A FORTRAN to ALGOL translator

By D. Pullin*

This article gives a brief description of a translator which will accept a program written in
FORTRAN II or FORTRAN 1V and produce an ALGOL procedure acceptable to any ALGOL

compiler.

It is probable that the controversy concerning the
respective merits of FORTRAN (IBM, 1961, 1962) and
ALGOL (Naur, 1962) will never be resolved. Even to
one who is convinced that ALGOL is a superior language,
the fact that so many useful routines are already available
in FORTRAN is a powerful argument for the latter.

One way of resolving this difficulty is to provide a
routine which will translate from FORTRAN source
language into ALGOL source language. The latter can
then be translated by any normal ALGOL compiler.
The translating routine has itself been written in ALGOL,
thus enabling future modifications of FORTRAN to be
easily incorporated and ensuring that any establishment
possessing an ALGOL compiler can make use of the
considerable FORTRAN library.

This two-stage technique has several advantages over
the provision of a normal FORTRAN compiler. Both
the translator and all the routines it translates will be
available on any future system as soon as the ALGOL
compiler has been written. Existing FORTRAN sub-
routines and functions can be independently translated
and incorporated as procedures in ALGOL programs.
The problems of object program optimization can be
safely left to the ALGOL compiler, and as the transla-
tor is designed to accept routines which are known to
be working, the normal debugging facilities may be
omitted. FORTRAN programs could, of course, be
transcribed into ALGOL manually, but the tedium
involved, and the consequent large scope for human
errors, render this alternative highly unattractive.

Basic principles

FORTRAN programs are written as a group of sub-
programs all but one of which are designated as functions
or subroutines. The translator reads in each of these
as a unit and puts out equivalent ALGOL statements.
Each subroutine is translated into a procedure, each
function into a type procedure. After the main sub-
program has been translated, an extra output occurs,
containing the declarations of the global variables and
certain initialization statements. The output, together
with some standard procedures, may then be compiled
by ALGOL. It is also possible for a function or a
subroutine to be translated independently and the
resulting procedure used in an ALGOL program.

A great deal of the actual translation is easily achieved.

For example the arithmetic expression

A, 3*))=6. *B 4 DEL*(Q**T + 3-6*X)
is simply transcribed as

AL, 3*J] := 6:0*B + DEL*(Q T T + 3-6*X);

Since all arrays must appear in some dimension
statement there is no difficulty in deciding whether
[or (isrequired at any point.

In the present version of the Elliott ALGOL translator
(as in the ECMA subset(Naur, 1963)) labels must begin
with a letter. This condition is satisfied by placing an [
before every FORTRAN label. This cannot produce a
clash with another identifier as the FORTRAN character
set contains upper-case letters only.

Thus 2173 GOTO 69
becomes /2173: goto 169;
The effects of a FORTRAN IF can always be achieved

by two conditional statements as follows:
IF (A(I) — B) 10, 20, 30
if A [I] — B < 0 then goto /10;
if A'[I] — B = 0 then goto /20 else goto /30;

For each computed GOTO a switch is declared at the
head of the ALGOL block and a goto inserted into the
body.

GOTO 1, (9, 11, 15, 13)
switch s7 := 19, [11, /15, /13; in the head and
goto s7 [I]; in the body

The switch identifiers are simply formed by an s
followed by a count.

Assigned GOTOs are slightly more difficult and
rather less efficient. They are, however, of less frequent
occurrence (they do not appear at all in FORTRAN II)
and so this should not be too serious.

may produce

ASSIGN 17 TO 1
is translated into

1:=17;

GOTO (17, 23, 2), 1

is translated into

* Elliott Brothers (London) Ltd., Elstree Way, Borehamwood, Herts.

¥20Z Iudy 61 uo 1senb Aq 6298GG/¥2/1/./8101e/|ufwod/woo dnoolwspede//:.sdiy woly papeojumoq

A FORTRAN to ALGOL translator

if I = 17 then goto / 17;
if I = 23 then goto / 23;
ifI = 2 then goto/ 2;
Subroutine entries, as for instance
CALL PRECOM (SUM, DIFF, 2*J + K)
convert into procedure calls as
PRECOM (SUM, DIFF, 2*J 4 K);

Function calls are identical in the two languages.

A RETURN at the end of a sub-program is omitted
entirely in ALGOL, and if it occurs elsewhere it is
translated typically into

goto d007;

and a specially invented label is attached to the end of
the ALGOL block.

A dictionary is kept of standard FORTRAN functions
which are also standard ALGOL procedures.

X = SQRTF (A + SINF (B))
is accordingly rendered as
X :=sqrt (A + sin (B));

DO loops vary slightly from for statements, so they
cannot be simply transcribed. Instead a count of DO
loops is kept and a unique label of the form d004
allocated to each. A group of equivalent statements is
compiled as shown below

DO20K =3,N,2

20 P = Q + R(K)
turns into

K :=3;
d004:

120 P:=Q+ RI[K];
K:=K +2;
if K < N then goto d004;

If a CONTINUE is encountered it is omitted com=
pletely.

Advanced concepts

There are several aspects of the problem which present
much greater difficulties, and may, in extreme cases,
require manual intervention. Unlike FORTRAN,
ALGOL requires that all variables be declared at the
beginning of each block. Thus before translation can
begin, the sub-program has to be scanned and a list of

25

all variables gathered into groups for declaration. At
the same time the DIMENSION statements are used to
provide details of the arrays. As ALGOL is much less
restrictive than FORTRAN concerning these, no trouble
can arise here. Any variables which occur in COMMON
statements will be treated as global in the ALGOL
program. The first time a variable appears in the
COMMON workspace, its name is placed in a dictionary.
In a subsequent sub-program the same variable may (by
means of COMMON) be used with a different name.
The translator will substitute the original name wherever
it appears and eventually include it in a global declara-
tion. A similar technique is used for EQUIVALENCE.
The following example may help to clarify this.

SUBROUTINE BSUM (A, C, D)
COMMON B, BI, X

B=A*C+D
Bl = A/C — X
RETURN
END

SUBROUTINE QUOT (W)
COMMON AA, BB, CC
BSUM (R, S, T)
CC = BB*R
W = AA/S
RETURN
END
The ALGOL version of these statements would be
begin own real B, Bl, X;
procedure BSUM (A, C, D); real A, C, D;
begin B := A*C + D;

Bl :=A/C—-X;

end;

procedure QUOT (W); real W;
begin BSUM (R, S, T);

X := BI*R;

W := B/S;

end;

end;

This example is obviously not complete but has been
written merely to illustrate a point.

In FORTRAN, variables of different mode and arrays
of different dimension structure may be placed together
in COMMON. Should this occur, the name substitution
described above will not work. It is, however, probable

¥20Z Iudy 61 uo 1senb Aq 6298GG/¥2/1/./8101e/|ufwod/woo dnoolwapede//:.sdiy woly papeojumoq

A FORTRAN to ALGOL translator

that this facility will be used to save space, rather than
to transmit values. Accordingly the translator will
allocate separate space for the offending variables and
put out a warning message of the form

INCONSISTENT COMMON A, B

It then examines the previous rejects, if any. On
finding a consistent one which has been ejected from the
same slot it will put out

COMMONED WITH C

If value transmission is required in the rejected case,
appropriate orders may be inserted manually.

Input and output

To convert FORTRAN input/output statements into
a form acceptable by Elliott ALGOL a two-stage process
has been developed. Two procedures called setformat
(a, b) and fortout (y, z) have been written in ALGOL
and are added to every translated program. Setformat
specifies that input/output device a is to be used, and
data transmission is under control of a FORMAT held
in location b.

Fortout transmits the value y. z is a Boolean para-
meter, which specifies whether input or output is
required.

In the body of the program an input/output order is
replaced by a call of setformat to initialize the process
followed by one call of fortout for every item on the
list. If the list contains an implied DO loop, it is
replaced by a for statement.

For example

PRINT 7A,B,C, (D)1 =1, 10)
might be translated as
z := true;

setformat (1, 15);

fortout (A, z);
fortout (B, z);
fortout (C, z);

for I := 1 step 1 until 10 do fortout (D[I], z);

The FORMAT statements themselves are put out by
the translator between string quotes. Orders are placed
at the beginning of the program to re-input these strings
and pack them in an array where they may be accessed
by fortout. This ensures that FORMAT statements
may be read in at run time if desired.

To enable this system to work with a different ALGOL
compiler (which will in general employ different input/
output procedures) only setformat and fortout need be
rewritten.

The translator has been designed to work as far as
possible with either FORTRAN II or IV, and will
accept most programs written in either language. The

26

machine-dependent features of some compilers naturally
cannot be accepted, and the more esoteric attempts to
“fool the compiler” will result in an error message
appearing during translation or at run time. However,
provided no rules of the FORTRAN specification have
been sidestepped, a program of any degree of complexity
will be translated without hesitation and may be run on
any ALGOL compiler.

There follows below a FORTRAN subroutine, and
the ALGOL procedure which was produced by the
translator.

SUBROUTINE SOLVE
COMMON A, B, C, XIR, X1I, X2R, X2I
DISC = B**2 — 4. * A * C
IF(DISC) 50, 60, 70

50 XIR = — B/(2.*¥A)

X2R = XIR
X11 = SQRTF(—DISC)/(2.*A)
X2l = — XII
RETURN
60 XIR = — B/(2.*A)
X2R = XIR
XII = 0.
X2I = 0.
RETURN

70 S = SQRTF(DISC)
XIR = (—B + S)/(2.*A)
X2R = (—B — S)/(2.*A)

XII =0.
X2l =0.
RETURN
END

procedure SOLVE;

begin begin own real DISC, S;

switch ss := /50, /60, /70, d 001;

DISC := B 12 — 4. JO0OO*A*C;

if (DISC) < 0 then goto /50;

if (DISC) = O then goto /60 else goto /70;
150 :X1R := — B/(2.L_I000*A);

X2R := XI1R;

¥20Z Iudy 61 uo 1senb Aq 6298GG/¥2/1/./8101e/|ufwod/woo dnoolwspede//:.sdiy woly papeojumoq

A FORTRAN to ALGOL translator

X1I := sqrt(—DISC)/(2.LJ000*A);
X2I = — XII;
goto d 001 ;
160:X1R := — B/(2.L1000*A);
X2R := XI1R;
X11 := 0.L.]000;
X2I := 0..000;
References

NAUR, P. (Editor) (1962).

goto d 001;

170:S := sqrt(DISC);

XIR := (—B + 9)/(2.L1000*A);
X2R := (—B — §)/(2.L1000*A);
X1I := 0.LJ000;

X2I := 0.L1000;

d 001: end end;

“Revised Report on the Algorithmic Language ALGOL 60,” The Computer Journal, Vol. 5, p. 349.

NAUR, P. (Editor) (1963). “ECMA Subset of ALGOL 60,” Communications of the A.C.M., Vol. 6, p. 595.
IBM (1961). Reference Manual 709/7090 FORTRAN Programming System (January 1961).
IBM (1962). 7040/7044 Programming Systems FORTRAN IV Advance Specifications.

Book review: Computers in research

Digital Computers in Research. An Introduction for
Behavioral and Social Scientists, by BERT F. GREEN, Jr.,
1963; 333 pages. (London: McGraw-Hill Publishing
Company Ltd., 83s. 6d.)

In his preface, the author says that this book began as a
short report intended as an introduction to the uses of com-
puters in psychology; it appears as a book which includes an
introduction to computer programming, together with an
account of some research applications of computers in the
psychological and social fields.

The introduction to computer programming occupies the
first third of the book, and is quite the best of its kind known
to the reviewer. It is written simply and clearly in a fresh and
engaging style, and is without the usual confusing material
which properly belongs to numerical mathematics and the art
of numerical calculation. Basic programming is described in
terms of a hypothetical computer with a simple one-address
code and counter-modifier index registers; algebraic compila-
tion is illustrated by an introduction to FORTRAN; and there
is an introduction to linked-list storage and processing as a
programming technique of especial value in the behavioral
field. The computer is throughout described as a digital
information-processing machine with applications to numerical
calculation. Psychologists and the like will not only learn the

27

elements of programming from this introduction; they will
also come to a just appreciation of phrases like “electronic
brain” and “machine intelligence”. A final section of the
book describing logical components and also elementary
Turing-machine theory will particularly interest them in this
connection.

The greater part of the book—which is in fact independent
of the section on programming—consists of a series of
chapters devoted to applications. These include statistical
data analysis; the use of computers for generating experi-
mental stimulus-patterns; computer models of psychological
processes; man-machine complexes like those used for
satellite tracking; and the author’s own ‘“Baseball” project
for man-machine communication in natural language.
These are selected topics, introduced in an informal and
persuasive fashion; they are presented as hors-d’ceuvres to
stimulate the reader’s appetite rather than as the solid meat
of exhaustive review.

The book is warmly recommended to its intended audience,
and indeed to all who are interested in the wider applications
of computers. The reviewer would in addition welcome the
publication of the introduction to programming as a separate
booklet for novice programmers.

W. L. B. NixoN

¥20Z Iudy 61 uo 1senb Aq 6298GG/¥2/1/./8101e/|ufwod/woo dnoolwspede//:.sdiy woly papeojumoq

