
The numerical solution of second-order differential equations
not containing the first derivative explicitly

By R. E. Scraton

Several methods are obtained for the numerical solution of the differential equation y" — f(x, y)
starting from initial values of y and y' at some point x0. These methods may be considered as
generalizations of the Runge-Kutta method and De Vogelaere's method.

Some previously known methods

Collatz (1960) has shown that for the equation
y" = / (x, y) the standard fourth-order Runge-Kutta
process can be put into the simplified form

0, y0)

h2f(x0 + ±h, y0 + ^hy'o

= h2f(x0 + h, y0 + hyo + ^k,) ., (A)

= yo + hyo + Ako + 2k,) + 0(h5)

4Ar, + k2) + O(/*6).

This process requires three evaluations of the function
f(x, y) for each step; unless f(x, y) is a very simple
function, these evaluations comprise the bulk of the
computational work.

De Vogelaere has shown (1955) that the same degree of
accuracy can be obtained with only two function
evaluations per step. His process may be put in the
form

= y0

= yo + hyo + \{F0 + 2Ft) + O(h5)

hyi =

(B)

where Fp = h2f(xp, yp). This process requires the value
of F_ j from the previous step and is therefore not self-
starting. For the initial s tep / I^ may be obtained from

± (BO

A similar procedure must be used at each change of
interval.

It will be noted that in both the above processes, the
error in hy' is of a higher order than that in y. This is
essential if the order of accuracy is to be preserved

throughout the tabulation, for each subsequent value of
y contains, in effect, the sum of all previous values of hy'.

Runge-Kutta type processes
A general process of the Runge-Kutta type is of the

form
^o = h2f(x0, v0)

kr = h2f(x0 + arh, v0 + arhy0 + 2 bjk,)

r = 1 ,2 , . . . ,« .
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hv[=hvo+ £ W,.kr.
r =0

It is possible to write down a set of equations for the
unknowns an Wr, brs, depending on the order of
accuracy required. The solution of these equations
involves some cumbersome algebra which need not be
discussed here; the general method is described in detail
by Collatz (I960).

Below are given fifth- and sixth-order processes
requiring four and five function evaluations per step,
respectively. Neither of these processes is unique; it is
possible to derive a variety of similar processes.

Fifth-order process
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Second-order differential equations

Sixth-order process

k0 = h2f{x0, y0)

/c, = h2f(x0 +4^ .^0+4 '

k2 =
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' +^4 = h2f[x0 + h, y0 + hy'o + -
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It is tempting to assume from processes (A), (C) and
(D) that it is always possible to derive an «th-order
process requiring (n — 1) function evaluations per step;
this is not, however, correct. It may be possible to
obtain a seventh-order process requiring only six function
evaluations, though no such process has been obtained;
it can be shown that an eighth-order process would
require at least eight, and a ninth-order at least ten.
Processes of this complexity would be of little practical
use.

Methods based on Radau Quadrature
It was shown by Radau (1880) that for any value of n

a closed quadrature formula may be obtained in the
form

a,h)

~ ar)Far

+ O(/J2"

It can be deduced that

hy[ =

n - l

WnFx

where Fp = h2y'p — h2f(xp, yp). A process based on
these formulae would be of the 2nth order and yet
require only n function evaluations per step, thus
improving on the Runge-Kutta processes. It is neces-
sary, however, to obtain the intermediate values of F
correct to order h2"~- ' and this entails the evaluation of

the corresponding y to order h2n~1. These latter values
must be obtained by extrapolation using the data of
previous steps; the processes are not therefore self-
starting, but require special starting procedures.

The simplest Radau formula {n = 1) is the trapezium
rule, which gives rise to the trivial process:

= yo + hyo + + O(/i3)
(E)

This requires no starting procedure.
With n = 2, the appropriate Radau formula is

Simpson's rule, and the corresponding process is De
Vogelaere's process (B). Higher-order processes of this
type may thus be regarded as generalizations of De
Vogelaere's process.

Radau's four-point formula (n = 3) is

f>g(x)dx - j ^ 5gl_ O(/*7)

where a = = 0-2763,9320. The corresponding

process is given below:

ya = y0 +0-2763,9320/iyo
+ 0 0645, 7768 Fo - 0-0387, 4353 F_a

+ 00187, 1643 Fa_, - 0 • 0063, 5398 F_,
+ O(h6)

yt_a = _y0 + 0-7236, 0680/ivo
+ 0-2971, 1983 Fo-0-1294, 4272 Fo

+ 0-1098, 7164 F_a - 0-0157, 4536 Fa_,

= }'o + hyo + -p;F0 +0-3015, 0283 Fa

+ 0-1151, 6383 F{_a

hy[ = i(Fft + 5Fn

+

+

(F)

For the initial step, the values of F_fl, Fa_u F_,, can
be obtained to an adequate degree of accuracy from the
following values of y:

-t = .vo - 2hyo + g Fo +

y_ a = y0 - 0-2763, 9320 hy0 + 0-0286, 1197F0

+ 0-0121, 3107F_}-0-0025,4644^!

a.t= yo-O-7236,0680hyo + 0• 1180, 5469FO

+ 0-1612,0227 F_} - 0-0174, 5356F_t
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Second-order differential equations

Table 1

Solutions, obtained by various methods, to the differential equation y" = — xy, where y = 1 and y' = 0 when x = 0

X

0 0

0-5

1 0

1-5

2 0

2-5

3 0

CORRECT
SOLUTION

1-000000

0-979253

0-838812

0-497890

-0014979

-0-509797

-0-694729

METHOD ( A )
RUNGE-KUTTA

1-000000

0-979167
(-86)

0-838609
(-203)

0-497757
(-133)

-0-014487
(+492)

-0-508159
(+1638)

-0-692671
(+2058)

METHOD (B)
DE VOGELAERE

1-000000

0-979219
(-34)

0-838704
(-108)

0-497830
(-60)

-0014571
(+408)

-0-508499
(+1298)

-0-693099
(+1630)

METHOD (C)
5TH-ORDER

1-000000

0-979258
(+5)

0-838824
(+12)

0-497915
(+25)

-0014947
(+32)

-0-509806
(-9)

-0-694857
(-128)

METHOD (D)
6TH-ORDER

1-000000

0-979253
(-)

0-838812
(-)

0-497890
(-)

-0-014976
(+3)

-0-509791
(+6)

-0-694723
(+6)

METHOD (F)
RADAU

1-000000

0-979254
(+1)

0-838814
(+2)

0-497894
(+4)

- 0 - 014976
(+3)

-0-509807
(-10)

-0-694757
(-28)

The figures in brackets show the errors in units of the sixth decimal place.

This process is of the same order of accuracy as process
(D), though it requires two fewer function evaluations
per step.

For n > 3, the extrapolation must make use of the
values of both y and F obtained during the previous step;
alternatively, the values of F from the previous two steps
may be used. In either case, there is a considerable in-
crease in the complexity of the starting procedure, and this
to a large extent limits the usefulness of such processes.

Numerical example
It is not practicable to make a theoretical comparison

of the truncation errors of the various methods, owing
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to the complexity of the error terms in the Runge-Kutta
type processes. Nor is it intended to discuss here the
question of stability.

In order to illustrate the accuracy which can be
obtained, a numerical example is shown in Table 1.
This shows the solution of the differential equation
y" = — xy, where y = 1 and y' = 0 when x = 0,
obtained by the various methods, with an interval
h = 0-5. Alongside is shown the correct solution,
which is easily obtained in terms of Bessel functions. It
will be seen that methods (D) and (F) yield results
of considerable accuracy in spite of the large interval
used.
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