
Elementary divisors of the Liebmann process

By G. A. Miles, K. L. Stewart and G. J. Tee

When the Liebmann process is applied (with pagewise ordering) to the finite-difference Dirichlet
problem for Poisson's equation within a rectangle, the multiple zero eigenvalue of the process
is associated with non-linear elementary divisors. The eigenvectors with zero eigenvalue are
constructed explicitly, and bounds are deduced for the number of iterations which are needed to
annihilate all components of the initial error which are associated with zero eigenvalues.

1. Introduction

It has been shown (Tee, 1963) that when the Dirichlet
problem for the finite-difference Poisson equation over
a square net is solved by the Liebmann (or Seidel)
process with "chessboard" ordering, the multiple zero
eigenvalue of the error operator is associated with linear
elementary divisors, i.e. the eigenvectors of the error
operator span the full number of dimensions. Hence
the current error at each stage may be analyzed into
eigenvectors of the Liebmann error operator, and all
those components of the initial error associated with
zero eigenvalue will be annihilated by one cycle of the
process. On the other hand, if the Liebmann process is
applied with "pagewise" ordering on a square net over
a rectangle, it was shown that the multiple zero eigen-
value has non-linear elementary divisors, so that the
eigenvectors do not form a complete basis. Those
components of the initial error associated with an
elementary divisor of order m (with zero eigenvalue)
will not be annihilated before m iterations have been
performed, so that it would be of interest to know the
maximum order m, of any elementary divisor, since
after mr iterations the error of the current estimate can
be expressed as a linear combination of eigenvectors of
the Liebmann error operator (with non-zero eigenvalues).

In this paper we shall construct explicitly the eigen-
vectors with zero eigenvalues, and obtain bounds for the
number of iterations needed to annihilate all com-
ponents of the error associated with the multiple zero
eigenvalue.

2. Explicit construction of eigenvectors with zero eigenvalue

If the Liebmann process is applied with pagewise
ordering to the equations for the 5-node Laplace
operator over a square net with (p — 1) x (q — 1)
internal nodes (and Dirichlet boundary conditions), any
eigenvector u of the error operator H must satisfy the
equation

Gu = 0 (2.1)

where (Tee, 1963) G is a compound matrix with (p — 1)

compound rows and columns:

V I
V I

(2.2)

V 1
V

I is the (q — l)th-order unit matrix, and the (q — 1) x
(q — 1) submatrix V has the structure

"0 1
0 1

(2.3)

0 1
0

We may assume, without loss of generality, that p < q*
Partition u conformably with G into (p — 1) sub-

vectors uj with (q — 1) elements in each. Then (2.1)
shows that

Vu2

= 0
= 0

Vup - i = 0

(2.4)
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In view of the structure of F(cf. (2.3)), it follows from
the last equation in (2.4) that «p_, has the structure

(2.5)

0
where ap_ , is arbitrary.

* This is opposite to the assumption used in Tee (1963).
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The (p — 2)th equation of (2.4) must therefore have
the general solution

"p-2 =

"p-2

« p - l

0

0

(2.6)

vectors u of G with zero eigenvalue span a space
of exactly (p — 1) dimensions, for which the vectors

—j. Tj{j = 1,. . ., p — 1) form an orthonormal basis.

Hence the zero eigenvalue of H is associated with eigen-
vectors spanning exactly (j> — 1) dimensions (p < q),
although the multiplicity of the zero eigenvalue is
i[(p — !)(? — 1) + *]» where k > 0 is the number of
pairs of integers (r, s) which satisfy the equation

where ap_ 2 is arbitrary. Continuing in this manner, we
see that the general solution for the ith partition of u is:

-+ -=1
p q

(2.11)

(-l)'-«-'ap_,
0

0

(2.7)

1 < / < / > - 1.

Thus the general solution u contains p — 1 arbitrary
constants, and indeed it may be written in the form

(2.8)

where the vectors r, may each be partitioned into (j> — 1)
vectors of (<? — 1) elements, as follows:

with 0 < r <p and 0 < s < q (cf. equation (5.1) and
(7.6) of Tee (1963)).

This is a refinement of the result in § 7 of Tee (1963),
where it was shown only that the number of linearly
independent eigenvectors with zero eigenvalue is less
than p and less than q.

The number of elementary divisors of H equals the
dimensionality of the space spanned by eigenvectors
with zero eigenvalue (cf. Faddeeva (1959), p. 52), which
in this case is p — 1. But the sum of the orders of the
elementary divisors equals the multiplicity of the zero
eigenvalue, which is $[(p — \){q — 1) + k]. If we
assume that w, < i(q — 1) for every elementary divisor
m,, then the sum of the orders would be

"s" m, < Up - 1)(<7 - 1)< i[(p - IX? - 1) + *]• (2-12)

This contradiction shows that the maximum order mx

must satisfy the inequality

«!>«*- 1) (2-13)
which implies that

m, > Hp - 1). (2.14)

o'

•

0 _

0

•

0

.„-
0

0 _ (2.9)

where e, is the ith column of the (q — l)th-order unit 3. Minimum polynomial
matrix. Moreover, the vectors r, are clearly mutually
orthogonal. Indeed, it follows from (2.9) that

= 0 if z # nrTr
rirj
rJri=J-

(2.10)

Lower bound for mx

Equations (2.8) and (2.10) show that the eigen-

If A is an eigenvalue of a matrix, then the multiplicity
of A as a root of the minimum polynomial is equal to
the largest order of any elementary divisor corresponding
to A (cf. Halmos (1958), p. 114).

In view of this theorem, we shall investigate the
multiplicity of the zero root of the minimum polynomial
of H. Let n be the order of H. The minimum poly-
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nomial of H is

\n-v'\

where D(jj) is the h.c.f. of all (n — l)th-order minors
of \H - 17/1 (cf. Faddeeva (1959), p. 52). If the original
matrix M is represented in the form

Divisors of the Liebmann process

Since E + D + F is a tridiagonal representation
(ordered consistently with respect to pagewise ordering),

(3.1) it follows that
(T)E + r]D + F) = S(r)'i2E + r)D + rfi2F)S-x (3.8)

where

M= E + D+F (3.2)

where E, D and F contain the non-zero elements of A
which are respectively below, on, and above the diagonal,
then the characteristic polynomial of H is

T(V) = \H-VI\ = (-iy\D\-*\r,E

Q(rj)

where Q(rf) is a polynomial of order |(« — k), with
Q(0) ¥= 0 (cf. Tee (1963), equations (4.2) and (5.1)).
Furthermore, every diagonal element of D is —4, so that

~l = 4 " " (3.4)

All elementary divisors of H are linear except for
those corresponding to 77 = 0. Hence the minimal
polynomial can differ from T(rj) only by a power of 17,
so that it follows from (3.1) that D(TJ) must simply be
a power of 77.

The elements of the matrix adj(# — 17/) are all the
cofactors (i.e. minors with appropriate signs) of
(H — 17/) with order (« — 1). Therefore, D(r)) will
be the h.c.f. of all the elements of adj(// — 17/). For
any matrix A,

^(adj A) = (adj A)A = \A\I. (3.5)

Hence, using (3.5), (3.3) and (3.4) we get:

d j ( / 7 I ) \ H I \ ( H I ) iadj(/7 =\H- VI\(H

= T\rj)[-(E

= 7XV)[-(E D)-\r,E +
+ VD+ F) \E + D)

VD + F\
VD+ F)~l(E + D)

+VD+ F))(E + D).
(3.6)

Let 77* be a common factor of every element of the
matrix a d j ^ + r]D + F). Then (3.6) shows that if
is also a factor of the elements of the matrix adj(// — -qf).
Conversely, since (E + D) is non-singular we get:

adj(77f + i)D + F) = - 4»(adj(J5f - rjI)XE + D)~l

(3.7)

so that if rf is a common factor of all the elements of
adj(// — T]I), then rf is also a common factor of the
elements of the matrix adj^iT + rjD + F). Therefore
D(rj), which is the h.c.f. of all the elements of adj(// — rjl),
is the highest power of 77 which is a common factor of
the elements of the n x n matrix ad j^ f + rjD + F).

(3.9)

and m = p + q — 3
(cf. equation (4.4) and (4.5) in Tee (1963)). Therefore,

+ rjD + F)

r,1'2 F))(ad}S)

j S) . . .= -^'"-"(adj 5-')(adj(£
(3.10)

since every element of a d j ^ ^ f + rjD + T)1I2F) is a
determinant of order (n — 1), and a factor of TJ112 can
be extracted from each element of every determinant.
But (cf. (3.5))

adj S = \S\S~', adj 5 " ' = \S~' \S. (3.11)

Therefore

where
(3.12)

J = (3.13)

Each of the three matrices S, adj(£ + 77 "2Z) + F) and
J contains only non-negative powers of 77''2. Thus,
\{n — m) is a common factor of all elements of
adjX^f + 77.D + F), and hence it is a factor of D(jj).
We shall investigate the problem of whether any
additional power of 771'2 can appear as a common factor
of the elements of adj(£ + -qil2D + F).

For brevity we shall write

A = (3.14)

The elements of adj(£ + AD + F) are polynomials in
A of degree (n — 1) or less. They will have a common
factor A if and only if all elements of adj(£ + AD + F)
are zero when A = 0. But the matrix (E + F) has rank
(« - k) (cf. Tee (1963), equation (3.4)). Therefore, if
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k = 0 or 1, at least one minor of order (n — 1) must
exist which is non-zero when A = 0. Hence, A cannot
be a common factor of the elements of adj(£ + AD + F)
if k = 0 or k = 1.

In general,

adj(£ + XD+F)=\E + F\(E + XD + F)~*

\D+F)-1. (3.15)

(cf. Tee (1963), equation (3.3)) where g(0) # 0. There-
fore,

A~*adj(£ + XD +F) = Q(X2)(E + XD +F)~l. (3.16)

Hence, if A* were a common factor of the elements of
adj(£ + XD + F), then the right-hand side of (3.16)
would be finite when A = 0, i.e. Q(0)(E +F)~1 would
exist. But g(0) =?*= 0 and therefore (E + F)-1 would
exist, which is impossible if k ^ 0. Therefore, A*
cannot be a common factor of the elements of
adj(£ + XD + F) if k =*= 0.

Any element of adj(£ + XD + F) is an (n — l)th
order cofactor of (£ + XD + F). Since one and only
one term in A appears in each row and column
of (£ + AD + F), the coefficient C, of any term CSX'
in the expansion of any (n — l)th order cofactor will
be a sum of (n — 1 — s)th order minors of (£ + F)—
each minor being taken with the appropriate sign. But
all minors of order greater than n — k are zero, since
the rank of (E+F) is n — k. Therefore Cs = 0 if
n — 1— s > n — 1, i.e. if s < k — 1 (and hence k > 1).
Hence, if k > 1, a factor of A*~' can be extracted from
each element of adj(£ -\- XD -\- F). But it was shown
in the previous paragraph that (if k > 0)A* is not a
common factor of the elements of adj(£ + AD + F), so
that A*-' must be the highest common power of A.

Summarizing, the highest power of A which is a
common factor of the elements of adj(£ + AD + F) is
Av, where

(3.17)
= k - l if A: > 0

Therefore, the highest power of A which is a common
factor of the elements of 5(adj(£ + AD + F))T may be
written as Av+O, where a > 0. It follows from (3.12)
that the highest power of •»} which is a common factor
of the elements of adj(i}£ + t\D + F) is

(3.18)

(3.19)
where Q(0) ^ 0.

Upper bound for mx

The theorem cited at the beginning of § 3 shows that

w , = }(w + k — v - a) = i(p + q - 3 + k — v - a).

(3.20)

Substituting (3.17) into (3.20), we see that if /» and q
are co-prime so that k = 0 (cf. (2.11)), then

r»i = UP + q - 3 - * ) < KP + q - 3), (3.21)

but if k ^ 0 then

™i = Up + q - 2 - a ) < Up + q - 2). (3.22)

Moreover, /> < <? so that if k = 0 we have

m, < X2q - 3) = ? - f

or, since mx is an integer,

m, < <7 - 2; (3.23)

and if k # 0 then

I W , < ? - 1 . (3.24)

4. Conclusions

Combining (3.21) - (3.24) with (2.13), we see that if
k = 0 then

i(q — 1) < m, < i(/> + q — 3)< g — 2 < ? — 1,
(4.1)

and if A: # 0 then

q - - 1 (4.2)

Substituting (3.18) and (3.3) into (3.1), we get

where p < q.
Define r as the number of rows or columns (whichever

is the greater) of internal nodes in the rectangular net.
Then we have shown that the number m, of iterations
of the Liebmann process, which are needed to annihilate
all components of the initial error corresponding to zero
eigenvalue, satisfies the inequality

ir<mi<r. (4.3)

Only after this number of iterations can the current
error be expressed in terms of eigenvectors alone of H.

This paper has been written as part of the research of
the Mechanical Engineering Laboratory, English Electric
Co. Ltd., Whetstone. The paper is published by per-
mission of the English Electric Co. Ltd.
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