The deferred approach to the limit in ordinary

differential equations

By D. F. Mayers*

The numerical solution of second order differential equations is studied in the limit as 4 — 0.
The form of the error is derived in a number of singular cases where the simple formulation breaks

down.

The application of the method known as ‘“Richardson
extrapolation” or the “deferred approach to the limit”
to the numerical solution of ordinary differential
equations was considered recently by Fox (1962). In
this paper we shall continue the discussion of two
particular problems, arising from systems which involve
a derivative in a boundary condition, and systems
containing some form of singularity.

For convenience we restrict the discussion to the
quasi-linear second-order equation

()" + qx)y = f(x, y), 0))

although the same process can be applied to other types.
The equation is solved numerically by the simplest
finite-difference approximation

h=2p,8%, + h='q,udy, = f(xp, ¥ @)

We now wish to consider the behaviour of this approxi-
mate solution as A — 0. Fox showed that in general
the difference from the true solution is O(h2); we consider
two special cases which may give rise to different
behaviour. First, if one of the boundary conditions
involves a derivative, we wish to know how the result
depends on the method of incorporating this derivative
into the finite-difference scheme. Second, we shall
study the effect of various singularities on the solution.

Let Y(x) be the true solution of the differential
equation, and y(x, k) the solution of the approximate
equation (2), using interval 4; the values of y(x, k) will,
of course, be obtained only at values of x which are
integral multiples of A. For the moment we shall
assume that an expansion of the form

Y(x) — y(x, h) = A(x)h + B(x)h> + C(x)h*+ ... (3)

is valid; later we shall return to the question of the
existence and convergence of this expansion when the
equation has a singularity. Notice that we have expanded
the error in the approximate solution in powers of A, the
coefficients being functions of x only.

We now substitute this expression for y(x, #) in the
defining equation (2) and replace the difference operators
by their expansions in derivatives, giving

1 1
D2+ —h2D* + — h*DS + . ..
PD* + D4 + 2 hDS )
(Y — Ah — B2 — Ch® — .. )

12 3 ih4D5
+q(D+6hD + 130 +..)
(Y — Ah — Bh? — Ch® — .. )
= f(x, Y — Ah — Bh> — Ch® — . .)). 4)

As this relation is an identity we may equate coefficients
of powers of 4, the first three terms giving

pD*Y + qDY = f(x, ) ®)]
pD?A4 + qDA = A DY (6)

pD2B + gDB = BYfdY + 1izpD‘*Y + éqD3Y

— AP PY2 (7)

The first of these simply requires that Y(x) is the true
solution of the original equation (1). Each succeeding
equation of the system then defines the next term of the
expansion (3) in terms of its predecessors.

The solution of equation (6) depends on the form of
the boundary conditions; here we consider two possi-
bilities. Suppose first that both boundary conditions
involve values of the function only, say

Y(a) = «, Y(b) =8B ®

These values will be used unchanged in the numerical
solution of the equation (2), so that

y(a, h) = o, y(b,h) =B forallh. )
Hence A(a) = A(b) =0, B(a) = B(kb)=0,.... (10)

Now the solution of (6) with boundary conditions
A(a) = A(b) = 0 will be A(x) = 0; a non-trivial solution
can arise only in a singular case which we shall not
consider here. For the same reason we find that
C(x) = 0, and so on. The expansion (3) then becomes
an expansion in even powers of 4 only, and the extra-
polation is O(h?).

Boundary condition involving a derivative

If either of the boundary conditions involves a
derivative the situation is different; the form of extra-
polation may depend on the approximation used to
represent the derivative. Suppose, for example, that
the boundary conditions (8) are replaced by the initial
values
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Deferred approach to the limit

Y(@=a Y@=y, an
and these are approximated by
ya, h) = o, h~1udy(a, h) =1y. (12)

The derivative condition then gives the relation

1 1
D + -h*D? + —h*D5 + . ..
(D +gh 120" )

(Y{a) — hA(a) — h*B(@) — ... ) =1y, (13)
from which, by equating coefficients of powers of 4, we
obtain
DY(@a) = vy
DA@@) =0 , (14)
DB(a) = 1D3Y(a)

and so on. The boundary conditions for A(x) in

equation (6) are now A(a) =0, 4’(a) =0, and again
we have the trivial solution A(x) =0. It is easily
verified as before that the expansion (3) still contains
even powers only.

The vanishing of the odd powers of /4 depends on the
use of central differences throughout the calculation.
If instead of (12) to represent the derivative boundary
condition we had used the simple forward difference

h='Ay(@) = vy, (15)
the identity (13) is replaced by
(D + 3hD* + th?D3 4 . . )

(Y(a) — hA(@) — h?B(@) — .. .) =y. (16)
We now equate coefficients of A, giving
DA(a) = 3D*Y(a), an

so that A(x) is now the solution of the homogeneous
equation (6) with boundary conditions A(a) =0,
A’(a) = 1Y”(a). The solution of this system will not
in general be zero; we therefore find that the odd powers
appear in the expansion (3) and we have h-extrapolation.

A more important practical possibility is the use of
the initial conditions (11) with some form of series
expansion method to give the exact value of y(a + h),
the remaining values being obtained by recurrence

from (2). The boundary conditions (12) for y(a) are
now replaced by

ya, h) = Y(@), ya+hh=Ya+h, (18)
or
hA(a + h) +h?B(a + h) +h3Ca+h)...=0. (19

By equating to zero the powers of 4 in this expansion
we obtain

A(a) = 0, (20)
A’(a) + B(a) = 0, (21)
34"(a) + B'(a) + C(a) = 0, (22)

$4"(a@) + 1B"(a) + C(a) + D(a) =0,  (23)
etc., and as before
A(a) = B(a) = C(a) = D(@) ...=0. (24)
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Clearly A’(a) = 0 showing that A(x) =0 for all x,
and we again have h2-extrapolation. The equation for
B(x) is, however, not homogeneous, so that B(x) is not
in general zero. Hence in (23) C’(a) will not be zero,
and a term in A3 will appear in the expansion (3).

If a series expansion method is used to obtain
y(a + h) to start off a step-by-step integration process,
we have now shown that the expansion (3) will contain
both odd and even powers of A. This means that, if
we use the h2-extrapolation process to eliminate the A2
term from the expansion, the remaining error will be of
order A3, and therefore larger than if we had approxi-
mated the derivative in the boundary condition by a
central difference.

This analysis is illustrated by an example taken from
Fox (1962), §21. We solve the equation y”’ = 12x2
with y(0) = 0, y’(0) = 0, whose solution is Y = x*.
Use of the central-difference formula wéy(0) = 0 for
the second boundary condition gives the results

h=1 x 0 1 2
y 0 0 12 ,
h=31 x 0 % 1 13 2
y 0 0 075 45 15

h?-extrapolation then gives the correct results y(1) = 1,
y(2) = 16.

Now we use the same recurrence relation but with
the exact initial conditions y(0) = 0, y(h) = h*; we
obtain

h=1 x 0 1 2
y 0o 1 14
h=1 x 0 %+ 1 1% 2
o 1 71 75 6l
Y 6 8 16 4 °

and here h%-extrapolation gives the inaccurate results
=20 =1
In this very simple example the recurrence relation is
Vnit = 2Vn + Yooy = 12%x} = 12n%h*,  (25)
whose explicit solution is
Vn=h*n*—n®) +pn + g, (26)
that is

y(x, h) = x* — B2x? + p; +4, @7

where p and q are arbitrary constants. Since y(0, &) = 0
we see that ¢ = 0 in both cases. In the first solution
the condition wdy(0) = 0 means that p = 0, but if we
require that y(h, h) = h* we obtain p = h* and hence
y(x, h) = x* — h®x% 4 h3x, giving rise to the term in A3.

It may be noted that if we intend to use only a straight-
forward recurrence process with fixed interval A, the use
of the exact starting value y (A, h) gives a slightly smaller
error, h%*(x — h)x, than use of the central-difference
approximation which gives the error A2x2. It is only
when we use the hAZ-extrapolation process that the
advantage of the central-difference approximation arises.
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Deferred approach to the limit

Singularities

We now consider the effect of singularities on
the extrapolation process, and begin with the example
discussed by Fox (1962), §22. The function
Y = 1x?log x satisfies the system

xy” —y —x=0, y0)=y1)=0. (28)

Numerical results strongly suggest that the normal
h2-extrapolation is not valid in this case, and the above
analysis soon confirms this result. If we simply apply
the process described above we find first that A(x) is
identically zero and that B(x) satisfies

xXB” — B’ = —lzxY"“ — %Y
= —%x-1 and B(0) = B(1) =0. (29)
The general solution of this differential equation is
B(x) = §logx + px* + g, (30)

and it is obvious that no choice of the arbitrary constants
p and g can satisfy the boundary condition B(0) = 0.

We notice that all derivatives of Y(x) of second and
higher order are infinite at x = 0, which invalidates the
expansions used in equation (4). The derivatives are
given by d'Y/dx" = (—1)*+(r — 3)!/x7—2 if r > 3; the
series expansions for 62y and udy are readily seen to
converge only if x> h and diverge in the region
0<x<h

Returning to equation (1) we no longer assume an
expansion (3) in powers of A, but write simply

$(x, h) = Y(x) — y(x, h). @30

Corresponding to the equations (5), (6) and (7) we now
find, retaining only terms of lowest order,

pY” 4 qY’ —f(x Y)

pP” + qp’ = —h2 Yv + h2 Y + $fY, (32)
the latter equation being valld only in the range
h< x< 1.

We have already mentioned that values of y(x, k) will
be obtained only at discrete points separated by intervals
of length h. The same is therefore true of ¢(x, 4), and
some further investigation is necessary to justify our
differentiation of this function. It is probably sufficient
to define ¢(x, #) at the intermediate points as the
polynomial of lowest degree which fits the discrete
points calculated, but it remains to be shown that the
final result would be the same if some similar but
different definition were used. One boundary condition,
¢(1) = 0 is immediately obtained. We cannot use
directly the condition ¢(0) = 0, but as the finite-difference
equation (2) was satisfied at x = A we may write

P(W[y(2h) — 2y(h) + y(0)] + hq(h)[¥(2h) — ¥(0)]/2
= hf(h). (33)

Inserting y(2h) = Y(2h) — $(2h), y(h) = Y(h) — $(h),
y(0)=Y(0), where the values of Y(x) are known, we
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obtain a relation between $(/#) and ¢(2h) which constitutes
the second boundary condition.
In our particular example the equation is

x¢” — ¢ = _hz( ) g (34)
with the general solution
oo i) = —"Tlogx 1 pta 09
The boundary condition ¢(1, h) = 0 gives p = — q.
The second boundary condition gives, after some

manipulation and neglect of higher order terms in 4,
2
the result p = — %log h.

Hence

#x, 1)~ — B[ — D logh +log x], (36)

so that the extrapolation is in this case of order A2 log k.
As in the previous example the difference equation (2)
can be solved by elementary methods, giving

Yo = an? + th*(4n?> — 1)Z,, 37
where « = — (4N2 — 1)Zy/4N*4, h = 1/N and
1 1 1
=144+ .. .+ —.
n + 3 + 5 + + w1
Use of the approximation1 +1 + 4 4+ ...~y 4 logn

confirms the result (36).

Fox (1962) also mentions that the same function
1x? log x satisfies the system
X2y — 2y — %xz =0, y0)=0, ¥(1)=0,
and that a similar numerical solution seems to indicate

the validity of A%-extrapolation. The analysis of this
case is quite straightforward and gives the leading terms

1
$lx, ) = —S)+e
confirming the numerical results.
We now consider an example in which the solution is

—_ — x2 -
( x)+240

a perfectly well-behaved function, ¥ = éx3, satisfying

) 1
'ty =x% y0) =0 ¥l)=g (38)
Again the straightforward approach leads to difficulties,

as the equation (7) becomes

1

B’ + B = _.
xB" + 9

(39)

The general solution of this is B = ;—x +plogx + g,

and no particular solution can satisfy the boundary
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Deferred approach to the limit

condition B(0) = B(1) = 0. We use the same device as
in the previous example. The error now satisfies

xp ¢ = g (40)

Use of the boundary condition ¢(1, #) = 0 leads to the
solution

h2
¢ = g(x — 1) 4+ plog x. 41

At the point x = h we have to satisfy

[ 2600 | T80 _ L

h? 2h 9
so that ;qS(Zh) —2¢(h) = .91.113,
giving 1
p= §h2/(log h — 3log?2). 42)
Thus the leading terms of the error are of order
h? 1 h?
=—(x—1 - — log x. 43
Box b =Gle — ) g o logx. (43

We are usually only interested in the leading term of
the error, but in a case like this the second term is large
enough to affect the accuracy obtained quite con-
siderably. Numerical solution gives the following
results for y(3):

Interval A 3 1 % i
y(3) 0-02083 0-01594 0-01446 0-01404

the true solution being 0-01389. hA2-extrapolation from
successive pairs of these values gives the results 0-01431,
0-01397, 0-01390.

This example illustrates the fact that the form of
extrapolation will usually depend on the behaviour of
the general solution of the differential equation, and not
only on the behaviour of the particular solution deter-
mined by the boundary conditions.

The examples that we have studied have been unusual
in that we were able to give explicit solutions both for
the original differential equation and for the equation
(32) defining the error function é(x, k). This is not
necessary, however, for the application of the method
we have described; all that we need is to study the
behaviour of the solutions near the singularity of the
equation. We therefore give a final example of the
application of the process to a common type of equation
which has no exact solution in simple terms.

Consider the system

. I+ 1
y +[f(x)+§~ (x2 )}y=0

y0) =0 y1)=1, (44

Reference

where [ is a non-negative integer, a a positive constant,
and f(x) a function with a convergent series expansion
in powers of x. This equation has a general solution
of the form

Y = Ay,(x) + Byy(x),

where, for small x, y,;(x) ~ x'*! and y,(x) ~x~"

The boundary condition y(0) = 0 requires B =0 so
that the solution y,(x) does not occur; we must investi-
gate whether or not the behaviour of y,(x) will affect
the numerical solution of the system. We write
y1(z) = x't1z,(x), where z,(x) has a convergent expan-
sion in powers of x. The error term ¢(x, #) now satisfies

., a I4+D7, 1,5,
#4100+ 2 = ED]g =
_ l_ghza DI — 1) — 2)x-3u(x).

We shall expect the normal type of h2-extrapolation to
be valid unless this equation has a solution ¢(x) which
is not well-behaved at x = 0.

If we seek a particular integral of the form

di1(x) = xI=Yay + a;x + ax*...)

we obtain

a2 — 4l) — llzhza £ I — 1D)(I — 2)u(0)

and a recurrence relation for the coefficients a, in the
usual way. The general solution is therefore

d(x) = Ay (x) + Byy(x) + ¢1(x).

Provided ¢,(0) is finite there is thus no difficulty in
satisfying the boundary conditions. At x = 0, ¢(0) =0
showing that B=0, and at x =1, ¢(1) =0 giving
A= — ¢(1)/y,(1). Now when /> 1, ¢,(0) = 0 since
¢, ~ x!~! near x = 0; and when / = 0 we notice that
a, = 0 so that the leading term ayx~! vanishes. The
straightforward h2-extrapolation process is therefore
valid in each case. A numerical solution confirms these
results; again we give the values of y(4) obtained from
various intervals h:

h 3 * ¥ s

»(3) 0-14286 0-14999 0-15178 0-15223
h2-extrapolation from the first two gives y(3) = 0-15237,
and from either the second and third or third and fourth
the result y(3) = 0-15238. We notice that the error
here is much more closely approximated by Bh? than
in the previous example, where the term h%/logh was
significant.

Fox, L. (1962). (Ed.) Numerical Solution of Ordinary and Partial Differential Equations, Oxford, Pergamon Press, pp. 106-111.
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