The numerical solution of eigenvalue problems in which the
eigenvalue parameter appears nonlinearly, with an application to

differential equations
By M. R. Osborne and S. Michaelson*

Formulae are constructed which permit the efficient numerical solution of eigenvalue problems
in which the eigenvalue parameter appears nonlinearly. Problems of this type can occur in the
numerical solution by finite-difference methods of the eigenvalue problems of ordinary differential

equations.

1. Introduction

In a recent paper (Osborne, 1962) we discuss finite-
difference methods for solving the eigenvalue problems
of ordinary differential equations. In particular (in
Sections 3 and 5 of that paper) an approximate eigen-
value of the finite-difference equations is refined by
methods which are essentially Newton’s method applied
to certain implicitly defined functions of the eigenvalué.
This work is continued in this paper where (in Section 3)
we use similar techniques to derive iterative formulae
for refining approximate solutions to eigenvalue problems
in which the eigenvalue parameter appears nonlinearly.
This work is motivated in Section 2 where we discuss
examples of finite-difference approximations to differential
equation eigenvalue problems. We exemplify some of
our formulae in Section 4.

. . dv
In Section 3 we write n for the vector whose com-

ponents are obtained by differentiating the corresponding
components of ¥ with respect to A. The pth component

dv . . dV:
ofg)-‘ is written (ﬁ)p'

2. Some finite-difference approximations

In this Section we derive finite-difference formulae for
approximating to the eigenvalue problems of ordinary
differential equations. These formulae have the charac-
teristic feature that the eigenvalue parameter appears
nonlinearly in them. The cases we consider are
(a) approximation by standard methods to the differential
.equation at a singular point caused either by a singular
coeflicient or by a boundary point at oo, and (b) approxi-
mation by a somewhat non-standard method at a regular
point.

We consider first Legendre’s equation

d dP

= 2y —

dxl:(l x )dx:'+ AP = 0. 2.1
‘We seek those solutions which are regular at x = + 1.
Writing the equation in the form

P 1 dp
St mz(— 26+ P)=0, (2

we see that necessarily these solutions satisfy

Zd—P—l—)\P:O,x:—l,
dx
dp

Also, by letting x tend to +1, —1 in equation (2.2) and
using equation (2.3) we find that the regular solutions
satisfy

a2p AM\dP

g — (1 =3z —0x=—1,

a2p \dP

255 (1 _E)EZO”‘: 1. (4

Equations (2.3) and (2.4) can be approximated by the
usual finite-difference techniques. For example, if we
make the usual central-difference approximations to the

equations holding at x = — 1, and then eliminate
P(— 1 — h) between them, we find the relation
Ah A2h?
[— 1+ Y@ — KJP(— D)+ P(— 148 =0
(2.5)

where /4 is the mesh spacing. We note that equation (2.5)
depends nonlinearly on A.
A problem of a different kind occurs when one
boundary point is at co. Consider the example
d*p
“5 O+ g =0, 26)

where I |g(x)|dx < oo, subject to the boundary con-
0

ditions
P(0) = 0, j Pdx < oo. @.7)
0

The differential equation is of limit-point type at oo so
that at most one solution can satisfy the second of the
conditions (2.7) for any value of A < 0, while it can be
satisfied by no solution for A > 0. We attempt to incor-
porate this condition into our working by matching to
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Eigenvalue problems

an appropriate asymptotic solution to (2.6) for some
sufficiently large value of x. For example, if the W.K.B.
method adequately represents the solutions of (2.6) then
the appropriate solution is

1

1) e T @8

where n(x) = J- [A 4 q(2)|/2dt.

To match on to the asymptotic form at x = x, = nh
we use the difference relation

Y(Xn-1)
P(x, 1) — P(x,) o 0.. (2.9)
Substituting from equation (2.8) gives
At g [ fh 1,2
P(xn—l) - A + Q(an) eXp {2(|A + q(xn)’

I q(xn_ol'“)}P(xn) —0, (210

where we have used the trapezoidal rule to estimate the
integral of 7. Again A enters nonlinearly in equation
(2.10).

The difference approximation at a regular point which
is to be our second example follows readily from the
observation that any solution to an ordinary linear
differential equation also satisfies exactly a -difference
equation of the same order. To show this we consider
the differential equation

d?p
=l + ?(x, AP = 0. (2.11)

We assume that we know a fundamental set of solu-

tions ¥(x) and U(x). Then if the difference equation is

A; 1 P(x;_y) + AP(x;) + A; 1 1P(x;1) =0, (2.12)
we must have
A V(xi—y) + AV(x) + A1 V(X 44) =0,
and 4;_U(x;_y) + 4,;U(x;) + A; 1 U(x; 1) = 0.

These three equations may be interpreted as a set of
linear equations for the 4,. For a non-trivial solution
we must have

P(x;_y) P(x;) P(x;:y)
Uxi—)  Ukx)  Uxiz) | =0. (213)
V(xi—1) V(x;) V(xit1)

Expanding this determinant by its first row gives

Ulx;) Ulx;41) Ulx;—1) Ulxity)
‘ V(x;)) V(xit1) Plxi) = ‘ V(xi—1) V(xiv1) Px)
Ulx;—y) Ulx))
Ve, V)| P& = o, e

and this is the desired equation.

67

To obtain an approximate difference equation we
assume that between x; _; = x; —h,and x; .| = x;, + h
the solutions of equation (2.11) may be adequately
approximated by solutions of the equation

d*p

ax2 + g(x;, )P = 0.
If we now set U(x) = sin (v/[q(x;, V)](x — x;_,)), and
V(x) = sin (+/[q(x;, D](x — x;.,)), we find that equa-
tion (2.14) becomes

(2.15)

P(x;_y) — 2cos (hy/[q(x;, VD P(x;) + P(x; 1) = 0.(2.16)

This equation has appeared several times in the literature
(see, for example, Hersch (1958)). If A+/q is small
enough it differs from the standard finite-difference
approximation to (2.11) by terms which are O(h%g?).
Formulae similar to equation (2.16) can be constructed
by making different approximations to U and V. For
example the W.K.B. method gives (assuming g(x, A) >0)

U = (4g(x, A))~ *sin (n(x) — n(x;_1)),
V = (4q(x, )~ *sin (n(x) — 7(x; 1)),
W = P(x;)(4q(x;, N)'/4,

sin (9(x;41) — 9(x) Wiy — sin ((x; 1) — n(x; - ) W;
+ sin (n(x;) — 9(x;-NW; 1 = 0. (2.17)

Evaluating the integrals in (2.17) using the trapezoidal
rule we have

sin (g(\/q,-..l_ll + \/q,-)) Wi
— sin (g(\/‘]iﬂ + 24/q; + \/qi—l))Wi

h 3
+sin (5(va; + Vai-0)Wiry = 0. 218)

3. Iterative solution of the eigenvalue probléem

In the examples discussed in the prévious Sectioh,
finite-difference methods lead to the problem of solying
equations having the form ‘ ’

ANV = 0.

where the matrix 4 depends nonlinearly on A.

For second-order equations with separated boundary
conditions the matrix is also'tridiagonal. This means
that for any value of A we can solve the problem .

ANV = B(Ne, (3.2)

by marching from each boundary and matching at a
suitably chosen interior point x,. Here e, is a vector
having one in the pth place and zeros elsewhere, while 8
depends on A and on the choice of scale for the vector V.
The matching point is usually chosen to ensure a stable
computation. For a more detailed treatment of the
above points see Osborne (1962) and Fox (1960).

3.1)
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The eigenvalues of equation (3.1) are the zeros of
B(A) defined in equation (3.2). To correct an approxi-
mate eigenvalue we can apply Newton’s method to S(A).
This requires us to know dB/dA, and we find this by
differentiating equation (3.2). This gives

v dA d
A()‘)d)\ + d)\ ‘Tfep 3.3)

To solve equation (3.3) for we have to make use of

dA
the method of scaling V in equation (3.2). For example,
if A is symmetric (and a tridiagonal matrix whose off-
diagonal elements are onesigned can always be made
symmetric by premultiplying it by a diagonal matrix
with positive elements) then we have, on taking the
scalar product of equation (3.3) with ¥V and using
equation (3.2), that

dB
( ) + V = ‘a(V)p-
If the scale has been fixed so that (¥), is independent of
dv:
A then (a)p = 0, and

3.4)

dA

T
a_ Va’ is
D=, @3
The improved value of A is given by
A improved = A — ﬂgj—" . (3.6)
T___
vV ax vV

The argument given above is identical with that used
in Osborne (1962) for the special case when the elements
of A depend linearly on A. Note that equation (3.6)
gives a correction to A which is independent of the choice
of scale. Thus the scaling assumed in the above deriva-
tion need not be carried out in the actual computation.
This will be a feature of all the methods we discuss here.
We will refer to the iteration summarized in equation (3.6)
as iteration (A).

We now derive a more general iteration which we
refer to as iteration (B). We let A; be the approximation
to the eigenvalue found at the ith stage of the iteration,
and during this stage we also calculate a vector x; (we
defer the exact specification of x; until later). We now
calculate a vector ¥;,  from the equation

AQDVipq = BA)x; 3.7

where, as before, the value of 8 is determined by requiring
the vector V;,.; to be scaled according to some pre-
determined law. Varying A; keeping x; fixed we see
that B(X) vanishes at the eigenvalues of A(A). Thus
again we apply Newton’s method to B() to improve
the approximate eigenvalue.

Differentiating equation (3 7) gives

dVl +1 dB
dA a*e

+ i V,+1 = (3.8)

68

whence, using (3.7),

i 4%y, =éj—§ (3.9)

+ A~ Vit

If ¥V, is scaled so that one component (say the Pth)

is fixed independent of A then ( Viis =0, and we
have P
/8 (V1+1)P
~ dpjar < (3.10)
(A i+1

Equation (3.10) gives us the desired correction to A;.
However, we have still to settle the choice of the vector
x;.1- Two factors affect the approach of B(A) to zero
and the accuracy with which V., approximates to the
eigenvector. These are (a) the nearness to singularity of
the matrix A(A;), and (b) the relative size of the com-
ponent of x; in the direction of the eigenvector. We
attempt to maximize the second factor by linearizing the
eigenvalue problem. We let X, ¥ be approximations
to the desired eigenvalue and the corresponding eigen-
vector. To first order we have
-~ dA —

(A(A) + a(,\)AA)(V LAVY=0  (3.11)
where AX and the components of AV are assumed small.
Ignoring second-order quantities we find that

V+AV=4dA" I(X)g;(T\W (3.12)

where we have dropped a scale factor of —AX. If we
define x; ., by applying equation (3.12) with A=,
¥ = V;,, then x,_, is just the vector that occurs in the
denominator of equation (3.10).

We summarize iteration (B) in equation (3.13). We
have

AQ)Vi 1 = BQA)x;
Xii1= A—'(A,-)d—)\()\;)V.-H (3.13)
Y
A1 =X (xit e J‘

We note that a single step of the iteration requires a
triangular factorization and two forward and back sub-
stitutions. We fix the value of P at each stage by
selecting the component of x;,; of maximum modulus.
Again, as in iteration (A), it is not necessary to carry
out any scaling explicitly except that required to keep
the components of the successive vector iterates in range.
When A depends linearly on A a single step of our
iteration is equivalent to two steps of inverse iteration
plus a shift in the origin of A. In special cases it is well
known that it is desirable to maximize the component
of x; in the direction of the eigenvector.

202 udy 61 U0 1s8nB Ag 9G/8GG/99/1///8101E/|UlWO0/WO0" dNO"oIWSPEdE//:SARY WOy POpeojumod



Eigenvalue problems

Iteration (B) is formally of quite general application.
However, when A(A) is symmetric it is possible to derive
a formula which reduces the work involved per step by
using a different scaling of the approximate eigenvector
(in the special case where A enters multiplying a positive
definite matrix this formula reduces to one derived by
Crandall (1951) who showed that it gives cubic
convergence).

Here we scale ¥, in equation (3.7) by requiring that

VT S:V: . = constant (3.19)

where S; = Zi;()t) is a constant matrix. We multiply

equation (3.8) by ¥;7, and use equation (3.7) and the
symmetry of 4. This gives

d V dA dﬁ
y +1 T “I- )
Bx] + VI dAV,J 1 d)\ Tix. (3.15)
Diﬂerentiating equation (3.14) gives
dv;
VTS, d')\“ =0. (3.16)

If we now set x; = g()\,-)V,., we have (using equation

(3.16))

dVH—l dA dVr+1

_B(Vz 1-{1) dl\ dA .

B T
We can expect this term to be of second order as

(@ B—0, and (b) V,;, V;., — eigenvector.
If this term is ignored then equation (3.15) can be

(3.17)

solved for d_§ In this case the steps in the iteration are
A(Ai)Vi+l = B(A)x;,
T .
)\i+1 = )‘i —%lx’—,
i +1dA(A )V1+1

dA
Xip1 = a(Ai-{-l)VHd' (3.18)

We note that iteration (B) is formally applicable when
the quantities appearing in equation (3.1) are complex
valued, provided complex arithmetic is used. However,
our methods have an interesting application to the real
problem obtained by equating the real and imaginary
parts of (3.1) to zero. We now have a two-parameter
eigenvalue problem (corresponding to the real and
imaginary parts of the complex eigenvalue), and two
scale factors.

We write A= A; + i\, and define the real and
imaginary parts of the other quantities in (3.1) similarly.
Separating real and imaginary parts leads us to the
system

Ai(A ) — A, M)V B
[Az(/\l, ) A, Az):l[yz] = Mé¢ =0. (3.19)

69

al b
bl al
commutes with M for any values of @ and b. Thus, if ¢
is a solution of (3.19), then so is S(a, b)$, and, in
general, we may choose a and b so that any pair of
elements (i, n +j) of the solution vector ¢ take on
prescribed values («, B, say). The equations for a and b
are

We readily verify that the matrix S(a, b) = [

a(Vy); + b(Vy); = o
—b(Vy); +a(V,), =B

so that we require

OGN
— V), (V) '
We study the equation
M¢ = S(a, b). (3.20)

Clearly the eigenvalues are zeros of a(A;, A,) = b(A,, A,)

= 0. Holding ¢ fixed and differentiating with respect
to A; we have

a¢ da b
bA + A, ¢ S(a,\l’ a_)(,)q’

whence

b da dbN_,
M 2 o My _ S(MI,D—AI)M 1y (3.21)

(as a matrix which commutes with M commutes with

M .
M-1Y). Writing §V = M~ ‘quS and using (3.20) gives
1

o _ of%a db 1
.bTI + § = S(b_/\l’ a—)‘l)S(a, b)~1¢. (3.22)

We scale so that (¢),, (¢),.; are independent of Ay, A,.

Equating the i, and n + j components of —?— to zero in
. A,
(3.22) gives

(1)),
Lo Jor =

_ [a(Vl)i — (V)
LV, + a(Vy); —

da
V) + (V). ||
a(Vy, + b(VZ)j] b
Y
We carry through a similar calculation differentiating
(3.20) with respect to A,. We set §? = M“%Zd),

and we combine the results with equation (3.23) to give

(3.23)

o/

G, (),
[(§“>) ,(§<2>)n+,]("2 + 67
%
- l:a(Vl)i —b(V); (V) + a(VZ)i] Ay 24,
— La(Vy; + a(Va);—a(Vy); 4 b(V), ]| 9 b
A, A,
(3.24)
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The corrections AA;, A), are found from the equation

da da
A, A, | A, a '
= 0. 3.25
b b [A)\z + b (3.29)
o4 A,
We eliminate the partial derivatives with respect to A;
and A, between equations (3.24) and (3.25), and solve

AA
the resulting equation for '1. We find
AX,

[A?nil o [(§‘”),- (8®); }”‘ [(Vn).]
AV LEMnyy @ (V)]
Arguing as before we take for the next step of the

iteration the vector ¢ defined by the equation
g = AXED + AXEA.

(3.26)

(3.27)

4. Numerical examples

We summarize here numerical results obtained by
applying the procedures derived in the previous Section
to problems of the type considered in Section 2.

In our first example the standard finite-difference
formulae are used to approximate to the eigenvalue
problem

d dP
211 — 2 —
dx{(l x )dx} + AP =0
P(— 1) finite, P(0) = 0. 4.1)
At the singular point x = — 1 the equation is approxi-

mated by the formula derived in Section 2 (equation (2.5)).
We have used both iteration (A) and iteration (B) to
calculate approximations to the first few eigenvalues,
and the results of our computation of the first, second,
and fourth eigenvalues are given in Table 4.1.

We remark that apart from the first eigenvalue, which
is a special case, iteration (B) seems superior to iteration
(A). A feature of iteration (B) which has been borne
out in further numerical experiments is the sudden large
reduction in the magnitude of AA. This suggests that
it has better than second-order convergence. Results
very similar in character to those displayed in Table 4.1
have been obtained by Mr. William McLewin of Reading
University for an eigenvalue problem with one boundary
at . He treats this boundary point in a manner
similar to that described in Section 2.

In our second example we have used iteration (B) to
solve the finite-difference approximations of Hersch
type (equations (2.16) and (2.18)) to the eigenvalue
problems

d*p
e T A+ x)P=0,

P(0) = P(1) = 0, (4.2)

70

Table 4.1

ITERATIONS A B
A AX A A

accurate A = 2, h = -04, approximate A = 2.

1-75 -25497217 175 -24248686
2:0049722 — -00497021  1-9924869 -00750802
2-0000020 — -00000200  1-9999949 -00000523
2-0000000 -00000007  2-0000001 — -00000014
2-0000000 2-0000000

accurate A = 12, h = -04, approximate A = 12-000067

10 1-5698286 10 2-3299555
11-569829 -41911135  12-329956 — -32988507
11-988940 -01112123  12-000070 — -00000243
12-000061 -00000604  12-000068 — -00000089
12-000067 -00000033  12-000067

12-000067

accurate A = 56, h = -02, approximate A = 56-009953

60 ~2-2350126 60 —4-1201602
57-764987 —1-4672299  55-879840  -13011891
56-297757 — -28121636 56009958 — -00000515
56-016541 — -00658511  56-009953 — -00000138
56-009956 — -00000176 56009952 — -00000007
56-009954 — -00000071  56-009952
56-009954
and
d*P 92 27x x2
- — 2)2 _ . 2)2
ax? +{16(1 + x4 T (1 3)a + )

1 — 2x2

+ (ﬁﬁ)‘z}l’ =90
P(0) = P(1) = 0. (4.3)

Equations (4.2) and (4.3) can be transformed into each
other by suitably transforming both independent and
dependent variables so that they have the same eigen-
values. It is not difficult to show (from equation (4.2))
that these eigenvalues satisfy

A= p*m? — 4 + O(1/p?).

Equation (4.4) provides a convenient check on the
accuracy of our difference approximations. As an
additional check we computed some of the lower eigen-
values using a different numerical procedure.

In our numerical working we took h = 1/26 and
attempted to evaluate the first 25 eigenvalues starting
with the approximations A; = (3-142i)%2. This was
easily accomplished using equation (2.16) to approxi-
mate to equation (4.2). However, when the approxi-
mation (2.16) was applied to equation (4.3) it failed to
converge at the 21st eigenvalue. At this stage the
approximate eigenvalues are no longer close to the exact

4.49)
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Table 4.2

HERSCH METHOD

n n2p2 — % EQUATION (4.2)
A AX
9-8721640 — -50462505
9-3675389 -00095094
9-3684899 -00000314
1 9-3696044 9-3684931
39-488656 —1-6187659
37-869890 1-1067916
38-976682 -00204837
38-978730 — -00000088
2 38-978418 38-978729

5686-3664  36-919542
5723-2860 —39-690534

5683-5954 - 79650682
5684-3920 00034420
24 5684-3921 56843923

6170-1025 —2-1134689

6167-9890 -01421548
6168-0032 — -00001820
25 61680028 6168-0032

HERSCH METHOD

HERSCH (W.K.B.) METHOD
EQUATION (4.3)

EQUATION (4.3)

A A A AA
9-8721640 — -50373174 9-8721640 — -92773141
9-3684323 -00008710 8:9444326 — -03906426
9-3685193 — -00000093 8:9053683 — -00008218
9-3685184 8:9052861 -00000196

8:9052881
39-488656 — -52423552 39-488656 —1-0038301
38-964420 01466074 38-484826 01552393
38-979081 -00000130 38-500350 -00000162
38:979083 38-500351

5686-3664 —4-3156467

5682-0508 — -22302597
5681-8278 -00099366
5681 - 8288

6170-1025 —41-326951
6128-7755  28-542241
6157-3178 8-1102630

6165-4280 — -17024050
6165-2578 — -00012516
6165-2577

values. This led us to investigate the approximation to
equation (4.3) provided by the W.K.B. modification
(equation (2.18)). Here we found 25 eigenvalues.
However, although the higher eigenvalues are tolerably
accurate the first few are not good. We present some
of the numerical results in Table 4.2. They illustrate the
convergence of the iterative procedure while indicating
some interesting problems concerning the degree of
approximation to the differential equation.

As in our first example, iteration (B) provides a power-
ful method for refining an approximate eigenvalue. An
interesting feature of the iterations in the approximation
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