, so
this is the best possible solution, plan Poo, identified by
the vector

{l,m,n) = {0-81, 0,0}.
This plan is valid under the two restrictions

-x + 0-18 > 0, and — y + 0-18 > 0, and we
can now proceed to seek those plans that are the next
best, which arise from the relaxation of either one of
these two restrictions. We can remove such a restriction
by carrying out one simplex iteration process, as above,
with the column defined by the restrictive vector in place
of the column with the greatest negative item in the cost
row.

If we relax the first restriction, we find a new plan,
Ai -<->• x2.

P02l ={0-710,0-055,0-5}
and P02 „ ={0-699,0-087,0-5}.

These calculations took several days with a hand
calculating machine. The computer generated all these
known plans in about three minutes, and, in fact, one
further plan was found by EDSAC 2:

i>3 = {0-707, 0-035, 0-31}.

References
CRAN, J. (1961). "Calculating optimum farm programs,"

M.Sc. Thesis, Cambridge.
HEADY, E. O., and CANDLER, W. (1960). Linear programming

methods, Chap. 8, Iowa State Press.

Poi
Xl

At

Xi

x*
Xs
x6
Xl

x*
A3
A,
*n
A!

c,
c2
Co

0-99
0-36
1 1 9
0-63
0-2375
2-05
0 1 4
0-5
1-5
0-75
0-5
0-39
0-36
0
0-7452

-0-2
0-2

-0-2
0 1

-0-5
0

-0-2
0
0
0
0

-0-2
0-2
0

- 0 0 3 6

1-95
005
0-2

-0-475
1-875
0-35

- 0 05
1
0
0
0
0-95
005
1

0171

0-25
0
0
0

-0-25
0
0
0
1

- 1
0
0
0
0
0 0 6

- 0 - 5
0
0
0
0-25
0
0
0
0
1
0

- 1
0
0
0 0 8

0-25
0
1
0

- 0 - 5
0
0
0
0
0
1
1
0
0
0 0 3

0
0
1

- 0
- 0

0
0
0
0
0
1
1
0
0
0

•25

•5
•5

•08

0
0
0

- 0 - 5
- 0 - 5

0
0
0
0
0
0
1
0
0
0 1 8

0-5
0
0-5
0-75

-0-25
0
0
0
0
0
0
1
0
0
0 0 8

351

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/6/4/348/375771 by guest on 19 April 2024


