A study of the solution of an initial-value problem
with a hybrid computer

By L. N. Carling*

In the solution of problems involving partial differential equations the analogue computer has
for a long time suffered a disadvantage: namely, the lack of a large store and of logical devices,
which would enable iterative techniques to be used. This state of affairs is now being rectified
by several analogue computer manufacturers in varying degrees, their products being called
hybrid computers.

This paper looks into the possibility of the solution on a hybrid of a particular type of initial-
value problem involving partial differential equations, that has for some time been studied at the
C.E.G.B. Analogue Computation Centre at Friars House: namely, reactor fault studies on a
single channel in the flattened zone of a nuclear reactor. So far the difference-methods employed
have of necessity involved a coarse mesh; with the hybrid the mesh can be made finer, thus pre-
senting a better approximation. The paper then poses a simplified problem, and the errors
involved in two methods of solution that could be used on the hybrid computer are assessed and
compared with those of the corresponding methods that would be used on the digital computer.

1. Brief description of the hybrid computer considered

The hybrid computer considered is an ordinary modern
analogue computer fitted with the following additional
equipment :

(1) equipment to permit high-speed repetitive
operation

(2) digital/analogue converters

(3) logical devices

(4) stores.

The logical devices are primarily to be used to enable
decisions concerning the mode of integrators of the
analogue computer to be taken and implemented in the
course of the solution of a problem. This, together
with the stores, enables rapid iterative techniques to be
used, as in the subject of the study described later.
Although not considered here, arithmetic units could
also be added to the above list of additional equipment
if a given problem required the use of these units in its
solution. Computers with these additional items of
equipment are now commercially available.

It is shown in the following Sections, by means of an
example, that it is possible to solve an initial-value
problem on an hybrid assembly, such as is described
above. Schemes are evolved belonging to the categories
continuous space variable, discrete time to be labelled
CSDT and discrete space variable, continuous time, to
be labelled DSCT.

Any scheme used on a digital computer belongs to
the category discrete space variable, discrete time DSDT.
Richtmyer in his book (1957) gives many schemes of
DSDT for the solution of various problems, and in
particular for the diffusion problem, and analyzes their
performance. His methods of analysis are modified in
this paper to be appropriate to the schemes evolved
therein when applied to the diffusion equation. Thereby

comparisons between similar schemes in CSDT and
DSDT, and in DSCT and DSDT can be made. This
comparison is presented in Table 1.

It will be seen that from the point of view of accuracies
the various schemes have near equal merit. There is,
however, a distinct advantage of the two categories
CSDT and DSCT over DSDT applied to the hybrid
and digital computers, respectively, in that the number
of computations of any scheme of the former is much
less than any of the latter. Whereas in the digital
computer the integration with respect to both independent
variables is performed by the summation of a large
number of quantities successively, in the hybrid com-
puter the integration with respect to one independent
variable is continuously carried out by the charging or
discharging of a capacitor. This is one simple operation,
and it can be made as rapid as one may wish, subject
of course, to an upper limit determined by the charac-
teristics of the amplifier, which in currently commercially
available computers with high-speed repetitive operation
is sufficiently high to make the method feasible.

2. Problem to be solved

The temperatures 7; = T,(z,?) (i=1,2,...,]), and the
neutron flux ¢(z, 7) over theregion0 < z < A, 0 < 1 < 7,
z the distance along it, are sought for a single channel
in the flattened region of a reactor disturbed from a
steady state. The equations connecting these variables
are of the form

Thermal

T,

iy =

AT, 1
SicG__bz + X ouEid + X 0T, — T) (2a)
k j=1

k#c
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Problem with a hybrid computer
Table 1

Comparisons of difference schemes

d
applied to ¥ =

’

ot

o2’

c ——
dox?

Legend: =const.,, 0 < < 1
e = truncation error

exists
(S%u)} = uj'yy — 205 + uly
ut = u(jAx, nAr)

p = greatest number for which 372'/3x?|,—o

CSDT (t = nAp)

Upyp1 — Un du,,x d*v',
= o0 a0 G

e = O(Ar)
— O(AR)if 0 = 3

oAt
w — u = O[Arrl(v+9]
— O[ARrI(+6] if 6 = }

|

1
stable if 1 — —— < 0 < 1, unstable if 0 < 9<%—0A

1
t

DSCT (x = jAx)
du du;  du;_ 20
o TG O = gl
e = O(Ax?)
= O(AxH) if =1

always stable
v — u= 0O(Ax?)
=O0(Ax%if 0 =1

2u;+ ;- 1)

t= uAt)

DSDT (x _ iAx

it — 0(8 (1 — 0) (8%}
At Ax?
e = O(At) + O(Ax?)
= O(A) + O(AxY if 0 = %
stable for 0 < 0 < 1 if cAt/Ax? = const. < 1/(2 — 46)
for 1 < 6§ <1 unconditionally
W — u = O[Alr+21(p+4]
= O[Ar@r+)I(r+0] if gAt/Ax? = 1/6

(no special investigation given for 6 = 1)

n+1 n n+1 n n+1 __
Tl —wy  Sw —up 1 w5 —

j
2 A te A T12T A

B (Szu)nu_l_(szu)n
- 2Ax?

e = O(Ar?) + O(Ax*)
always stable

behaviour of ¥’ — u at At — 0 not given

(The information of this column is taken from
Richtmyer (1957))

where
{l,i=jand i=12,...,1
8,’]2

0, i # j (some of the Q; depend on T; and on G).

Neutron flux

28
32

+ Kz, t, T)¢+Z#1P —l—é-

Delayed neutrons
7B
= = Hibi + ud.

Control K(z,t, T)) = K'(z, 1, T;) + as(t)

ds
o =1Th — B

(2b)

(20)

(2d)

41

Trips K(z,t,T) = K"(z, T;) + X b;s;(t) (2e)
J
ds; _ 0 o<
a gy T<t

Boundary conditions
(i) T.0) = const I

d
i) $0.1) = diy] 0+, 1
26 r0< 1< T (2f)
(iil) ¢(h, 1) = — dzsg‘(h“, 1)

@(iv) $>0,0< z< h J

In the autonomous system (steady state) T .(h) = B.
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Problem with a hybrid computer

Initial conditions Qg
Ti(z,0), ¢(z,0) steady-state values.
5;(0) are given.

Fault G = I'(¢), a given function on [0, 7]. 2n)

3. Methods of solution on the hybrid computer

3.1. Continuous space variable (z), discrete time (CSDT)
Each of the differential equations of Section 2 is of
the form

X
"b—t = F(Z, t)

and we are going to replace tbynAt, n=0,1,2,..., N.
By the mean-value theorem

X
X(z,t + A — X(z,t) = At— R
ot (z,t + p.AY)

= At.F(z, t 4+ pAt).

O<u<l1
3.1a)

Here the inevitable approximation is made: one way of
doing this is to replace F(z, ¢ + pAt) by a mean value
over the interval (¢, ¢ + At), in fact, by

(1 — O)F(z, 1) + 0F(z, t + Ab)

where 0 < 0 < 1 is a constant, in general differing with
each equation, whose value will have to be decided on
by consideration of stability and the truncation error
(see Section 4). Hence replacing ¢ by nAt¢t and making
an obvious change in notation we have

X,11(2) — Xu(2) = At[(1-0)F,(2) +OF,  1(2)],
n=01,2....,N; 0<6<1. (3.1b)

Thus at any stage (n + 1) of the sequence of computa-
tions, the analogue computer solves for X, (z) on the
interval 0 < z < A, X,, and F, being supplied to it from
stores, having been put in to these during the previous
stage n. It must be remarked here that it is only a
function sampled at a finite number of points that is
stored. However, the number of points available in
stores of one manufacturer is large, in fact 256, and then
a circuit can be arranged for linear or other interpolation.

In this problem X, the solution of the autonomous
system is not known and has to be found by the com-
puter. Equations (2b) and (2f) in their autonomous
form show that this is an eigenvalue problem. The
numerical values of the data are generally inaccurate
and so an adjustment has to be made to obtain a solution
satisfying (2f). The term k contained in K in (2b) is
multiplied by a number A,. Iterating the computer
with a suitable circuit generates a sequence (A,) con-
verging to A, the lowest eigenvalue, and thus X, is
obtained. Details of such a procedure have been worked
out by Vichnevetsky (1962).

Once X, is determined the computer moves on to
stage n = 1. In solving for X, it must iterate until con-
dition (2f) (iii) is satisfied, the parameter of variation
being the initial condition, #,(0). So the computer
determines a sequence (v,) converging to v, the correct
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value to be assumed by ¢,(0). Thus is X; obtained, and
so on. The iteration at each stage n has, of course, a
finite number of steps, it being automatically stopped
when a predetermined error is achieved.
Another possible scheme is obtained from (3.1a)
together with
Xz, t — At) — X(z,8) = — AtF(z, t — p’Ab),
0<w <l
Adding (1 + «) times the first to (— «) times the second,
where « > 0, gives
(1+)[X(z, t + A) — X(z, 1)] — o[ X(z, 1) — X(z, t — A1)]
= At{F(z, t + pA1) + o[ F(z, t + pAt) — F(z, t — p’ AD)]}
= AtF(z, t + pAt) + 0(A#?) as At—0
~ AtF(z, t + pAt).
Then replacing F(z, t + pAt) by the mean value as before,
we get
(1 + a)(Xn-%-l - Xn) - OC(X,, - Xn—l)
= At[(1 — O)F, + 0F, ],
n=0,1,2,..,N
0<i<l1
a> 0.
This method is not pursued further in this paper.

Care should be taken that At is sufficiently small to
avoid spurious solutions; see, for example, Section 4.12.

3.2. Discrete space variable, continuous time (DSCT)

Here we have only two differential operators to replace
by difference operators, namely 07,./dz and 92¢/dz? in
equations (2a) and (2b). Hence we may write these
equations as

AT,

Y = F(z,1) 0<z<ht>0
32
32—;—/)=G(z,t) 0O<z<ht>0,

and putting z = jAz and T and T, replace them by

T 1() — T)(0) = Az[(1 — O)F(t) + O6F;, ((2)]
j=12..,J—1 (3.2q9)

exactly as in 3.1, and
$i () — 2¢,() + ¢;_1(0)
Az2 ,
ZT[0+GJ—7— 1(O+2—07—0)G()+6-G,_ (1],
j=23,...J—1, (3.2b)
where 0 < 6+ < 1,0 < 6— < 1, which is obtained from
iz + Az, 1) — P(z, 1) =
4 Az2 324
Aslent 2 o2

, O<p<D
(z+ Az, )

@z, 1)
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Problem with a hybrid computer

by the method in Section 3.1. Again values that should
be given to the constants 8+, 6~ depend on considera-
tions of stability and truncation error. T,(¢) and ¢,(¢)
are computed from formulae (3.2a) and (3.2b), respec-
tively, with 6 =1 and 6— = 0 in order to avoid the
necessity of computing Fy(¢) and G(¢), for a reason that
will appear later.

We have also to approximate to the ¢-derivatives in

@f):

)
d(Az, 1) — §0,1) = Azb—ﬂ +0(Az?) as Az—0,
Z 1@o+,0
Az >0

#z, 1) = 90,01 +57) +0Az) by @7).
1

So we put

A
é(t) = ¢>o(t)(1 + 712) (3.20)

and similarly

Az

b1 = 40 (1 +7). (3.2d)

To obtain the steady state the computer, by an iterative
procedure, seeks the eigenvalue A so that equation (3.2d)
is satisfied and 7', assumes the value given, the inte-
grators of the analogue section being in a non-operate
mode. Now revert to the general dependent variable X
of Section 2.1, but giving a different significance to the
suffix, i.e. put

X; = X;(t) = X(jAz, 1).

Then, when X;(0) (j=0,1,...,J) are found, X,(?)
will be solved by integration from 0 to 7= for each
j=12,...,J successively, in accordance with the
relationships (3.2a, b, ¢), the stores taking in the functions
X;,...,Gj_y,...over the interval 0 < ¢< 7. But,
to start this, gbo(t) must be known. Let a function ®(z),
0 < t < 7, be given—the origin of this will be explained
later—and put ¢y(t) = ®(¢). The computation is then
proceeded with and a comparison made between the
graph ¢,(t), 0< ¢t< 7, as computed according to
equation (3.2b) and ¢7(¢), say, computed by (3.2d). A
modification is then made to ¢y(f) and the process
repeated. By iteration the computer determines a
sequence of functions ¢$(f), 0<t< 7,v=1,2,...,
and the process is stopped at that stage N for which

max |V () — 5N ()]

SISt

is less than a predetermined value.

Now we consider the origin of ®. At the point j = 0
we are not interested in any of the variables except d)o(t)
for save for this the variables do not play any part in
the subsequent computation. However, if we ascribe
values to

T, 24|
0z |0,0 22 0,0

o<

we may solve the system of equations at the point j = 0

43

for ¢o(t) 0<t< 7. So ® may be defined as the

solution when

24 o

3220,y

It would seem that the method of Vichnevetsky (1962)
could be extended to apply to the iteration process of
finding ¢y and ¢,. At the commencement of stage v of
the iteration a store would feed the computer with
dP), 0=t <t,<...<ty=7 and the com-
putation would proceed. Let A, be the set of points ¢;
at which
|¢9(t;) — dFN¢;)| > &, where & is the predetermined
value of the error. Then into a second store would be
written the function y™ given by

(v :
w8 = { A if 1; ed,

0 otherwise

where| A¢$(¢))| is some function of [P (z;) — ¢P(2))|.
The outputs of the stores would then be added to give
bt 1(¢;), and the computation of stage v + 1 started,
and so on.

4. Performance of methods

In attempting to assess the stability of a difference
scheme representing the system of equations of Section 2,
one is immediately confronted with the difficulties asso-
ciated with the non-linearity of some of them. It is true
that the coefficients of the thermal equations (2a),
which are generally functions of a temperature, are
slowly varying functions and that their variability hardly
affects the behaviour of the system. But the offender,
K(z, t, T}), in the neutror diffusion equation (2b) cannot
be made independent of temperature without the system
being radically altered; because it is only through this
coefficient that the temperatures affect the neutron flux.
Nevertheless, useful information is gained, if the stability
of the linearized system is studied, even if it is assumed
that the coeflicients are constant.

Consider the system of Section 2 linearized; that is,
consider the equation

X
ot
where X is vector whose components are the dependent

variables of the system, of number say p, and 4 is a
linear operator.

=AX (4a)

4.1. Stability

4.11. CSDT.—According to Section 3.1 we would
replace (4a) by

Xn) == 8,](1 - 0,)AX,, + (Sijoi)AXn+l

1 (X
A— n+1l —
! (4.11a)
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Problem with a hybrid computer

where (8;;;) is p X p diagonal matrix whose diagonal
entries are ay, . . ., «,. One could then, perhaps, follow
Richtmyer (1957) and determine values of the 6; such
that the system (3.1a) was stable.

Since this is a preliminary study this course will not
be followed, but instead the stability, etc., of the difference
scheme representing one equation, namely (2b), will be
investigated in the manner of Richtmyer, so that com-
parison can be made with his results.

4.12 Simplified problem

¢ =¢(z1), 0<z<h, > 0isrequired, where
92 d
d) + K¢ = 13?’ t >0; K,Ilconstants K> 0
(4.120)

Initial condition: ¢(z,0) = ®(z), 0<z< h (4.12b)
where @(z) is a given function whose Fourier series is

absolutely convergent
and O0) =

Boundary condition:

D(h) = 0.

é0, 1) = ¢(h,t) = 0,7 > 0. (4.12¢)
Solution is
=3 b, sm(—z) ) 0z b0
(4.12d)
where
_2 JhQ in ("7 a
=1 ; (z) sm( 7 z
if we define —D(—2)=D(2)

4.13. With the first difference scheme of 3.1 this
becomes

¢>n+1 $uir — bn_ 0)(61 ¢,.+K¢)

+0( <f’"“Jqus,,H) n=0,1,...,N.
(4.130)

Here we assume that the ¢, are stored continuously, a

reasonable assumption in view of the remarks in Section
3.1

Initial condition: do(z) = P(2) (4.13b)

where we may and do suppose that d3®/dz3 exists and
is of bounded variation in [0, 4]. For if it did not exist
at any point, as can happen in a problem, we could
select a function W, for which d3W/dz? exists everywhere,
as close to @ as we please.

Boundary conditions:
$,00=¢,h)=0, n=0,1,...N. (4.13¢)

Note that in (4.124) and (4.12b) the case ¢t = 0 is excluded
while in (4.13a) and (4.13b) the case n = 0 is necessarily
included and hence the restriction on ®(z) in (4.13b).
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If At < /6K and 0 < 6§ < 1 the solution is

b, =3 b,,,sin(mT”z)g;;, (n=0,1,2,...N)
m=t (4.13d)

where b,, is as defined in (4.12b) and
At
. =§(Atk )_1—(1—0)Tk,,,
)
2.2
k,,,:'ﬁhT"—K, m=1,2,

For b,, sin mTwz. & satisfies (4.13a) for each n.

From the hypothesis in (4.13b) it can be shown that
1
b,n:O(—4) as m — oo and so

) éh =

;:2 %b sm( Z—mb sm(——~«z)§”

m=1

@ 1
< Cmgl;”—{2'<+d)

since ¢, ~ — 8 +1 as m— oo*  Hence (4.13d)

satisfies (4.13a). Clearly it satisfies (4.13b) and (4.13c¢).

<K ensures that the solution of

the homogeneous equation

Tt (k- 73) fri1 =0

T dz2
that satisfies (4.13¢) is ¢,.; =0. So (4.13d) is the
unique solution of the difference-method form of the
problem.

¢,, is the amplification factor, as Richtmyer calls it.

It is analogous to the factor

The restriction At <

e—-k,,,r/l

in (4.12d). The necessary and sufficient condition for
stability (Richtmyer, 1957) of the difference scheme is
that there should be an n > 0 such that

[€.] < 1+ O(A¥),

Now (k,,) is a strictly increasing unbounded sequence,
so there is a least number m, such that k,,, > 0, whatever
K may be. So

O<At<ny m=12,....

€] <1 m>m,
<

[€al >1 1< m<mg (if mg>1).

* If 6 = 1,then &, = O %
of (4.13b) could be relaxed to the necessity of the existence of

d¥ .
'd—z- mn [0, h].

) as m— oo and then the restriction
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Problem with a hybrid computer

For m > m,
1 — (1 — 0)Atk,,/l
1< reak,i <
if and only if

1

1
N Atk

1
2 tk,,,>
< m<mg

1— (1 — O)Atk,l
1+ 0Atk, ]I

Hence the system is stable if and only if

1 1
2 Atk <.

If @ is such that there is only a finite number of its
Fourier coefficients different from zero, then the system
will be obviously stable for any value of §. However,
due to rounding and other errors it is impossible to
present the computer with such a ® exactly; hence the
necessity of the condition.

4.14. DSCT.—As in the case of CSDT we shall con-
sider only the stability of the difference scheme appro-
priate to this category applied to the simplified problem
of Section 4.12.

This becomes, with the difference scheme of Section
3.2,

Az2, d
b1 — 26 + b1 :T(IE — K)

Od;1 +2(1 — O)¢; + 0¢;_1),
i=1,2...,

0>

N —

while for 1

=1+ Atlk,,|/l + 0(Ar?) as At — 0.

J, (4.14a)

where we have put 6+ = 60—, together with condi-
tions (4.12b) and (4.12¢) with z replaced by jAz.
(G=12,...J)

The solution of this is

¢ = Z b, sin m~]Az e~ *nlll

aw
2 1—cosmFAz
T A2

: 1— 0(1 —cos mthz)

Since x,, = k,, + 0(Az?) for each m as Az— 0 there
is no problem of stability.

where x,, — K, 0~1.

4.2. Truncation error
4.21. With CSDT.—This is given by

e[(ﬁ] d’n-}—l ¢n o

)

—o(% "‘"+‘+K¢n+n) (1 )

and by means of the mean-value theorem one sees that

At D
el$l = 2 bt[ i —2 (b 2 T K¢)j|
Az — 0, it being assumed that the derivatives exist.

2 %
If u is the solution of th 352

+ O(Az?) as

+ K =0
then

w1 — Up d?u,,
e[u] = —Lf——— — (1 -0 (E; + Ku,,)

nrl)

= O(Af) as At— 0, and in particular, if 6 =
e[u] = O(Ar3).

In either case e[u] = o(l) as Ar—0 and so
(Richtmyer, 1957) the time difference scheme (4.13a)
represents a consistent approximation of the initial-value
problem of Section 4.12.

4.22. With DSCT.—Here we have
el = B =2 (18) 0%
L@ =08+ 04,
~ (Ko -3,

and by repeated application of the mean-value theorem,
it being assumed ¢ is “sufficiently” differentiable,

e[4] = Az(K—lbt)((%L —0- )—"S +0(Az?)
as Az — 0.
An obvious gain is achieved if we put 6+ = 60— = 6.

Then
1,202
—_— 2 | L _
el$] = 12AZ bzz[bzz + 66 (qu
If u is as in Section 4.21, then

2u; _
elu] = 2t Au;2+ b=t

l‘;—‘f)] ’] + O(Az%).

(K — 1) 0y +201— 008+ 08

= O0(Az?) as Az—0
=0(Az% if 0=1.

4.3. Rate of convergence

The purpose of an estimation of this is to make a
comparison of it with that for the case in which both
differential operators are replaced by difference operators
(DSDT) which is estimated by Richtmyer (see Table 1).
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4.31. With CSDT
Let ¢(z, nA?) be the solution of (4.12a, b, c).
Let ¢'(z, nAr) be the solution of (4.13a, b, c).

We wish to study the behaviour of ¢* — ¢ as At — 0.
Put

y—4=(+ 3

. mm
)b,,, sin ——
m=M+1

h
[é:t/At _ (e—KmAl/l)t/At]
= %, + £, say, M being arbitrary.

Fix n = t/At, and let { be complex; then
) 1—(1— 6
S(C):[——I—TH—C_C} , 0<b<1

={l—nl+ [n(nz— l)+n0] 22— [?(L__—lg(n——g

+n(n — 1)0+n92:| 83+,
inside its circle of convergence, which is || = 6-1.
Hence for |{| < 0—! — §,(6 > 0)
& —e ™
€2
is an analytic function and therefore bounded.
In particular if § = 1, then
£l — e
Cj

is analytic and bounded in the region |{| <2 — 4.
While for positivereal {, (> 8 >0

en(p) — et
.

p>1

is obviously bounded.

t
So l‘f;/Ar(k,,.At/l) . (e—k,,, Arll)z/Atl < BE(km At/l)2

for m=1,2,..., B being a constant,
Atk, < I(6 — ) if k;, < 0. Therefore

provided

M
i< = |b,,,|.B%tk,2,, < CM?2At (C a constant).
m=1

References

If § = % then we may sharpen this result to
1] < Chi,AL.
On the other hand

Dl < B (bl {ILal 13+ et}
m=M+1

<D X

n=M-+1
If b,, = O(1/mP+1) as m — oo then

| 22| = O(1/M?)

|b,,], where D is a constant.

and so
¢ — ¢ = O(1/MP) + O(M2Af).

Up to now M has been arbitrary. Now make M
proportional to

(A~ 12+
¢ — ¢ = O(Aw/(r+9) as At — 0.

In particular if p = 3 as in (4.13b) ¢ — ¢ = O(A#3/7)
whereas if ®(x) has derivatives of all orders

$ — ¢ — O(AD).
If § = 1 these are improved to
¢ — ¢ = O(Asr/(r+6))
and ¢’ — ¢ = O(Ar?) as Ar— 0, respectively.

then

4.32 With DSCT.—In this case we have simply that
(ﬁ/ - ¢ = Z bm Sinﬂh’r—’:z(e—xtﬂ — e—kmt/l).
m=1

It is easily seen that
2.2

m?m m27r?
W [1 — (1 — 66) WAZZ + O(Az“)]

as Az—0. So that x,, = k,, + O(Az?) and in parti-
cular if 0 = 4, x,, = k,, + O(Az%) as Az—0.

It follows that ¢ — ¢ = O(Az?) as Az—0; but if
0 = 1/6, then ¢’ — ¢ = O(Az*) as Az — 0.

Xm+ K=
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